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Abstract

Normalized fluctuations of empirical measures converge to a law of a
random measure if and only if the underlying random variable is purely
discrete with square-root-summable probabilities.

1 Introduction

Let ξ, ξ1, ξ2, . . . be a sequence of i.i.d. real random variables with the law µ.
The associated empirical measures are defined by 1

n

∑n
k=1 δξk

, where δx denotes
the point mass at x ∈ IR. Various aspects of asymptotic theory for empiri-
cal measures have been developed in the literature; see e.g. [3, Section 3.2]
(large deviations), [12] (central limit theory) and, in a more general setup, [6]
(hydrodynamic limits).

In this note we consider normalized fluctuations of empirical measures, given
by random signed measures

Xn =
1√
n

n∑
k=1

(δξk
− µ).
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It was pointed out by various authors (e.g., [8, 9]) that, in general, we cannot
expect the weak limit of Xn to exist as a random measure on IR. Therefore,
larger spaces are considered; those play little role bellow and are used only to
make sense of the objects considered; the reader not comfortable with the space
S ′ of Schwartz distributions (see [13]), may safely substitute for S ′ a separable
Hilbert subspace H of S ′. When Xn are considered as random variables taking
values in the Schwartz space S ′, then it is known that Xn converge weakly
to a random tempered distribution X (see [9]). The law of X is a symmetric
tight Gaussian measure Γ on S ′. Its covariance functional C(f, g) for rapidly
decreasing f, g ∈ S is given by

C(f, g) = E{(f(ξ)− Ef(ξ))(g(ξ)− Eg(ξ))}, (1)

i.e., C(f, g) is equal to the covariance of the real random variables f(ξ), g(ξ).
Conversely, given a real random variable ξ, formula (1) defines a continuous

symmetric positive definite bilinear form on S which, therefore, is a covariance
functional of a Gaussian random element X with values in S ′, the (topological)
dual of S; the law of X is a symmetric tight Gaussian measure Γ on S ′. In
the terminology of [4], the map L : S 3 f → 〈X, f〉 is called the centered noise
random linear functional. Since the space M(IR) of signed measures of finite
variation is a Borel linear subspace of the Schwartz space S ′, by the zero-one
law of Kallianpur [10], Prob(X ∈ M(IR)) is either 0 or 1. Our main results
answers when the probability is one. The result complements [5, Theorem 3.1],
who consider the discrete case only; our proof is also very elementary (writing
a series expansion that trivially converges or diverges).

Theorem 1 Let ξ be a real r.v. and let X be a Gaussian S ′-valued r.v. with
the covariance given by (1). Then Prob(X ∈ M(IR)) = 1 if and only if the
following two conditions are fulfilled.

ξ is discrete; (2)

∑
x

√
Prob(ξ = x) < ∞. (3)

Moreover, if (2) and (3) hold, then X takes values in the set Mµ(IR) of
measures absolutely continuous with respect to µ.

Random variables Xn are measure valued and from Theorem 1 it is clear
that we can expect Xn to converge weakly in M(IR), i.e., M(IR)-valued i.i.d.
random variables δξk

to satisfy the central limit theorem in the Banach space
M(IR) of signed measures with bounded variation topology, only if conditions
(2) and (3) are fulfilled. This indeed is the case as shown by the following
corollary, see Durst & Dudley [5, Theorem 3.1].
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Corollary 1 If ξ satisfies (2) and (3), then r.v. δξk
satisfy the central limit

theorem in M(IR).

Proof: Since µ is discrete, Mµ(IR) with the induced (total variation) norm
topology is isomorphic to the space `1 of all absolutely summable sequences.
It is well known that `1 is a Banach space of cotype 2 (see, e.g., [1, p. 188]).
Therefore (cf., e.g., [1, p. 194]) to prove the theorem it is enough to check that
there is a Gaussian Mµ(IR)-valued r.v. X with the covariance given by (1).
Clearly, X from Theorem 1 satisfies the requirements. 2

Remark 1 Corollary 1 does not assume any integrability properties of ξ; for
related CLT results that assume conditions on tails of ξ, see Gine & Zinn [7].

It is also of interest to point out that in general, distribution valued r.v.
X with the covariance (1) has a series expansion X =

∑
νnγn, where νn are

deterministic measures which are absolutely continuous with respect to µ and
γn are real i.i.d. N(0, 1) r.v. This fact is a direct consequence of the theory of
reproducing kernel Hilbert spaces associated with a Gaussian measure (see, e.g.
[11]) and of the following result.

Proposition 1 For each µ, the reproducing kernel Hilbert space HX of X is
contained in Mµ(IR).

In one of the proofs we shall use the following folklore result, which we prove
for completeness in a more general form than what is needed below.

Proposition 2 If Γ1, Γ2 are two tight Gaussian measures on a locally convex
space E such that their reproducing Hilbert spaces satisfy HΓ1 ⊂ HΓ2 , then for
each Borel subspace L of E,

Γ2(L) ≤ Γ1(L).

2 Proofs

We shall use the following ”abstract” results about Gaussian vectors.

(A) If νn are deterministic measures such that for i.i.d. N(0, 1) r.v. γn the
series X =

∑
νnγn converges in the variation norm ‖ · ‖ on M(IR), then

Prob(X ∈M(IR)) = 1.

(B) (see [10]) If Γ is a tight Gaussian measure on a locally convex quasi-
complete space E, then for each Borel subspace L of and every vector
v ∈ E, Γ(L + v) is either 0 or 1.
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(C) (see [2]) If Γ1, Γ2 are two tight Gaussian measures on a locally convex
quasi-complete space E such that their reproducing Hilbert space norms
satisfy | · |Γ2 ≤ K| · |Γ1 , then there exists a symmetric Gaussian measure
Γ0 and a constant c > 0 such that

Γ2(cA) = Γ1 ∗ Γ0(A)

for all measurable sets A.

