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Abstract

The question considered in this paper is which sequences of p-integrable random variables
can be represented as conditional expectations of a fixed random variable with respect to a given
sequence of σ-fields. For finite families of σ-fields, explicit inequality equivalent to solvability
is stated; sufficient conditions are given for finite and infinite families of σ-fields, and explicit
expansions are presented.

1 Introduction

We analyze which sequences of random variables {Xj} can be represented as conditional expectations

E(Z|Fj) = Xj . (1)

of a p-integrable random variable Z with respect to a given sequence (Fj) of σ-fields. The martingale
theory answers this question for increasing σ-fields (Fj). We are more interested in other cases which
include σ-fields generated by single independent, or say, Markov dependent, random variables. In
particular, given a random sequence ξj and p-integrable random variables Xj = fj(ξj), we analyze
when there is Z ∈ Lp such that

Xj = E(Z|ξj). (2)

This is motivated by our previous results for independent random variables and by the alternating
conditional expectations (ACE) algorithm of Breiman & Friedman [3]. In [3] the authors are inter-
ested in the L2-best additive prediction Z of a random variable Y based on the finite number of
the predictor variables ξ1, . . . , ξd. The solution (ACE) is based on the fact that the best additive
predictor Z = φ1(ξ1) + . . . + φd(ξd) satisfies the conditional moment constraints (2).

Relation (1) defines an inverse problem, and shares many characteristics of other inverse prob-
lems, c. f. Groetsch [8]. Accordingly, our methods partially rely on (non-constructive) functional
analysis. We give sufficient conditions for the solvability of (1) in terms of maximal correlations. We
also show that (2) has solution for finite d < ∞ , if the joint density of ξ1, . . . , ξd with respect to the
product of marginals is bounded away from zero and EXi = EXj .
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We are interested in both finite, and infinite sequences, extending our previous results in [4, 5].
In this paper we concentrate on the p-integrable case with 1 < p < ∞. The extremes p = 1 or
p = ∞ seem to require different assumptions. For infinite sequences of independent r.v. all three
cases 1 < p < ∞, p = 1, and p = ∞ are completely solved in [5]. For finite sequences of dependent
σ-fields, Kellerer [9] and Strassen [15] can be quoted in connection with conditional expectations
problem with Z ≥ 0, which can be modified to cover bounded random variables (p = ∞) case. For
pairs of σ-fields the case 1 < p < ∞ is solved in [4].

2 Notation and results

For 2 ≤ d ≤ ∞, let {Fj}1≤j≤d be a given family of σ-fields. By L0
p(F) we denote the Banach

space of all p-integrable F-measurable centered random variables, 1 ≤ p ≤ ∞. By Ej we denote the
conditional expectation with respect to Fj . For d < ∞ by

⊕d
j=1 Lp(Fj) we denote the set of sums

Z = Z1 + . . . + Zd, where Zj ∈ Lp(Fj).
We shall analyze the following problems.

• For all consistent Xj ∈ Lp find Z ∈ Lp satisfying (1) and with minimal norm

E|Z|p = min. (3)

• For all consistent Xj ∈ Lp find additive Z ∈ Lp satisfying (1); additive means that

Z =
d∑

j=1

Zj , where Zj ∈ Lp(Fj). (4)

(for d = ∞ the series in (4) is assumed to converge absolutely in Lp)

The above statements do not spell out the consistency conditions; these will be explicit in the
theorems.

Remark 2.1 If (1) can be solved, then there is a minimal solution Z. This can be easily recovered
from the Komlos law of large numbers [10].

2.1 Maximal correlations

Maximal correlation coefficients play a prominent role below; for another use see also [3, Section 5].
The following maximal correlation coefficient is defined in [4].

Let
ρ̃(F ,G) = sup {corr(X, Y ) : X ∈ L2(F), Y ∈ L2(G), E(X|F ∩ G) = 0}.

Notice that ρ̃(F ,G) = 0 for independent F ,G but also for increasing σ-fields F ⊂ G. If the intersec-
tion F ∩ G is trivial, ρ̃ coincides with the usual maximal correlation coefficient, defined in general
by

ρ(F ,G) = sup
X∈L2(F),Y ∈L2(G)

corr(X, Y ). (5)

Note that if ρ(F ,G) < 1 then F ∩ G is trivial.
Given d ≤ ∞, σ-fields {Fj}j≤d, and a finite subset T ⊂ I := {1, 2, . . . , d} put

FT = σ(Fj : j ∈ T ).

Define pairwise maximal correlation r by

r = sup
i 6=j

ρ(Fi,Fj)
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and global maximal correlation

R = sup
T∩S=∅

ρ(FT ,FS).

For p = 2 a version of R based on additive r.v. will also play a role. Let

R` = sup

corr(U, V ) : U =
∑
j∈T

Xj , V =
∑
j∈S

Xj , Xj ∈ L2(Fj), T ∩ S = ∅

 .

Clearly, r ≤ R` ≤ R. All three coefficients coincide for two σ-fields d = 2 case. One can easily
see that R` = 0 and R = 1 can happen already for d = 3.

2.2 Main results

In Section 2.4 we present complete solution of (1) for two σ-fields case d = 2. For general families of
σ-fields, there seems to be little hope to get existence and uniqueness results as precise as for d = 2.
As Logan & Shepp [11] point out, complications arise even in relatively simple situations. One
possible source of such complications is linear dependence between L0

p(Fj). Suitable assumptions
on maximal correlation coefficients exclude the latter.

The following result extends [5, Corollary 1] to infinite sequences of dependent families of σ-fields.

Theorem 2.1 (i) Fix 1 < p < ∞ and suppose R < 1. Then equation (1) is solvable for Z for all
Xj ∈ L0

p(Fj) such that E(
∑

j |Xj |2)p/2 < ∞, and the solution is unique.
(ii) If R` < 1 then for all Xj ