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Abstract

We show that the Large Deviation Principle with respect to the weak topology holds for the
empirical measure of any stationary continuous time Gaussian process with continuous vanishing
at infinity spectral density. We also point out that Large Deviation Principle might fail in both
continuous and discrete time if the spectral density is discontinuous.

1 Introduction

Large deviation principle (LDP) of empirical process for Gaussian random sequences with con-
tinuous spectral density were analyzed by several authors: Donsker and Varadhan [9] give LDP with
explicit rate function for IR-valued ZZ-indexed processes with continuous spectral density f(s) such
that

∫ π

−π
log f(s)ds > −∞; Steinberg and Zeitouni [14, Theorem 1] extend the LDP to IR-valued

ZZd-indexed processes with continuous spectral density f(s) such that infs f(s) > 0; Baxter and Jain
[1, Theorem 4.25] prove LDP for IRd-valued ZZ-indexed processes with continuous spectral density
matrix F (s) such that F (−π) = F (π). LDP of empirical process for a continuous time Gaussian
process LDP is established by hypercontractivity methods in [6, Section 5] for IRd-valued IR-indexed
processes with differentiable spectral density matrix that satisfies certain additional assumptions. [4]
analyze in detail large deviations for the empirical distributions of Zd-indexed stationary Gaussian
random fields with d ≥ 3 under the assumption that the covariance is given by the Green function of
an irreducible transient random walk. Several authors studied LDP for (certain) additive functionals
of Gaussian processes/sequences/fields, see [2, 5, 8].

In this paper we analyze the large deviation principle (LDP) of empirical measures for stationary
Gaussian processes. For simplicity, we consider only one-dimensional index set, real processes, and
limit our attention to empirical measures only. We extend the continuous time LDP that follows
from [6] to continuous spectral densities that vanish at infinity. We also show that both this result
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and the discrete time result from [1] cannot be extended to all bounded spectral densities. This
should be contrasted with LDP of quadratic additive functionals, as analyzed in [5], where bounded
spectral densities suffice.

We use the following notation.
Let Σ be a Polish space and M1(Σ) denote the space of (Borel) probability measures on Σ

equipped with the weak topology, i.e., topology generated by the collection

{ν ∈ M1(Σ) : |
∫

Σ

Fdν − x| < δ} ,

where x ∈ IR, δ > 0 and F ∈ Cb(Σ, IR) – the vector space of all bounded, real-valued, continuous
functions on Σ. It is well known that M1(Σ) is a Polish space with the metric β(µ, ν) = sup |

∫
Fdµ−∫

Fdν|, where the supremum is taken over all bounded Lipshitz functions F of Lipschitz constant
at most 1 with ‖F‖∞ ≤ 1, see [11, Sections 11.3 and 11.5].

By C0(IR) we denote the set of all continuous functions IR → IR that vanish at ±∞. We shall
use the fact that if f ∈ C0(IR) then f is bounded and uniformly continuous.

Recall the following.

Definition 1 A family of random variables {YT }T>0 taking values in a topological space X equipped
with the Borel σ-field B satisfies the Large Deviation Principle, if there is a lower semicontinuous
rate function I : X → [0,∞], with compact level sets I−1([0, a]) for all a > 0, and such that for all
Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
T→∞

1
T

log P (YT ∈ Γ) ≤ lim sup
T→∞

1
T

log P (YT ∈ Γ) ≤ − inf
x∈Γ

I(x) ,

where Γ denotes the closure of Γ, Γo the interior of Γ, and the infimum of a function over an empty
set is interpreted as ∞.

We shall say that weak LDP holds, if the upper bound holds for pre-compact Γ ∈ B only and the
sets I−1([0, a]) are only required to be closed.

Clearly, it is enough to verify the LDP on sub-sequences. With this in mind we give the following.

