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Abstract-A Boolean response to a random binary input of length n can be modeled as a {O,l}- 
valued function 2) defined on a discrete probability space R of all subsets of a finite set of size n. An 
w E R represents the locations of l’s in the input. For a particular jth location, 1 5 j 5 n, we assume 
that 1 appears with probability pj independently of other locations. Then, for p = (pl, , pn), we 
will investigate P’(v = 1) as a function of p. Using the sharp version of the Khinchin inequality, we 
give an upper estimate for the !2 norm of the gradient of Pp(v = 1) evaluated at p = (l/2,. . , l/2) 
(cf. (5) below). For monotone functions, the estimate applies also to vector of influences of Boolean 
functions. We also provide a handy expansion of Pc.,(u = 1) based on a Fourier expansion of v (cf. (4) 
below). 

Numerical analysis of the bounds leads to the conjecture about the sharp bound that depends on 
cardinality of the underlying set; the sharp version of the Khinchin inequality is also conjectured. 

Keywords-Banzhaf index, Sensitivity, Boolean functions. 

1. INTRODUCTION 

We shall be interested in Boolean functions, i.e., {O,l}-valued functions on a discrete space R 

consisting of all subsets of {1,2, . . . , n}. We treat s1 as a probability space and will assign 

the uniform probability P(C) = 2-n, C E 0. The expected value with respect to probability 
measure P(.) will be denoted by E(.). Boolean function v(.) defines a (0, 1}-valued random 

variable on R and we shall assume that 

p = P(v = 1) (1) 

is known. To simplify the notation, we assume p < l/2; in general, in our bounds p should be 
replaced by p A (1 - p). 

Function u will be analyzed using the auxiliary stochastically independent random variables ~j 

(representing flips of the jth coin), defined by 

q(C) = 
{ 

-1 ifj$C, 

1 ifjEC. 
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We shall be interested in the coefficients 

P(i) = E(EgJ). (2) 

The coefficients ,8(j) are of interest in game theory and voting systems (Banzhaf index), see [l]. 

They also play a role in computer science in analyzing threshold functions (Chow index) and 
neural networks, see [2,3]. For monotone TJ, numbers ,0j are the same as the so-called influences 
Infj(w), see [2,4]. The average sensitivity of Y is then defined as Cj p(j). In this language, our 

goal is to present a sharp estimate for the -&J norm of the influence vector, i.e., Cy=, p2(j). Notice 
that the gradient interpretation below points out that the sum of the squares might be a more 
natural global measure of sensitivity than the sum of influences. 

Here is a short argument relating ,$ to the rate of change of the probability P(v = 1). This 
interpretation manifests itself when more general families of probability measures are introduced; 

then ( Cj 0:) 1’2 quantifies how perturbations from uniform assignment of probability affect 

P(v = 1). For 0 5 pj 5 1, consider a parametric probability measure PD(.) defined on the 

probability space R by 

PD(C) = n Pj n(l - Pj). 
jEC j$?C 

In this notation, the uniform P(.) defined previously equals P(i/2,.,, ,i,2)(.). It is easy to check 

either directly, or from (4) below, that 

-$Pp(w=l) = W(j). 
3 p3=1/2 

Average sensitivity Cy=, & is given by a similar rate-of-change expression, when all pj = p are 

equal. The last result is actually related to Russo’s formula in percolation theory, see [5, (2.25)], 
and it is also known in the context of multilinear extensions of games. 

For T E R, denote _f~ = njeT 3, E. with the convention f0 = 1. Then, {f~(.)} is an orthonormal 
basis (the so-called Walsh system) of the finite-dimensional vector space &(R, P) of the square 

integrable random variables on 0. In particular, we have the orthogonal (Fourier) expansion 

u(.) = c QTfT(.). (3) 
TES-2 

Notice that coefficients in (3) are ‘~0 = E(w) = P(w = 1) = p, and from (2), we have 

a{i} = P(i). 

Expansion (3) leads to the expansion for Pp(w = 1) by the following calculation. Writing 

pj = (1 + 6j)/2, we have 

n 1+ fj(C)& 
Pp(?J=l)= c J-J 2 

{C: v(C)=l} j=l 

’ =E{~~O+v+ 

Therefore, we obtain the (Taylor) expansion 

P,q(?, = 1) = c aT n(2pj - 1). 
TEC2 jET 

(4 

Our main result is the following upper bound for the & norm of the vector [p(l), . . . , P(n)]. 
Notice that the right-hand side of inequality (5) doesn’t allow for dependence in n; a generalization 
is mentioned in Remark 4 of Section 3. The bound is also valid for the sum of the squares of 
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the Banzhaf Index in game theory, containing [6, Theorem l] as a special case corresponding to 
8 = l/2. 

THEOREM 1. For any (0, l}-valued v(.) and p 5 l/2 defined by (l), we have 

( ) 2 p2(i) 

i=l 
li2 5 -$ o~~fl,2 (-+ (q))* (2P)1-e. (5) 

In particular, for small p choose 0 = -l/ logp. By Stirling’s approximation, we get the following 
corollary. 

COROLLARY 1. As p -+ 0, 

(in the sense that the limsup of the quotient is bounded by 1). 

This should be compared with the corresponding lower bounds given in [2, Theorem 3.11, see 
also [7, Theorem 01. In particular, from [7, Theorem 0] for p 5 C2-n, we have x7=, @ >> 

(log 2 + 2) p2 log l/p, showing that for small values of p and large n, inequality (5) is sharp up 
to a multiplicative factor. 

Theorem 1 is valid (with minor modifications) in a more general setup, when 21 is not necessarily 
Boolean. In this’context, we should point out that [7] considers influences on a more general 
product space. In a more general setup, it might be natural to extend the definition of the 
influence of any random variable X on a not necessarily (0, 1}-valued 2, as the random variable 
E(w 1 X). It is not clear, however, if a “rate of change” interpretation could then be found. 

Our proof of Theorem 1 is based on the Khinchin inequality. The Khinchin inequality for more 
general families of orthogonal functions f~ and in another range of parameters (with q < 2 rather 
than q > 2) was used for lower bounds in [3]. For other Khinchin-like inequalities for subsets of 
the orthogonal functions {f~}, see [8]. 

2. PROOF 

From (3), we have 

p2+Cp2(i)5 Ca$=E(w’) =p, 
i=l TER 

(6) 

giving 
II 

C p2(i) I P(l - P), 
i=l 

As it was pointed out in [6], this can be improved as follows. Consider G(C) := w(C”). Since 
Q(P) = --Ej(C), we have E(+) = -p(j). Therefore, for V := w - 6, we have E(cjV) = 2/3(j) 
and reasoning as in (6)) we get 

-&i2(i) 5 ;E (V’). 

i=l 

Since for any q > 1, 

E(lVlq) = P(v = 1, 6 = 0) + P(w = O,G = 1) I 2(p A (1 - p)) = 2p, (7) 

we get 

(8) 
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To prove Theorem 1, we use the above symmetrization and two auxiliary results. The following 
is a sharp version of the Khinchin inequality, see [9, p. 265, Theorem B], see also Remark 1 in 

Section 3 below. 

LEMMA 1. For 2 5 q < 00 and any real coefficients {aj}, we have 

(+pi19’iq L Jz (1,m(qq)“” (ga;)1’2. (9) 

For 1 I q 5 00, consider the Banach space 

L, = {X E L,(Q) : E(X) = O} 

with the inherited norm ]]X]]L~ = (E]X]q)lI’J, q < co. Clearly, L, is isometric to the quotient 

of Lq(0) by the one-dimensional subspace generated by the constants; from the general theory, 
it is easy to check that the conjugate space (L,)* is isometric to L,, where q’ is the conjugate 
number, l/q + l/q’ = 1. 

Consider now the linear operator 
A : L,, -+ C,, 

given by 
n 

A(X) = c ciE(ciX). 
i=l 

Clearly, for q1 = q2 = 2, operator A is the orthogonal projection onto the Span{f~il, . . . , fl,>}; 

hence, 

IIAXll& 5 IlXllr,. 

The relevance of this operator is obvious-for instance, inequality (8) can be rewritten as 

kp2(i) = ;llAVll; 5 +E (V2). 
i=l 

LEMMA 2. For 1 < q’ 5 2, we have 

IIAllc ,pL,<JZ r 
( (4 +p)‘i , (11) 

where l/q + l/q’ = 1. 

PROOF. Indeed, q 2 2 and by (9), we have 

IIA~~L~+L, - < \/l(r(P;)12)1’q. 

