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Résumé Nous prouvons le propriétés de grandes déviations (P.G.D.) pour les mesures
empiriques en τ -topologie, dans les cas de suites stationnaires sous conditions de mélange
α(n) � exp(−n(log n)1+δ) pour certain δ > 0, ou φ(n) � exp(−n`(n)) avec `(n) →∞. Les
examples de châınes de Markov récurrentes au sense de Doeblin montrent que ces conditions
ne permettrent pas de amélioration substantielle, et que l’existence même du P.G.D. dépend
du choix de la mesure initiale.

Abstract The Large Deviation Principle (LDP) with respect to the τ -topology holds for
the empirical measure of any α-mixing or any φ-mixing stationary process with a hyper-
exponential mixing rate of at least α(n) � exp(−n(log n)1+δ), for some δ > 0 or at least
φ(n) � exp(−n`(n)) with `(n) →∞. Positive recurrent Doeblin Markov chain examples for
which the LDP does not hold demonstrate the tightness of these rates and the relationship
between the LDP for the empirical means of all bounded IRd-valued functionals and the
LDP for the empirical measure.

1 Introduction.

We shall say that a sequence of probability measures {µn} on a topological space X equipped
with a σ-field B satisfies the Large Deviation Principle (LDP), if there is a lower semicon-
tinuous rate function I : X → [0,∞], with compact level sets I−1([0, a]) for all a > 0, and
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such that for all Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
n→∞

1
n

logµn(Γ) ≤ lim sup
n→∞

1
n

logµn(Γ) ≤ − inf
x∈Γ

I(x) ,

where Γ denotes the closure of Γ, Γo the interior of Γ, and the infimum of a function over
an empty set is interpreted as ∞. The left-most inequality is called the (large deviations)
lower bound and the right-most is called the upper bound, while the weak LDP corresponds
to the upper bound holding (only) for pre-compact Γ ∈ B and with I−1([0, a]) required to
be (only) closed sets.

Note that B need not necessarily be BX – the Borel σ-field of X .
Let {Yi}∞i=0 be a stationary sequence of random variables which take values in a Polish

space Σ, and consider the empirical measures

Ln =
1
n

n∑
i=1

δYi ,

where δy denote the probability measure degenerate at y ∈ Σ. Let M1(Σ) denote the
space of (Borel) probability measures on Σ equipped with the τ -topology generated by the
collection

{ν ∈M1(Σ) : |
∫
Σ
fdν − x| < δ} ,

where x ∈ IR, δ > 0 and f ∈ B(Σ, IR) – the vector space of all bounded, real-valued, Borel
measurable functions on Σ. Let Bcy be the cylinder σ-field on M1(Σ), i.e., the smallest
σ-field that for any fixed f ∈ B(Σ, IR) makes ν 7→

∫
Σ fdν a measurable map from M1(Σ)

to IR. With Ln measurable with respect to Bcy, let µn be the law of Ln on (M1(Σ),Bcy).
With Σ Polish, Bcy is merely the Borel σ-field associated with weak convergence in M1(Σ)
(see for example [2, Lemma 2.1]).

Sanov’s well known theorem states that µn satisfies the Large Deviation Principle when
Yi are i.i.d. random variables (see [13, Section 3.2] or [12, Section 6.2] and the references
therein, see also [11] for extension to arbitrary measurable space). This result has been
extended to a rather large class of Markov chains (see [10, 12, 13, 20] and the references
therein for earlier works, most notably of Donsker and Varadhan). In a different direction,
this LDP has been shown to hold for stationary processes satisfying the hypermixing con-
ditions of [8], for ψ-mixing processes and in compact spaces also for φ-mixing processes of
hyper-exponential mixing rate (see [6]). On the other hand, [1] show that the LDP might
fail for empirical measures of Doeblin chains which are φ-mixing with exponential rate,
and an example of a β-mixing process such that the Large Deviation Principle fails for a
bounded linear functional of Ln (with values in {−1, 0, 1}) is provided in [7], see also Section
4.

A natural question, addressed here is therefore “is there an α-mixing rate that suffices to
guarantee the Large Deviation Principle for the empirical measures ?” (recall the following
chain of implications

ψ −mixing =⇒ φ−mixing =⇒ β −mixing =⇒ α−mixing

and see [3] for a review of the relations between these mixing conditions).
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The sufficient rate is α(n) = exp(−n(log n)1+δ) for some δ > 0 (see Proposition 2 below).
Theorem 1, the main result of this note, states that if {Yi} possesses the mixing condition

(S) (see definition below) then {µn} satisfies the Large Deviation Principle in (M1(Σ),Bcy)
equipped with the τ -topology. Condition (S) bellow suffices for the empirical process LDP
to hold, though it seems that the rate function might in general be strictly less than the
specific entropy function.

The analog of Theorem 1 for continuous time processes is stated in Theorem 2.
In Section 3 we bring the definitions of the various mixing conditions mentioned above

and show in particular that either fast α-mixing or hypermixing or ψ-mixing suffice for (S)
(see also Lemma 4 for (S) in the context of Markov chains). The method of proof of Theorem
1 also allows for extending the result of [6, Theorem 3] to the non-compact setting, i.e.,
proving that the LDP holds for the empirical measure (and the empirical process) provided
that

1
n

log(1/φ(n)) →∞ . (1)

Doeblin recurrent, irreducible, countable state Markov chains are studied in Section 4.
First, we show that for these chains the LDP does hold for the empirical means of every
bounded IRd-valued function of the state, and for all finitely supported initial measures. In
contrast, modifying [7, Proposition 4.1] we provide such a chain and a set D ⊂ Σ such that
under the invariant measure of the chain the LDP for {n−1 ∑n

i=1 1D(Yi)}, the empirical
frequency of visits to D, does not hold. This example demonstrates the tightness of (1)
and also shows that the mere existence of the LDP is sensitive to the choice of the initial
measure even for irreducible Markov chains. Then, we provide an example of such a chain
with the LDP holding for the empirical means of every bounded IRd-valued function of the
state even under its invariant measure, yet for any initial distribution the LDP fails for its
empirical measures.

2 Large Deviation Principle under (S) Mixing

Definition: We shall say that condition (S) is satisfied if for every C < ∞ there is a
non-decreasing sequence `(n) ∈ IN with

∞∑
n=1

`(n)
n(n+ 1)

<∞ (2)

such that

(S−) : sup{P (A)P (B)− e`(n)P (A ∩B) : A ∈ Fk1
0 , B ∈ Fk1+k2+`(n)

k1+`(n) k1, k2 ∈ ZZ+} ≤ e−Cn,

(S+) : sup{P (A ∩B)− e`(n)P (A)P (B) : A ∈ Fk1
0 , B ∈ Fk1+k2+`(n)

k1+`(n) k1, k2 ∈ ZZ+} ≤ e−Cn,

where Fb
a = σ(Yi : a ≤ i ≤ b).

Remark: Conditions (S−) and (S+) are reminiscent of the double-mixing condition of [5]
and can be similarly interpreted as arising from ψ− and ψ+ mixing (see Section 3 below)
except on small sets.

The connection with moment estimates is given by the following.
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Lemma 1 Fix two σ-fields F and G. If

sup
A∈F ,B∈G

[P (A)P (B)− aP (A ∩B)] ≤ b ,

then for all non-negative random variables W ∈ L∞(F), Z ∈ L∞(G)

E(W )E(Z)− aE(WZ) ≤ b‖W‖∞‖Z‖∞ (3)

If
sup

A∈F ,B∈G
[P (A ∩B)− aP (A)P (B)] ≤ b ,

then for all non-negative random variables W ∈ L∞(F), Z ∈ L∞(G)

E(WZ)− aE(W )E(Z) ≤ b‖W‖∞‖Z‖∞ (4)

Proof. By Fubini’s theorem for the non-negative W , Z we have

E(W )E(Z)− aE(WZ) =
∫ ‖W‖∞

0

∫ ‖Z‖∞

0
[P (W > t)P (Z > s)− aP (W > t,Z > s)]dtds

and (3) follows. The proof of (4) is done analogously.

Our main result is the following theorem.

Theorem 1 If (S) holds for the stationary sequence {Yi}, then {µn} satisfies the Large
Deviation Principle with respect to the τ -topology in M1(Σ) and with the (convex) rate
function

I(ν) = sup
f∈B(Σ,IR)

{
∫
Σ
fdν − Λ(f)} , (5)

where

Λ(f) = lim
n→∞

1
n

Λn(f) = lim
n→∞

1
n

logE(exp(
n∑

i=1

f(Yi))) . (6)

In particular the limit in (6) exists for every f ∈ B(Σ, IR). The weaker condition (S−) suf-
fices for the LDP to hold for the empirical means {n−1 ∑n

i=1 f(Yi)}, for every f ∈ B(Σ, IRd).

Clearly, if (S) holds for {Yi} it follows that for each r ∈ IN, (S) also holds for the process
{(Yi, . . . , Yi+r−1)} which takes values in the product space Σr. Consequently, by Theorem
1, the r-empirical measures

Ln,r =
1
n

n∑
i=1

δYi,...,Yi+r−1 ,

then satisfy the LDP in M1(Σr) equipped with the τ -topology and with a convex rate
function Λ∗

r(·) which is the Fenchel–Legendre transform (on B(Σr, IR)) of

Λ(r)(f) = lim
n→∞

n−1 logE(exp(
n∑

i=1

f(Yi, . . . , Yi+r−1))) .
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Let M1(ΣIN) be equipped with the cylinder σ-field Bcy, and with the projective limit of
the τ -topologies of M1(Σr), i.e., the weakest topology making Q 7→

∫
Σr fd(πrQ) continuous

for every f ∈ B(Σr, IR) and all r ∈ IN, where πr : M1(ΣIN) → M1(Σr) is the projection
mapping of Q to its marginal on the first r coordinates (compare with [13, Exercise 5.4.40]).
It now follows by [9, Theorem 3.3] that the process level empirical measure

Ln,∞ =
1
n

n∑
i=1

δT iY

(where T iY = (Yi, Yi+1, . . .) ) satisfies the LDP with respect to the latter topology, and
with the rate function

I∞(Q) = sup
r∈IN

Λ∗
r(πrQ)

(a similar derivation is presented in [12, Section 6.5.3] in the context of Markov chains).
Following the argument of [13, Equations (5.4.15) and (5.4.19)] one can verify that I∞(Q) =
∞ when Q is not shift-invariant and that I∞(Q) is bounded above by the specific entropy
function (see [13, Equation (5.4.8)] for definition). It seems however that in general I∞(Q)
might be strictly less than the specific entropy function for some Q ∈M1(ΣIN).

The proof of Theorem 1 builds on [12, Section 6.4], with the following application of
the Dawson–Gärtner projective limit theorem [9, Theorem 3.3] serving as a useful tool (see
also [10] where it is applied when proving upper bounds for empirical measures of Markov
chains).

Lemma 2 Let Pa(Σ) denote the space of all finitely additive non-negative set functions on
BΣ assigning unit mass to Σ, equipped with the B(Σ, IR)-topology and the (relevant) cylinder
σ-field Bcy.
(a) With µn(A) = µn(A ∩M1(Σ)) for all A ∈ Bcy, A ⊂ Pa(Σ), the sequence {µn} satisfies
the Large Deviation Principle in Pa(Σ) iff for every f ∈ B(Σ, IRd) the sequence {Ŝn =
n−1 ∑n

i=1 f(Yi)} satisfies the LDP in IRd.
(b) If for every η > 0 and any sequence Aj ∈ BΣ decreasing monotonically to the empty set,
limj Λ(η1Aj ) = 0 (with Λ(·) given in (6)), then {µn} also satisfies the LDP with respect to
the τ -topology in M1(Σ). The rate function for this LDP is given by (5) provided the rate
functions for the LDP of {Ŝn} are all convex.

Remark 1 Clearly, the LDP in Pa(Σ) with a rate function J implies that {µn} satisfies
the weak LDP in M1(Σ) for the function J restricted to M1(Σ).

Proof. (a) Since Ŝn =
∫
Σ fdLn, the LDP in force for every f ∈ B(Σ, IRd) and every d <∞

implies by [9, Theorem 3.3] that {µn} satisfies the LDP in X – the algebraic dual of B(Σ, IR)
equipped with the B(Σ, IR)-topology. The LDP in Pa(Σ) follows by the identification of
Pa(Σ) with a closed subset of X via 〈ω, 1A〉 7→ ω(A) (where 〈ω, f〉 denotes the value that
the linear functional ω assigns to f ∈ B(Σ, IR)). The converse implication (that LDP in
Pa(Σ) yields LDP for all f ∈ B(Σ, IRd)) is trivial.
(b) The LDP in X implies that Λ(f) exists and is finite everywhere with

Λ∗(ω) = sup
f∈B(Σ,IR)

{〈ω, f〉 − Λ(f)} ,
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being the affine regularization of the rate function I(·) (see [12, Theorem 4.5.10]). In
particular, I(ω) ≥ Λ∗(ω) for all ω ∈ X . Fixing ω ∈ Pa(Σ) which is not countably additive,
there exists ε > 0 and a sequence Aj ∈ BΣ decreasing monotonically to the empty set, such
that ω(Aj) = 〈ω, 1Aj 〉 ≥ ε for all j. By our assumptions, for every η > 0,

I(ω) ≥ Λ∗(ω) ≥ lim sup
j→∞

{〈ω, η1Aj 〉 − Λ(η1Aj )} ≥ ηε ,

and taking η → ∞ we conclude that I(ω) = ∞. The LDP in M1(Σ) now follows by
observing that the τ -topology is the relative topology induced by Pa(Σ) on M1(Σ) with the
latter supporting {µn} and containing the set of points of finite rate. If the rate functions
for {Ŝn} are convex then by [9, Theorem 3.3] so is I(·) and necessarily I = Λ∗ is given by
(5).

In particular, we shall first prove the existence of limits like (6) for suitably chosen func-
tions based on Hammersley’s [19, Theorem 2] approximate sub-additivity lemma, quoted
for completeness.

Lemma 3 (Approximate sub-additivity) Assume h : IN → IR is such that for all
n,m ≥ 1,

h(n+m) ≤ h(n) + h(m) + ∆(n+m) ,

where ∆(n) is a non-decreasing sequence satisfying

∞∑
r=1

∆(r)
r(r + 1)

<∞ .

Then λ = limn→∞ [h(n)/n] exists, λ <∞ and for all m ∈ IN,

λ ≤ h(m)
m

− ∆(m)
m

+ 4
∞∑

r=2m

∆(r)
r(r + 1)

. (7)

Proof of Theorem 1. First we show that for every f ∈ B(Σ, IRd), the sequence Ŝn =∫
Σ fdLn satisfies the Large Deviation Principle in IRd with a convex rate function. This

result is proved by adapting the proof of [12, Theorem 6.4.4], with (S−) replacing Assump-
tion 6.4.1 of [12, page 253] and Lemma 3 replacing [12, Lemma 6.4.10]. Indeed, Ŝn is the
empirical mean of the stationary process Xi = f(Yi) taking values in a compact (convex)
subset of IRd. Assumption 6.4.1 is used twice in the proof of Theorem 6.4.4 of [12]; first
for any B < ∞ and every fixed concave continuous g : IRd → [−B, 0] to uniformly bound
below the quantity

1
`

log

{
E(exp(ng(Ŝn)) exp(mg(m−1 ∑m

j=1Xj+n+`)))

E(exp(ng(Ŝn)))E(exp(mg(Ŝm)))

}
, (8)

with ` = `(n + m) any non-decreasing sequence satisfying (2). Choosing the sequence
`(n) corresponding to C = B + 1 in (S−) and applying (3) for W = exp(ng(Ŝn)) and
Z = exp(mg(m−1 ∑m

j=1Xj+n+`)) (with ‖W‖∞ = ‖Z‖∞ = 1 and E(W )E(Z) ≥ e−B(n+m)),
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it follows that (8) is bounded below by −1 + log(1− e−2). Assumption 6.4.1 is needed once
more in [12] for showing that if for some M <∞ and fixed open sets G, G′

P (Ŝn ∈ G)P (Ŝn ∈ G′) ≥ exp(−Mn)

for all n large enough, then
lim inf

η↓0
lim inf
n→∞

ρ(n, η) ≥ 0 , (9)

where

ρ(n, η) =
1
n

log

{
P (Ŝn ∈ G ,

∑n
j=1Xj+n+ηn ∈ G′)

P (Ŝn ∈ G)P (Ŝn ∈ G′)

}
.

Choosing the sequence `(n) corresponding to C = M + 1 in (S−) we have `(n) ≤ ηn for all
n large enough and hence applying (S−) to A = {Ŝn ∈ G} and B = {

∑n
j=1Xj+n+ηn ∈ G′}

yields the bound ρ(n, η) ≥ −2η for all n ≥ n0(η) and (9) follows.
With the LDP for {Ŝn} with a convex rate function holding for every d < ∞ and any

f ∈ B(Σ, IRd), we fix η > 0 and a sequence Aj ∈ BΣ monotonically decreasing to the empty
set. Note that for every m,n, `, j ∈ IN

n+m∑
i=1

(1Aj (Yi)− 1) ≤
n∑

i=1

(1Aj (Yi)− 1) +
m∑

i=1

(1Aj (Yi+n+`)− 1) + 2` .