Definition 2 A family of random variables {YT }T>0 is exponentially tight1, if for every sequence
Tn →∞ and each M > 0 there is a pre-compact K ∈ B such that

lim sup
n→∞

1
Tn

log P (YTn 6∈ K) ≤ −M.

It is well known that weak LDP for exponentially tight sequence implies LDP, see [7]; for continuous
index T this holds true also with the definition of exponential tightness as given above.

Recall that the spectral density of a continuous time real process Xt is an integrable even non-
negative function f such that EX0Xt =

∫∞
−∞ eitsf(s)ds. The spectral density of a discrete time

process {Xj} is a periodic (with the period 2π) even non-negative integrable function f such that
EX0Xk = 1

2π

∫ π

−π
eiksf(s)ds.

In this note we limit our attention to Gaussian stationary processes that posses spectral density.
In particular, by continuity of the covariance such a process is mean-square continuous, hence it has
a measurable modification (see [10, Chapter II, Theorem 2.6]). We assume hereafter that we are
dealing with such a modification.

For a continuous time Σ-valued measurable processes {Xt}t≥0 on a complete probability space
we define empirical measures by

LT =
1
T

∫ T

0

δXtdt (Pettis integral), (1)

1For a continuous index T , this is not the standard definition. However, it effectively replaces the usual one in the
large deviation proofs.
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where δy denote the probability measure degenerate at y ∈ Σ. Notice that LT is a well defined
M1(Σ)-valued random variable; for the details, see Appendix A.

For a sequence {Xj}∞j=0 of random variables which take values in Σ we consider the empirical
measures

Ln =
1
n

n∑
j=1

δXj
.

Since the discrete time case embeds into continuous case by the piecewise constant mapping
t 7→ X[t]+1, in general statements below we consider continuous time only.

2 Results

The following is a special case of [1, Theorem 4.25]. A short self-contained proof is given below for
completeness.

Theorem A If {Xk} is a real stationary Gaussian sequence such that Xk − m has
continuous spectral density, then the empirical measures Ln satisfy the LDP in M1(IR)
with a convex rate function.

Our next result is a continuous time analog of Theorem A; it partially answers [1, Section 6:
Question (d)]. The main improvement is that we do not require differentiability of the spectral
density as assumed in [6]. We consider LDP of empirical measures, but we do not anticipate any
difficulties with the extension to empirical process level, provided product topology is used in the
trajectories IR[0,∞).

As in discrete time, the LDP rate function is not easily identifiable, c. f., [1, Section 6 (a) & (c)].

Theorem 2.1 If {Xt} is a real measurable stationary Gaussian process such that Xt−m has spectral
density f ∈ C0(IR), then empirical measures LT satisfy the LDP in M1(IR) with the convex rate
function.

Theorem 2.1 implies the LDP for the p-th moment averages, completing [5, Theorem 2.1]. (We
omit the proof which is based on Lemma 3.1(ii) and [5, Theorem 2.1].)

Corollary 2.1 If {Xt} has spectral density in C0(IR) then for 0 ≤ p ≤ 2 the averages 1
T

∫ T

0
|Xt|pdt

satisfy the LDP with a convex rate function.

In [5], the LDP for quadratic functionals of Gaussian processes is established under the sole assump-
tion of boundness of the spectral density. This raises the question of generalizing Theorem A and
Theorem 2.1 to a larger class of spectral densities. In Theorem 2.2 below we show that [5, Theorems
2.1 and 2.2] cannot be extended from quadratic to all bounded continuous additive functionals. In
particular, Theorem A does not hold for all bounded spectral densities, and Theorem 2.1 does not
hold for all bounded, compactly supported spectral densities.

The case of piecewise continuous spectral densities is left unresolved. In fact, it is not known
whether [5, Corollary 2.2] holds for p = 1 and piecewise continuous spectral densities with finite
number of discontinuities and left/right limits; this class of spectral densities occurs in electrical
engineering literature. Our method of proof is not applicable to this case, see Remark 4.1.