Inequality (11) now follows from the fact that the adjoint operators have the same norm [IAll = 

llA*ll and from an easy observation that A* : L,! -+ Ls is given by the same formula as A. I 

PROOF OF THEOREM 1. As before, let V = w - 6. Then, by (10) 

ko2(i) = $AVll;. 
i=l 

From (ll), we get for arbitrary 1 < q’ 5 2 

(2q’ - 1)/(2q’ - 2) 
fi 

) 

(q’--l)‘q’ l,v,l 
Q’. 

Since by (7), we have E(lVlq’) 5 2p , inequality (5) now follows by substituting 8 = 1 - l/q’. 1 
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3. CONCLUDING REMARKS 

For q 2 3, [lo] (see also [ll]) g ives the best constants in (9) for each n 2 1. (Notice 

that [lo] states the inequality for all q 2 2; however, there is a minor error in the paper 
and the proof goes through only for q 2 3.) 

This allows further improvements in Theorem 3.1 giving an additional bound 

(12) 

In the range 0 < 8 I l/3, the right-hand side of (5) is the limit of (12) as n -+ co. 

Numerical analysis of the expression 

(~~,n-2h,lio(;))*(2p)L-U 
k=O 

(13) 

indicates, however, that one cannot take the infimum in (12) over the whole interval 
0 < 8 5 l/2. This, in particular, shows that the result of [ll] does not extend directly to 

exponents q > 2; the bound fails already for n = 3 and q x 2.28, giving estimates lower 
than the actual maxima in the Appendix. 
Further numerical evidence indicates that the inequality from [ll) holds true in the range 

of exponents 2 < q < 3 for all even n, while for n odd, the inequality we conjecture is 

E kajq ’ 5 (n - 1)-q/2E neej ’ 20,: 
j=l j=l ( ) 

4/z 

. (14) 
j=l 

Numerical evidence from the tables in the Appendix indicates that inequality (12) is more 

accurate for small values of p. Since the expression under the infimum in (12) is smaller 
than the one in (5), it is clear that the optimal value of 0 exceeds l/3 for larger p. 

The conjectured form of Khinchin inequality would imply the bound 

(15) 

for odd n. For more accuracy, one could actually switch between n and n+ 1 in appropriate 
ranges of 0; the choice of n+l works for all 8 when n is odd. Expression (13) is conjectured 

for even n. (Both fail outside their conjectured range, i.e., (15) fails for n even and (13) 
fails for n odd.) 

APPENDIX 

NUMERICAL COMPARISON 

In this section, we present the numerical comparison of several bounds for the renormalized 
sum 4n Cj”=, p2(j). Besides (5) and (12), we also analyze conjectured bounds and trivial in- 
equalities (8) and 

R c /Ii 5 np2. (16) 
j=l 

Notice that the former corresponds to 8 = l/2 and the latter corresponds to 8 = 0 in (12). 
The rows labeled “Actual max” in the tables correspond to the maximal sum of the renormal- 

ized -$ norms over the v(.) corresponding to the so-called simple games; according to a trusted 
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source, this is known to be the extreme case; then by [6, Proposition l(ii)], it is enough to consider 
threshold functions only. Those were found by hand calculations. A computer program searching 
for extremal v by choosing random monotone v was then written and the largest value of the 
sum of squares found is reported below (all the extremals for n = 3,4 were quickly recovered by 
the program). 

The estimates were obtained by direct search through the discrete partition of the range of 8. 
The gamma function was approximated by its asymptotic expansion as given in [12]. The accuracy 
of both approximations is difficult to judge; for instance, the answers we got were quite sensitive 
to divisibility properties of the size of partition used. (We explain this by the fact that values 
0 = l/3,1/2 are sometimes optimal-we settled on using partition of size 600.) 

Table 1. Comparison of bounds for 4” c p2(j) for 7~ = 4. 

Table 2. Comparison of bounds for 4n c p2(j) for n = 5. 

Table 3. Comparison of bounds for 4n c p2(j) for n = 6. 

Table 4. Comparison of bounds for 4” c p2(j) for n = 7. 



Sensitivity Estimate 51 

Table 5. Comparison of bounds for 4n c p2(j) for n = 8. 

1. 

2. 

3. 
4. 

5. 
6. 

7. 

8. 

9. 
10. 

11. 

12. 
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