2.1 Proof of Proposition 2

We claim that the inclusion HΓ1 ⊂ HΓ2 is a continuous embedding . Indeed, let
Ki denote the unit ball of HΓi

, i = 1, 2. Both sets Ki are compact subsets of
E (c.f. [2]) and, since the embedding HΓ1 ⊂ E is continuous, their intersection
K = K1 ∩K2 , being closed in E, is closed in HΓ1 . Moreover, HΓ1 is the union
of sets nK, n ≥ 1. Indeed, HΓi =

⋃
n≥1 nKi and for sequences of non-decreasing

sets An and Bn one has⋃
n≥1

An ∩
⋃
n≥1

Bn =
⋃
n≥1

An ∩Bn.

By the Baire Theorem, K ⊂ n0K ⊂ n0K2 for some n0, proving that the em-
bedding is continuous.

Since the inclusion HΓ1 ⊂ HΓ2 is continuous, therefore by (C) we have

Γ2(L) =
∫

E

Γ1(L− x)Γ0(dx). (4)

By symmetry Γ1(L − x) = Γ1(L + x) and for x ∈ L, sets L + x and L − x are
disjoint affine subspaces of E. Therefore from (4) it follows that Γ1(L− x) < 1
and by the zero-one law (for Borel affine subspaces) Γ1(L − x) = 0 for x ∈ L.
This shows that Γ2(L) = Γ1(L)Γ0(L) ≤ Γ1(L). 2

2.2 Proof of Theorem 1

(Sufficiency) Suppose (2) and (3) hold. Denote by rn the values of ξ and
put pn = Prob(ξ = rn) = µ(rn). Let (γn) be a sequence of independent
standard normal N(0, 1) r. v. The series X =

∑√
pn(δrn − µ)γn converges

in the variation norm and hence X is an Mµ(IR)-valued Gaussian random
variable. A direct computation shows that for f ∈ S we have E〈X, f〉2 =
E(

∑√
pn(f(rn)−

∫
fdµ)γn)2 =

∑
pn(f(rn)−

∫
fdµ)2, which matches (1). 2

(Necessity) Suppose that either (2) or (3) fails. We shall show that this
contradicts Prob(X ∈M(IR)) = 1.

Let γ0 be a normal N(0, 1) random variable independent of X and put
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Y = X + γ0µ. (5)

The covariance of Y is given by

E〈Y, f〉2 =
∫

f2dµ. (6)

Since µ is in M(IR), therefore the events X ∈ M(IR) and Y ∈ M(IR) are
identical and hence Prob(X ∈ M(IR)) = Prob(Y ∈ M(IR)). We shall show
that Prob(Y ∈ M(IR)) = 0. If either (2) or (3) fails, then one can find disjoint
open intervals Jn such that

µ(Jn) = µ(Jn) = qn,

and ∑√
qn = ∞.

Let νn be a restriction of µ to Jn, i.e. νn are supported on Jn and∫
fdνn =

∫
Jn

fdµ

for all bounded measurable f . Denote by | · | the associated Hilbert space norm
in HY . The formula

|
∑

anνn|2 =
∑

a2
nqn. (7)

gives the explicit expression for the reproducing kernel Hilbert space norm of a
finite linear combination of measures (νn). Indeed,

|
∑

anνn| = sup{
∑

an

∫
fdνn : f ∈ S,

∫
f2dµ ≤ 1}

= sup{
∑

anbn

∫
fndνn :

∫
f2

ndµ ≤ 1,
∑

b2
n ≤ 1}

= sup{(
∑

a2
n(

∫
Jn

fndµ)2)1/2 :
∫

f2
ndµ ≤ 1}.

This proves (7), since

sup{(
∫

Jn

fdµ)2 :
∫

f2dµ ≤ 1} = µ(Jn) = qn.

From (7) it follows that ( 1√
qn

νn)n≥1 is an orthonormal sequence in HY .
Let Z =

∑
1√
qn

νnγn , where (γn) are i.i.d. N(0, 1) random variables. The
reproducing kernel Hilbert space of Z lies in the reproducing kernel Hilbert space
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of Y , as its conjugate Hilbert space norm on S is smaller (Jensen’s inequality).
Applying Proposition 2 to E = S ′ and its linear subspace L = M(IR) we have

Prob(Z ∈M(IR)) ≥ Prob(Y ∈M(IR)).

However, the variation norm ‖
∑

1√
qn

νnγn‖ =
∑

1√
qn
|γn| diverges, i.e., if CN is

a ball of radius N in the variation norm in M(IR), then Prob(Z ∈ CN ) = 0 for
all N ≥ 1. Therefore 0 ≤ Prob(X ∈ M(IR)) = Prob(Y ∈ M(IR)) ≤ Prob(Z ∈
M(IR)) = 0. 2

2.3 Proof of Proposition 1

Let Y be the Gaussian random measure on S ′ defined by (5). Then the repro-
ducing kernel Hilbert space of X is contained in the reproducing kernel Hilbert
space HY of Y , since the covariance (6) dominates (1). We shall show that HY

is contained in M(IR). To this end notice that by definition HY consists of the
distributions T ∈ S ′ such that sup{〈T, f〉 :

∫
f2dµ ≤ 1} < ∞. Each such T is

actually given by < T, f >=
∫

f(x)g(x)dµ(x) for some g ∈ L2(IR, dµ). Since
µ is a probability measure, therefore L2(IR, dµ) is contained in L1(IR, dµ) and
hence each T is a µ-absolutely continuous measure with the density dT

dµ = g.
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