Theorem 2.2 (i) Suppose {Xj} is a real centered stationary Gaussian sequence with strictly positive
and bounded spectral density f(s) = 2 + sin log |s|,−π ≤ s ≤ π. Then there is a bounded continuous
function F : IR → IR such that the LDP for 1

n

∑n
j=1 F (Xj) fails.

(ii) Suppose {Xt} is a real centered stationary Gaussian process with bounded and compactly sup-
ported spectral density g(s) = f(s) (s/2)2

sin2(s/2)
1|s|≤π, with f(s) the spectral density from part (i). Then

there is a bounded continuous function F : IR → IR such that the LDP for 1
T

∫ T

0
F (Xt)dt fails.
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By contraction principle we get.

Corollary 2.2 (i) There is a real stationary centered Gaussian sequence {Xj} with bounded and
strictly positive spectral density whose empirical measures Ln = 1

n

∑n
j=1 δXj

do not satisfy the LDP
in M1(IR).
(ii) There is a real stationary centered Gaussian process {Xt} with bounded and compactly supported
spectral density whose empirical measures LT = 1

T

∫ T

0
δXt

dt do not satisfy the LDP in M1(IR).

Since the spectral density of Theorem 2.2 satisfies 3− f(s) ≥ 0 we also get the following.

Corollary 2.3 There are independent real stationary centered Gaussian processes {Xj}, {Yj} such
that the empirical measures of {Xj + Yj} satisfy the LDP (being i.i.d.), but the LDP for empirical
measures of {Xj} fails.

In [5] we show that for any real stationary centered Gaussian process with bounded spectral
density

lim sup
T→∞

T−1 log E expα

∫ T

0

|Xt|2dt < ∞

for some α > 0. Exponential tightness of the empirical measures LT then follows from the proof of
[15, Lemma 8.7] and by [13, Theorem 1] we get the following completion to Corollary 2.2.

Corollary 2.4 If Xt (respectively, Xj) is a stationary Gaussian process (sequence) with bounded
spectral density, then from any sequence of empirical measures LTn

one can select a (deterministic)
subsequence that satisfies LDP.

3 Proofs

3.1 General Lemmas

The following definition is a specification of [7, Section 4.2.2].

Definition 3 LM
T are exponentially good approximations of LT if for every δ > 0

lim
M→∞

lim sup
T→∞

T−1 log P (β(LM
T , LT ) > δ) = −∞. (2)

Our proof of Theorem 2.1 is based on the following approximation lemma, similar to [5, Lemma
4.8] and [1, Theorem 4.9], who give discrete time versions. We state Lemma 3.1 in more generality
than what is needed below.

Let IE be a separable Banach space with the norm ‖ · ‖.

Lemma 3.1 Suppose Xt = Y M
t + ZM

t are IE-valued and such that for each θ > 0

lim
M→∞

lim sup
T→∞

T−1 log E

(
exp(θ

∫ T

0

‖ZM
t ‖dt)

)
= 0. (3)

(i) If for all M the empirical measures LM
T for Y M

t satisfy the LDP in M1(IE) with the rate function
IM (·), then the empirical measures for Xt satisfy the LDP in M1(IE) with a rate function I(·).
Moreover, if for all M the rate functions IM (·) are convex, then I(·) is convex.
(ii) If for all M the averages of Y M

t satisfy the LDP then the averages of Xt satisfy the LDP.

Remark 3.1 In case (i) one may replace ‖ZM
t ‖ in (3) by ‖ZM

t ‖ ∧ 1. Also from [1, Theorem 3.11]
in case each IM (·) has a unique zero, then I(·) has a unique zero.
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Proof. We prove only part (i); for a proof in discrete time – compare [1]. The proof of (ii) is very
similar (also yielding convexity of rate function if all rate functions for averages of Y M

t are convex).
Notice that (3) implies that LM

T are exponentially good approximations of LT in M1(IE). Indeed,
for f of Lipschitz constant at most 1 and bounded by 1 we have |f(Xt) − f(Y M

t )| ≤ 2‖ZM
t ‖ ∧ 1,

implying that

β(LM
T , LT ) ≤ 2T−1

∫ T

0

(‖ZM
t ‖ ∧ 1)dt.

Thus exponentially good approximation follows from (3) by Chebyshev inequality, taking first T →
∞, then M →∞, and finally θ →∞.

By [7, Theorem 4.2.16(a)] the weak LDP of LT follows. To complete the proof of the LDP suffices
to show that LT are exponentially tight. To this end, fix Tn →∞, δ > 0 and α < ∞. Fix M large
enough so that for all n ≥ n0

P (β(LM
Tn

, LTn
) > δ) ≤ e−αTn .

Since M1(IE) is Polish, the LDP for {LM
Tn
} imply exponential tightness of this sequence (c. f. [7,

Exercise 4.1.10]). In particular, for some K ⊂ M1(IE) compact and all n ≥ n1

P (LM
Tn

/∈ K) ≤ e−αTn .

Let {xi}m
i=1 be the centers of a finite cover of K by balls of radius δ and note that for all n ≥

max(n0, n1),

P (LTn
/∈

m⋃
i=1

Bxi,2δ) ≤ P (LM
Tn

/∈ K) + P (β(LM
Tn

, LTn
) > δ) ≤ 2e−αTn . (4)

Since M1(IE) is Polish, increasing m if needed, (4) applies for all n. With δ, α and Tn arbitrary, it
follows that LT are exponentially tight (c.f. [7, Exercise 4.1.10 (a)]).

Suppose now that all rate functions IM (·) are convex. To prove that then I(·) is also convex we
use the alternative expression

I(µ) = sup
δ>0

lim sup
M→∞

inf
ν∈B(µ,δ)

IM (ν), (5)

given in the last line of the proof of [7, Theorem 4.2.16 (a)].
Fix µ, ν ∈ M1(IE). If β(µ, µ1) < δ and β(ν, ν1) < δ then clearly β

(
1
2 (µ + ν), 1

2 (µ1 + ν1)
)

< δ.
Therefore from (5)

I

(
1
2
(µ + ν)

)
≤ sup

δ>0
lim sup
M→∞

inf
ν1∈B(ν,δ), µ1∈B(µ,δ)

IM

(
1
2
(ν1 + µ1)

)
≤ 1

2
(I(µ) + I(ν)) .

2

The following comparison lemma is of interest.

Lemma 3.2 If Zt and Vt are stationary centered Gaussian processes (sequences) with spectral den-
sities h, g such that

h(s) ≤ g(s) ∀s

then for bounded measurable a(t) ≥ 0 and 1 ≤ q ≤ 2

E exp
∫ T

0

a(t)|Zt|qdt ≤ E exp
∫ T

0

a(t)|Vt|qdt (6)

5



Proof. Take an independent of {Zt} stationary centered Gaussian {Yt} with spectral density g(s)−
h(s). Then Vt = Yt + Zt and by independence Zt = E{Vt|σ(Zt, t ∈ IR)}. Inequality (6) follows by
Jensen’s inequality and the convexity of the map V(·) 7→ exp(

∫ T

0
a(t)|Vt|qdt). 2

Our main estimate is as follows.

Lemma 3.3 If the spectral density of a (centered) Gaussian process Zt (sequence) is bounded, f(s) ≤
ε, then for every θ > 0

lim sup
T→∞

T−1 log E exp θ

∫ T

0

|Zt|dt ≤ 26εθ2 +
EZ2

0

13ε
. (7)

(In discrete time put Zt = Z[t]+1.)

Proof. We prove only continuous time version. For the discrete time (and multivariate) version,
one needs only to use [5, Theorem 2.2] instead of [5, Theorem 2.1].