Choosing the sequence ` = `(n + m) corresponding to C = η in (S+) and applying (4)
to W = exp(η

∑n
i=1(1Aj (Yi) − 1)) and Z = exp(η

∑m
i=1(1Aj (Yi+n+`) − 1)) (with ‖W‖∞ =

‖Z‖∞ = 1 and E(W )E(Z) ≥ e−η(n+m)), it follows that for every η > 0

Λn+m(η(1Aj − 1)) ≤ Λn(η(1Aj − 1)) + Λm(η(1Aj − 1)) + 2(η + 1)` .

Therefore, Lemma 3 applies with the sequence ∆(n) = 2(η + 1)`(n) which is independent
of j. With m−1Λm(η1Aj ) = m−1Λm(η(1Aj − 1)) + η, we consequently have by (7) that for
every m, j ∈ IN and any η > 0

Λ(η1Aj ) = Λ(η(1Aj − 1)) + η ≤ m−1Λm(η1Aj ) + 8(η + 1)
∞∑

r=2m

`(r)
r(r + 1)

.

Note that

Λm(η1Aj ) ≤ log(1 + eηm
m∑

i=1

E(1Aj (Yi))) ,

implying by the countable additivity of the laws of Yi that Λm(η1Aj ) → 0 as j →∞. Taking
now m→∞ it follows that Λ(η1Aj ) → 0.

The proof is now completed by applying Lemma 2.

Following the treatment of the i.i.d. case in [17, Section 5] we deduce from Theorem 1
that if condition (S) holds for Σ-valued stationary sequence {Yi} in separable Banach space
Σ = (E, ‖ · ‖) such that ‖Y ‖ ≤ K, then the sequence {Ŝn = n−1 ∑n

i=1 Yi} satisfies the LDP
in E with the convex rate function

I ′(x) = sup
λ∈E∗

{〈λ, x〉 − Λ(λ)} (10)
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(where Λ(λ) is as in (6) but with 〈λ, Yi〉 replacing f(Yi)). Indeed, Ln(B0,K) = 1 with
B0,K = {x : ‖x‖ ≤ K} closed, so by Theorem 1 we know that {µn} satisfies the LDP with
a convex rate function in X = M1(B0,K) equipped with the topology of convergence in law.
For ν ∈ X let m(ν) be the unique element of E such that

〈λ,m(ν)〉 =
∫

E
〈λ, x〉ν(dx) ∀λ ∈ E∗ ,

where by [13, Lemma 3.3.8], the map m : X → E is well defined and continuous. Plainly,
Ŝn = m(Ln) and the LDP for {Ŝn} follows by the contraction principle (see [12, Theorem
4.2.1]); the rate function for the latter LDP is convex and (10) follows (see [12, Theorem
4.5.10]). The above observation is applicable whenever the LDP holds for the empirical
measures of bounded (E, ‖ · ‖)-valued random variables, for example in the context of
Proposition 3. It can also be extended to unbounded Yi provided that E(exp(s‖Y ‖)) <∞
for all s ∈ IR and the hypermixing condition (H–1) holds (this is done by [13, Lemma 3.3.10
and Exercise 2.1.20 (i)]).

Theorem 1 is now extended to the following continuous time setting. Let Σ be a Polish
space, and denote by Ω the space D([0,∞),Σ) of right-continuous paths ω : [0,∞) → Σ
which have a left-limit at each t > 0, equipped with a σ-field B such that Yt(ω) = ωt

are measurable with respect to BΣ for each fixed t. The occupation time LT (ω, ·) is the
measurable map from (Ω,B) to (M1(Σ),Bcy) such that for every A ∈ BΣ

LT (ω,A) = T−1
∫ T

0
1A(Yt(ω))dt .

For each T > 0, let µT denote the law of LT induced by a (fixed) stationary probability
measure P on (Ω,B).

Modifying the definition of the mixing condition (S) to have k1, k2 ∈ [0,∞) and ` :
[0,∞) → (0,∞) non-decreasing such that

∫∞
r=ξ `(r)dr/r

2 < ∞ for some ξ > 0, we have the
following analog of Theorem 1.

Theorem 2 If (S) holds, then {µT } satisfies the Large Deviation Principle with respect to
the τ -topology in M1(Σ) and with the convex rate function given by (5) where now

Λ(f) = lim
T→∞

1
T

logE(exp(
∫ T

0
f(Yt)dt)) .

If only (S−) holds, then the LDP holds for {T−1
∫ T
0 f(Yt)dt} for every f ∈ B(Σ, IRd).

Proof. The analog of Lemma 3 for subadditive functions h : [0,∞) → IR is also given in [19,
Theorem 2], where the condition

∑∞
r=1 ∆(r)/(r(r+1)) <∞ and the term

∑∞
r=2m ∆(r)/(r(r+

1)) in (7) are replaced by
∫∞
r=ξ ∆(r)dr/r2 <∞ for some ξ > 0 and

∫∞
r=2m ∆(r)dr/r2, respec-

tively. Theorem 2 is now proved by adapting the proof of Theorem 1.

3 Hypermixing, ψ-mixing, α-mixing, φ-mixing and (S)

It is shown in [6, Theorem 2] that the empirical means of bounded stationary separable
Banach space valued random variables satisfy the LDP as soon as inf` ψ(`) < ∞, where
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ψ(`) = ψ+(`)/ψ−(`) and

ψ+(`) = sup{ P (A ∩B)
P (A)P (B)

: P (A)P (B) > 0, A ∈ Fk
0 , B ∈ F∞

k+`, k ∈ ZZ+}

ψ−(`) = inf{ P (A ∩B)
P (A)P (B)

: P (A)P (B) > 0, A ∈ Fk
0 , B ∈ F∞

k+`, k ∈ ZZ+} ,

Noting that ψ−(`) ≤ 1 ≤ ψ+(`) one can readily check that ψ(m) <∞ implies that (S) holds
with any constant ` = `(n) > logψ(m) (independent of C). Hence, Theorem 1 yields the
corresponding LDP for the empirical measures. Similarly, condition (S−) which is weaker
than sup` ψ−(`) > 0 suffices for the LDP to hold for the empirical means of f(Yi) for every
f ∈ B(Σ, IRd) (see also [24, Corollary 4.1] where the same LDP is obtained for a different
weakening of the condition ψ−(1) > 0).