Notice that for every A > 0 we have∫ T

0

|Zt|dt ≤
√

T

(∫ T

0

|Zt|2dt

)1/2

≤ AT +
1
A

∫ T

0

|Zt|2dt.

Using this with A = 26εθ we get by [5, Theorem 2.1]

lim sup
T→∞

1
T

log E exp θ

∫ T

0

|Zt|dt ≤ 26εθ2 − 1
4π

∫ ∞

−∞
log
(

1− 2π

13ε
f(s)

)
ds.

Since for 0 < x < 2π
13 we have − log(1− x) = x + x2/2 + x3/3 . . . < 2x, the inequality follows. 2

Proof of Theorem A. Without loss of generality we assume m = 0.
Given i.i.d. N(0,1) sequence γk, write Xt =

∑∞
k=−∞ akγk+t (which holds, if spectral density

exists), and let

Y M
t =

∑
|k|<M

ak

(
1− |k|

M

)
γk+t.

Since the spectral density is continuous, ZM
t = Xt−Y M

t is of spectral density gM (s) → 0 uniformly
in s (Fejér’s theorem). By Remark 4.2 (and Hölder’s inequality), this establishes (3).

Since Y M
t is finitely dependent, and for finitely dependent sequences the LDP holds (see e. g.,

[7, Section 6.4.2]), Lemma 3.1(i) ends the proof. 2

3.2 Proof of Theorem 2.1

The proof of Theorem 2.1 proceeds in the same pattern as the discrete one. First, without loss of
generality we assume m = 0.

We shall use Lemma 3.1 and a continuous time variant2 of the approximation scheme from [9].
Let f2(s) be the spectral density of {Xt} with f(s) ≥ 0. Write Xt =

∫∞
−∞ eitsf(s)dWs (the spectral

representation; see [10, Chapter XI, (8.2)]) and define

Yt =
∫ ∞

−∞
eitsh(s)dWs

where
h(s) = hM (s) =

∫ ∞

−∞
f(s− u)

1− cos Mu

πMu2
du. (8)

2Direct discretization of time runs into technical difficulties even for processes with continuous trajectories.
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Clearly, h = f ? v where f ≥ 0 is in IL2 and v ≥ 0 is in IL1; by Young’s inequality h ∈ IL2, and Yt

is well defined. The Fourier transform H of h(s) is H(t) = (1− |t|
M )F (t) for |t| < M , where F is the

Fourier transform of f ; H(t) = 0 for |T | > M . Put ZM
t = Xt − Yt.

We first show that (3) holds. To this end observe that

hM (s) → f(s) (9)

uniformly in s. Indeed, let ε > 0. Since f is uniformly continuous, one can find δ > 0 such that if
|u| < δ then sups |f(s− u)− f(s)| < ε. Therefore

sup
s
|hM (s)− f(s)| ≤ sup

s

∫ ∞

−∞
|f(s− u)− f(s)|1− cos Mu

πMu2
du

≤ ε +
8

πM
‖f‖∞

∫ ∞

δ

du

u2
= ε +

8C

πMδ
.

Taking M →∞, this proves (9).
Since the spectral density gM of ZM

t equals gM (s) = (f(s) − hM (s))2, by (9) it converges to 0
uniformly in s.

We also need to check that

EZ2
0 =

∫ ∞

−∞
gM (s)ds → 0

as M →∞. Indeed, by Plancherel’s identity∫ ∞

−∞
gM (s)ds = (2π)−1

∫ ∞

−∞
|F (t)−H(t)|2dt = (2π)−1

∫ ∞

−∞

(
|t|
M

∧ 1
)2

|F (t)|2dt.

For all ε > 0 we have∫ ∞

−∞

(
|t|
M

∧ 1
)2

|F (t)|2dt ≤ ε2
∫ ∞

−∞
|F (t)|2dt +

∫
|t|>εM

|F (t)|2dt.

Since
∫
|F (t)|2 = 2π

∫
f2(s)ds < ∞, it follows by taking first M → ∞ and then ε → 0 that∫

gM (s)ds → 0 as M →∞.
Therefore, given ε > 0 by (7) for all M large enough (so that ‖gM‖∞ < ε) we have

lim sup
T→∞

T−1 log E(exp(θ
∫ T

0

‖ZM
t ‖dt)) ≤ 26εθ2 + E

(
ZM

0

)2
/(13ε).

Since ε > 0 is arbitrary, taking the limit as M →∞ proves (3).
Now notice that {Yt} is 2M -dependent. Indeed, its spectral density is h2(s). Therefore EY0Yt =∫∞

−∞ eitsh2(s)ds is the convolution of the Fourier transform H of h(s) with itself (evaluated at t),
c.f. [16, (2.33) page 253]. Since H(t) = 0 for |T | > M , its convolution H ? H vanishes at |t| > 2M
proving 2M -dependence.

Empirical measures for a finitely-dependent process Yt = Y M
t satisfy the LDP with the convex

rate function, see [6]. By Lemma 3.1(i) the LDP of empirical measures for Xt follows and the rate
function is convex. 2

3.3 Proof of Theorem 2.2

Let Sn =
∑n

j=1 Xj ; analogously, in continuous time let ST =
∫ T

0
Xtdt. We shall prove Theorem 2.2

by contradiction using the following.
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Lemma 3.4 (i) If the spectral density is bounded and for every bounded continuous F the sequence
1
n

∑n
j=1 F (Xj) satisfies the LDP, then 1

nSn satisfies the LDP.

(ii) If the spectral density is bounded and for every bounded continuous F the sequence 1
T

∫ T

0
F (Xt)dt

satisfies the LDP, then 1
T ST satisfies the LDP.

Proof. Let Y M
j = XjI|Xj |≤M + MI|Xj |>M sign Xj . Since Y M

j = F (Xj) with bounded continuous
F , for every M the sequence 1

n

∑n
j=1 Y M

j satisfies the LDP. Moreover, for θ > 0

E exp θ
n∑

j=1

|Y M
j −Xj | ≤ E exp θ

n∑
j=1

|Xj |I|Xj |>M ≤ E exp
θ

M

n∑
j=1

|Xj |2.

By [5, Theorem 2.2], condition (3) is satisfied. The LDP for 1
nSn follows from Lemma 3.1(ii).

The proof of part (ii) proceeds analogously, and is omitted. 2

Proof of Theorem 2.2. We first prove part (i). Since f(s) under consideration is bounded, by
Lemma 3.4, it is enough to show that the LDP fails for the arithmetic means of the sequence.
However, since Sn is Gaussian and (7) holds, it is easy to see that the LDP for 1

n Sn holds if and
only if

σn =
1
n

V ar(Sn) =
1

2πn

∫ π

−π

sin2(ns/2)
sin2(s/2)

f(s)ds (10)

converges as n →∞. It is known, see [12, Theorem C1] (see also [16, Chapter XI, Theorem 2-26(ii)])
that (10) converges if and only if

lim
t→0

1
t

∫ t

0

(f(u) + f(−u))du (11)

exists. It is easy to check that for our choice of f and t > 0 we have
∫ t

0
(f(u) + f(−u))du =

4t + t(sin log t− cos log t) so that the limit (11) does not exist.
To prove part (ii), notice that since x/ sinx is monotone hence bounded on [−π/2, π/2], g(s) is

bounded and compactly supported. Following the line of proof of part (i), we check that

σT =
1
T

V ar(ST ) =
∫ ∞

−∞

sin2(Ts/2)
T (s/2)2

g(s)ds =
1
T

∫ π

−π

sin2(Ts/2)
sin2(s/2)

f(s)ds

does not converge as T →∞ by the previous reasoning. 2

4 Remarks

Remark 4.1 The proof of Theorem A and of Theorem 2.1 uses exponentially good approximations
(see [7]). In connection with this method, one can verify that the mapping