The LDP for {µn} as in Theorem 1 is proved in [12, Lemma 6.4.18] assuming that the
sequence {Yi} satisfies a slight modification of the hypermixing conditions (H–1) and (H–2)
of [8, 13]. The hypermixing condition (H–2) of [12] is as follows:
(H–2) There exist β(`) ∈ [1,∞] and γ(`) ≥ 0 such that for all k1, k2 ∈ ZZ+, and every
W ∈ L∞(Fk1

0 ), and Z ∈ L∞(Fk1+k2+`
k1+` ),

|E(W )E(Z)− E(WZ)| ≤ γ(`)E
(
|W |β(`)

)1/β(`)
E

(
|Z|β(`)

)1/β(`)
, (11)

where lim`→∞ γ(`) = 0, while for some δ > 0

lim
`→∞

(β(`)− 1)`(log `)1+δ = 0 . (12)

The next proposition relates (H–2) with (S).

Proposition 1 If the hypermixing condition (H–2) holds then (S) holds as well.

Remark: Proposition 1 shows that Theorem 1 improves the results of [12, Section 6.4] by
not requiring the condition (H–1). This is to be compared with the LDP for n−1 ∑n

i=1 f(Yi)
which when both (H–1) and (H–2) are satisfied holds also for unbounded real-valued Borel
measurable f if E(exp(sf(Y ))) <∞ for all s ∈ IR.

The proof of Proposition 1 also shows that it is enough to assume (H-2) for indicator
functions W = 1A, Z = 1B only. This fact is not obvious in light of [4, Proposition 2.5].
Proof. Note that (H–2) implies that for some finite `0 ≥ 1 and all ` ≥ `0 both β(`) ≤ 2
and γ(`) ≤ 1/2. If β(m) = 1 for some m ≥ `0 then (11) implies in particular that ψ(m) ≤ 3
and consequently condition (S) holds. Assuming otherwise, fix C < ∞, and let `(n) ≥ `0
be the smallest integer such that

e−Cn ≥ e`(2(1− e−1))−1/(β(`)−1)

(the sequence `(n) is well defined in view of (12)). For W = 1A and Z = 1B it follows from
(11) that P (A∩B) ∈ [x−γ(`)x1/β(`), x+γ(`)x1/β(`)], where x = P (A)P (B) ∈ [0, 1]. Hence,
for all ` ≥ `0

max{P (A ∩B)− e`P (A)P (B) , P (A)P (B)− e`P (A ∩B)}
≤ sup

x∈[0,1]
{e`γ(`)x1/β(`) − (e` − 1)x}

≤ e` sup
x≥0

{β(`)x1/β(`) − 2(1− e−1)x} ≤ e`(2(1− e−1))−1/(β(`)−1) ,
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and in particular both (S−) and (S+) hold for ` = `(n). By (12) we have for all n large
enough `(n) ≤ (C + 1)n/(log n)1+δ. Therefore, `(n) satisfies (2) and the mixing condition
(S) holds as claimed.

Recall that the α-mixing rate is

α(`) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Fk
0 , B ∈ F∞

k+`, k ∈ ZZ+} .

The following proposition states the α-mixing rate which suffices for (S) to hold, and
hence also for the LDP to hold for {µn}.

Proposition 2 (S) holds if for some δ > 0,

lim
n→∞

logα(n)
n(log n)1+δ

= −∞ . (13)

Proof. Fix C < ∞ and let ` = `(n) be the smallest integer such that e−Cn ≥ α(`)e`

(note that (13) implies that α(`)e` → 0 as ` → ∞). It is easy to check that both (S−)
and (S+) are satisfied for this sequence. Plainly, (13) implies that for n large enough
`(n) ≤ (C + 1)n/(log n)1+δ. Hence, `(n) satisfies (2) and (S) holds as claimed.

Recall that the φ-mixing rate is

φ(`) = sup{|P (B|A)− P (B)| : A ∈ Fk
0 , P (A) > 0, B ∈ F∞

k+`, k ∈ ZZ+} .

The next proposition extends [6, Theorem 3] to non-compact spaces, thus settling the
issue of critical φ-mixing rate for empirical measures LDP – hyper-exponential rate implies
LDP, while an exponential rate does not imply LDP even in the weak topology and for
Markov chains (see also Section 4 below). This proposition is not based on the mixing
condition (S) of Theorem 1. Similar result was found independently by Hu [22].

Proposition 3 If {Yi} is a φ-mixing stationary Σ-valued sequence such that (1) holds, then
{µn} satisfies the Large Deviation Principle with respect to the τ -topology in M1(Σ) and
with the (convex) rate function of (5).

Proof. By [6, Theorem 1], for every d < ∞ and any f ∈ B(Σ, IRd), the LDP with a
convex rate function holds for Ŝn =

∫
Σ fdLn. Therefore, the limit Λ(f) in (6) exists for all

f ∈ B(Σ, IR), and by Lemma 2 suffices to show that Λ(η1Aj ) → 0 for any fixed η > 0 and
every sequence Aj ∈ BΣ decreasing monotonically to the empty set. To this end, following
the proof of [6, Claim 1] taking n = k(M + N) and reasoning analogously to [6, (2.8) to
(2.10)] we get the inequality

n−1Λn(η(1Aj − 1)) ≤ (M +N)−1 log[exp(ΛM (η(1Aj − 1))) + φ(N)]

Since Λn(η1Aj ) = Λn(η(1Aj − 1)) + nη it follows that

Λ(η1Aj ) ≤ η + (M +N)−1 log[exp(ΛM (η1Aj )−Mη) + φ(N)] .
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Plainly, limj→∞ ΛM (η1Aj ) = 0 (for every fixed η > 0 and M <∞), and hence

lim
j→∞

Λ(η1Aj ) ≤ η + (M +N)−1 log[exp(−Mη) + φ(N)] .