B[−π, π] 3 f 7→ lim sup
n→∞

1
n

log E(exp(
n∑

j=1

|Xj | ∧ 1)) ∈ IR

from bounded spectral densities, is not continuous with respect to ILq norms, q < ∞.
Indeed, Theorem 2.2 gives {Xk} of bounded spectral density for which empirical measures fail

LDP. On the other hand, the spectral density of {Xk} can be approximated in ILq norm by a contin-
uous one (vanishing in the neighborhood of the origin). Hence the empirical measures for the cor-
responding sequence {Y M

k }k have LDP by Theorem A. The continuity (applied to ZM
k = Xk − Y M

k )
would imply (by Lemma 3.1(i) and Lemma 3.3) the LDP of empirical measures for {Xk}, a contra-
diction.
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Remark 4.2 For d = 1 and discrete time, using Lemma 3.2 with i.i.d. sequence Vj of spectral
density g(s) = M , it is easy to see that (7) can be replaced by the non-asymptotic estimate

1
n

log E exp θ
n∑

j=1

|Xj |q ≤ log E exp θ|V1|q ≤ b(q)(θ2Mq)1/(2−q) + log a(q)

for all 1 ≤ q < 2, all θ, and some universal finite constants a(q), b(q). In particular, a(1) = 2 and
b(1) = 1/2.

Remark 4.3 The following simple argument shows that the LDP for LT is non-trivial when f(0) >
0. We call LDP trivial if the rate function has two values I = 0 and I = ∞ only. It easily follows
that both contraction and exponentially good approximation preserve triviality (c.f. (5)). Hence if
LDP of Theorem 2.1 is trivial, then so is the LDP for every average of F (Xt) when F ∈ Cb(IR),
and by Lemma 3.4(ii) so is the LDP of ST /T . The latter are N(0, σT /T ) with σT given in the proof
of Theorem 2.2(ii). In particular, for f(s) ∈ C0(IR), σT converges to 2πf(0) as T → ∞ (c.f. (9))
and if the latter is strictly positive, the LDP for ST /T is non-trivial.
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A Appendix: Empirical measures in continuous time

Here we show that in the continuous time the empirical measure of a measurable process is well
defined as the Pettis integral. Let Pa(Σ) denote the space of all finitely additive regular non-
negative set-functions of unit total mass, on the field generated by the closed subsets of Polish space
(Σ, d); Pa(Σ) is equipped with weak topology, i. e., topology generated by the collection

{ν ∈ Pa(Σ) : |
∫

Σ

Fdν − x| < δ} ,

where x ∈ IR, δ > 0 and F ∈ Cb(Σ, IR).
Fix T > 0 and let λ be normalized Lebesgue measure on [0, T ]. Given a measurable function

x(t) = Xt(ω) (with ω ∈ Ω fixed), the mapping Φ : F 7→
∫

F (x(t))λ(dt) is a continuous, linear,
and non-negative functional on Cb(Σ, IR) such that Φ(1) = 1. Therefore (the explicit reference is
[3, page 54, Theorem 1]) Φ(F ) =

∫
F (x)dµ(x) for some µ ∈ Pa(Σ). Since for Fn ↓ 0 pointwise,

Φ(Fn) → 0 by dominated convergence, it follows that µ has a (unique) countably additive extension
µ̃ on BΣ. Empirical measure LT : Ω → M1(Σ) is defined now by LT (ω) = µ̃, if t 7→ Xt(ω) is
measurable and say δx0 otherwise. By Fubini’s theorem ω →

∫
FdLT is measurable. This shows

that Ω 3 ω 7→ LT (ω) ∈ M1(Σ) is weakly-measurable; since M1(Σ) is separable, the latter is the
same as measurability.
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