This bound holds for every M,N ∈ IN, and it goes to zero by choosing N,M such that
N/M → 0 and M−1 log φ(N) → −∞ which is possible by the hyper-exponential φ−mixing
rate assumed.

4 LDP and mixing in the context of Markov chains

We start by specializing the mixing condition (S) to the context of stationary Σ-valued
Markov chains with the transition kernel denoted by πx(·) and using the notations π`

x(D) =
Px(Y` ∈ D) and (πu)(x) =

∫
Σ πx(dy)u(y).

Lemma 4 For a stationary Markov chain {Yi}, i.e., with the distribution p of Y0 an in-
variant measure for π, (S−) and (S+) are equivalent to

(S−) : sup
D⊂Σ

∫
Σ

max{p(D)− e`π`
x(D), 0} p(dx) ≤ e−Cn

(S+) : sup
D⊂Σ

∫
Σ

max{π`
x(D)− e`p(D), 0} p(dx) ≤ e−Cn ,

where for every fixed C <∞, ` = `(n) is a non-decreasing sequence satisfying (2).

Proof. Note that by the Markov property, Lemma 1 and stationarity it suffices to take
k1 = k2 = 0 in (S), i.e., to consider A = {Y0 ∈ F} and B = {Y` ∈ D} for some D,F ⊂ Σ.
Fixing the set D it is readily checked that the supremum in (S−) is obtained for F = {x :
p(D) ≥ e`π`

x(D)}, and in (S+) for F = {x : π`
x(D) ≥ e`p(D)}.

Remarks: (a) In particular, all hypercontractive Markov chains satisfy the hypermixing
condition (H–2) of [12] (see [13, Theorems 5.5.12 and 5.5.17]), and hence by Proposition 1
these chains also satisfy condition (S).
(b) The results of Theorem 1 apply for a Markov chain with distribution q of Y0 which is
not an invariant measure of π, provided in (S−) and (S+) of Lemma 4 we replace p(D) by
q(D) and p(dx) by qπk(dx) where the supremum is now over D ⊂ Σ and k = 1, . . . , n− 1.

Let m denote the counting measure. It is well known that the LDP holds for the empiri-
cal measure of m-irreducible finite state Markov chains, with the rate function independent
of the distribution p of the initial state Y0 (see [16, Theorem 1]). It is not hard to convince
oneself that in this context the LDP holds for all finite state chains, but examples with
transient states are given in [10, Example 1] [14, Example 4.1] and [20, Example 3.6] in
which the rate function either depends on p or is non-convex.

The following lemma summarizes results which apply for every m-irreducible countable-
valued Markov chain and for any distribution of Y0.

11



Lemma 5 Let Σ be a countable set equipped with the discrete topology.
(a) The empirical measures Ln of an m-irreducible Σ-valued Markov chain with transition
kernel π satisfy the weak LDP in M1(Σ) with the convex function

I(ν) = sup
u∈B(Σ,IR),u≥1

[−
∫
Σ

log[(πu)/u]dν] , (14)

which does not depend on the distribution p of Y0.
(b) If the LDP for Ln holds in Pa(Σ) then its rate function coincides with I on M1(Σ).
(c) If the large deviations lower and upper bounds for Ln hold in M1(Σ) for some function
J(ν) then they have to hold for I(ν) as well.

Proof. Being the supremum of continuous linear functionals of ν, I(·) is convex and lower
semicontinuous.
(a) Let µn denote the law of Ln in M1(Σ). For any law p of Y0 and any m-irreducible kernel
π on Σ, by [10, Theorem 6 and Remark 4] {µn} satisfies the large deviations lower bound
in M1(Σ) with I(ν) of (14). For every fixed u ∈ B(Σ, IR) and A ∈ Bcy the proof of [16,
(2.3)] is easily adapted to accommodate any transition kernel π and any distribution p of
Y0 yielding the upper bound

lim sup
n→∞

n−1 logµn(A) ≤ inf
u∈B(Σ,IR),u≥1

sup
ν∈A

[
∫
Σ

log[(πu)/u]dν]

The large deviations upper bound with I(ν) now follows for all pre-compact measurable
sets as in [16, proof of (1.7)].
(b) Assuming the LDP for Ln holds in Pa(Σ) with the rate function J , by part (a) of
the lemma and Remark 1, the weak LDP holds in M1(Σ) for both I(ν) of (14) and the
function J restricted to M1(Σ). Here, the τ -topology of M1(Σ) coincides with the metric
topology of weak convergence, hence it follows by [25, Proposition 1.5 and Theorem 2.3]
that I(ν) = J(ν) for all ν ∈M1(Σ).
(c) Suppose the large deviations lower and upper bounds for Ln hold in M1(Σ) for some
function J(ν). Note that then these bounds also hold for the lower semicontinuous function
J1(µ) = sup{G open, µ∈G} infν∈G J(ν). In particular, the weak LDP in M1(Σ) holds for
both J1 and I of (14). Consequently, I = J1 by the argument we used in proving part (b),
i.e., the large deviations lower and upper bounds must also hold for the function I.

Recall that a countable-valued Markov chain is a Doeblin chain iff infx∈Σ P (Yk0 =
x0|Y0 = x) = ρ > 0 for some x0 ∈ Σ and k0 ∈ IN (see [18, page 192]). The results of [21]
imply that all countable-valued, Doeblin m-irreducible chains satisfy the LDP in Pa(Σ) for
any finitely supported law p of Y0, as summarized in the following proposition.

Proposition 4 The empirical measures of countable-valued, m-irreducible Markov chain,
such that for some M ∈ IN and x0 ∈ Σ

inf
x∈Σ

M∑
k=1

P (Yk = x0|Y0 = x) > 0 , (15)
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satisfy the LDP in Pa(Σ) with the same convex rate function, for any law p of Y0 such that
for some K = K(p) ∈ IN and y0 = y0(p) ∈ Σ

inf
x∈Σ

K∑
k=1

P (Yk = x|Y0 = y0)/p(x) > 0 . (16)

Remark: Condition (16) is a slight extension of requiring p to be an s-measure for the
Markov chain (see [23, page 15] for definition).

For an m-irreducible, aperiodic positively recurrent Doeblin chain the condition (S−) is
equivalent to

∑
x max{p(x) − e`π`

x0
(x), 0} ≤ e−Cn for some non-decreasing `(n) satisfying

(2). In particular, (S−) holds whenever (16) holds for the invariant measure.
Proof. By Lemma 2 it suffices to prove the LDP with a convex rate function for the
empirical means of every f ∈ B(Σ, IRd). Fixing f ∈ B(Σ, IRd), since the chain is m-
irreducible the minorization condition of [21, equation (2.2)] holds. Our assumption (15)
implies that Σ is an s-set in the sense of [21, page 606], and hence by [21, Theorems 1 and
2] the LDP holds for all degenerate initial measures p = δx with the convex rate function
independent of x. The large deviations lower bound with the same rate function then holds
for any initial measure p, while the upper bound easily follows from (16).

The next example provides an m-irreducible, aperiodic positively recurrent Doeblin
chain for which the LDP in Pa(Σ) fails to hold when p is the invariant distribution of the
chain. Since such Doeblin chains have exponential φ-mixing rate (see [18, page 221] or
[26, page 209]), hence at least exponential α-mixing rate, this example demonstrates the
tightness of the hyper-exponential φ-mixing rate assumed in Proposition 3 (and the necessity
of at least hyper-exponential α-mixing rate in Proposition 2). In view of Proposition 4, this
example also demonstrates the necessity of (16) and the sensitivity of the mere existence of
the LDP to the choice of the initial distribution. It is thus related also to large deviations
for sequences of mixtures and in particular to [15, Theorem 2.2].

Example 1 Consider a stationary countable-valued Markov chain Yn with the state space
Σ = {(k, j) : k = 0, 1, 2, . . . , 1 ≤ j ≤ 2nk}, where parameters are nk = 3k for k ≥ 1 and
n0 = 1/2. Transition probabilities are defined by

π(k,j)(0, 1) = 1− π(k,j)(k, j + 1) = ρ for j 6= 2nk

π(k,2nk)(0, 1) = 1 for k > 0

π(0,1)(0, 1) = ρ

π(0,1)(k, 1) = qk, for k > 0

where ρ ∈ (0, 1) is fixed but arbitrary, and qk = Ce−αnk with α = 1 − 4 log(1 − ρ) > 0 and
C = (1− ρ)/

∑∞
k=1 e

−αnk .
Since inf(k,j)∈Σ P (Y1 = (0, 1)|Y0 = (k, j)) = ρ this m-irreducible Markov chain is ape-

riodic Doeblin recurrent and its invariant probability measure is p(k, j) = Kqk(1 − ρ)j−1,
where q0 = 1 and K = ρ/(1−

∑∞
k=1 qk(1− ρ)2nk).
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The following proposition improves over [7, Proposition 4.1], as it applies to the Doeblin
chain of Example 1 (instead of a Harris chain in [7]). In particular, Example 1 satisfies also
[7, (2.3)], i.e., p(A) ≤ ρ < K implies that πx(A) ≤ (1 − ρ) for all x ∈ Σ and all A ⊂ Σ,
which does not result with the empirical measures satisfying the LDP in Pa(Σ).

Proposition 5 Consider the stationary sequence {Yi} corresponding to Example 1 with Y0

distributed according to the invariant measure p. The empirical measures of {Yi} fail to
satisfy the LDP in Pa(Σ); in particular for the set D = {(k, j) : j ≥ nk + 1} the sequence
{n−1 ∑n

i=1 1D(Yi)} does not satisfy the LDP in IR.

Remark: Note that the weak LDP with the convex function I of (14) does hold in M1(Σ)
by part (a) of Lemma 5, and by Proposition 4 the LDP in Pa(Σ) holds for every p which
is supported on {(k, j) : j ≤ K} for some K ∈ IN with a convex rate function which is
independent of p.
Proof. Let Sn = 2

∑n
i=1(1D(Yi) − 0.5). By Varadhan’s integral lemma (see [12, Theorem

4.3.1]) it suffices to prove that the sequence n−1 logE[exp(3αSn)] does not have a limit as
n→∞. Since for k ≥ 1

E[e3αSnk ] ≥ e3αnkP (Yj = (k, nk + j), j = 0, . . . , nk) = Ke3αnkqk(1− ρ)2nk−1

it follows that

lim sup
n→∞

n−1 logE[e3αSn ] ≥ lim sup
k→∞

nk
−1 logE[e3αSnk ] ≥ 2α+ 2 log(1− ρ) . (17)

If Y0 ∈ Ak = {(`, j) : ` ≤ k} then T = inf{i ≥ 0 : Yi = (0, 1)} ≤ 2nk and ST ≤ nk. Since
Sn ≤ ST for all n ≥ T , this and the trivial bound Sn ≤ n yield

E[e3αS2nk ] ≤ e3αnk + e6αnkP (Y0 /∈ Ak) .

Since nk+1 = 3nk and

P (Y0 /∈ Ak) ≤
K

ρ

∞∑
`=k+1

q` ≤
KC

ρ(1− e−α)
e−αnk+1 ,

it follows that

lim inf
n→∞

n−1 logE[e3αSn ] ≤ lim inf
k→∞

(2nk)−1 logE[e3αS2nk ] ≤ 1.5α < 2α+ 2 log(1− ρ) .

By (17) this ends the proof.

The next example, which is inspired by [1], illustrates the relation between LDP in
Pa(Σ) and M1(Σ) under invariant initial measure. It also points out that condition (S−)
alone is not strong enough to imply the LDP in M1(Σ).

Example 2 Consider the ZZ+-valued Markov chain Yk with transition probabilities:

π0(k) =
C

(k + 1)2

(
1 +

ρ1{k=1}
(1− ρ)

)
, k = 0, 1, 2, . . . ,
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πk(k + 1) = 1− πk(0) = ρ(
k + 1
k + 2

)2, k = 1, 2, . . .

where ρ ∈ (0, 1) and C = C(ρ) > 0 is the normalizing constant. This is an m-irreducible,
aperiodic Doeblin-recurrent Markov chain and has the finite invariant measure

p(k) =
C

(2− ρ)(k + 1)2
, k ≥ 1, and p(0) =

1− ρ

2− ρ
.

Plainly, for every j, k ∈ ZZ+

P (Y2 = k|Y0 = j) ≥ πj(0)π0(k) ≥ min{C, 1− ρ}π0(k) ≥ min{C, 1− ρ}2 p(k)
p(0)

implying that when Y0 is distributed according to the invariant measure, ψ−(2) > 0 and
hence (S−) is satisfied. In particular, by Theorem 1, {µn} satisfies the LDP in Pa(ZZ+) (see
also Lemma 2 part (a)).

Proposition 6 The empirical measures corresponding to Example 2 satisfy the LDP in
Pa(ZZ+) for any distribution p of Y0 for which supx∈ZZ+

x2p(x) <∞. However, there is no
initial measure q for Y0, and no function J for which both the large deviations lower and
upper bounds hold in M1(ZZ+) for these empirical measures.

Proof. For this Markov chain, (16) follows from our assumption on p, hence by Proposition
4 the empirical measures satisfy the LDP in Pa(ZZ+).

By part (c) of Lemma 5, if the large deviations lower and upper bound are to hold in
M1(ZZ+) for any function J then necessarily the upper bound also holds for the function
I(·) of (14), and in particular it holds for the closed (actually, discrete) set

C = {ν : ν(j + 1) = . . . = ν(j +m) = m−1 m ∈ IN, j ∈ ZZ+} .

Note that if ν(j + 1) = . . . = ν(j + m) = m−1 for some j ≥ 0, m ≥ 1, then taking all
u(k) = 1 except u(j + 1) = η, we get

I(ν) = m−1 sup
u(·)>0

j+m∑
k=j+1

log(
u(k)

ρ(k+1
k+2)2u(k + 1) + (1− ρ(k+1

k+2)2)u(0)
) ≥ m−1 log η .

Consequently, infν∈C I(ν) = ∞. Since for every j ∈ ZZ+

P (Ln ∈ C|Y0 = j) ≥ P (Y1 = j + 1, . . . , Yn = j + n|Y0 = j) ≥ min{ρ,C}ρn−1(
j + 1

n+ j + 1
)2

it follows that for any initial distribution q we have

µn(C) =
∞∑

j=0

q(j)P (Ln ∈ C|Y0 = j) ≥ min{ρ,C}(n+ 1)−2ρn−1

and hence lim infn→∞
1
n logµn(C) ≥ log ρ, in contradiction with the large deviations upper

bound for the set C.
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[9] Dawson, D. and Gärtner, J. Large deviations from the McKean-Vlasov limit for weakly
interacting diffusions. Stochastics. 20, (1987) 247–308.

[10] De Acosta, A. Large deviations for empirical measures of Markov chains. J. Theor.
Probab. 3, (1990) 395–431.

[11] De Acosta, A. On large deviations of empirical measures in τ topology. To appear in
the special issue of Journal of Applied Probability in honor of L. Takacs.

[12] Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications. Jones and
Bartlett, Boston, MA, 1993.

[13] Deuschel, J. D. and Stroock, D. W. Large Deviations, Academic Press, Boston, MA,
1989.

[14] Dinwoodie, I. H. Identifying a large deviation rate function. Ann. Probab. 21, (1993)
216–231.

[15] Dinwoodie, I. H. and Zabell, S. L. Large deviations for exchangeable random vectors.
Ann. Probab. 20, (1992) 1147–1166.

[16] Donsker, M. D. and Varadhan, S. R. S. Asymptotic evaluation of certain Markov
process expectations for large time, I. Commun. Pure Appl. Math. 28, (1975) 1–47.

16



[17] Donsker, M. D. and Varadhan, S. R. S. Asymptotic evaluation of certain Markov
process expectations for large time, III. Commun. Pure Appl. Math. 29, (1976) 389–
461.

[18] Doob, J. L. Stochastic Processes, Wiley. New-York, NY, 1953.

[19] Hammersley, J. M. Generalization of the fundamental theorem on subadditive func-
tions, Math. Proc. Camb. Philos. Soc. 58, (1962) 235–238.

[20] Jain, N. C. Large deviation lower bounds for additive functionals of Markov processes.
Ann. Probab. 18, (1990) 1071–1098.

[21] Ney, P. and Nummelin, E. Markov additive processes II: large deviations. Ann. Probab.
15, (1987) 593–609.

[22] Hu, Y. J. Large deviations for stationary φ-mixing sequences in τ -topology, preprint
1993.

[23] Nummelin, E. General irreducible Markov chains and non-negative operators. Cam-
bridge Tracts in Mathematics, 83. Cambridge University Press, 1984.

[24] Nummelin, E. Large deviations for functionals of stationary processes. Probab. Theory
Relat. Fields 86, (1990) 387–401.

[25] O’Brien, G. L. Sequences of capacities, with connections to large-deviation theory.
Preprint 1993.

[26] Rosenblatt, M. Markov Processes, Structure and Asymptotic Behavior. Springer-Verlag,
Berlin, 1971.

17


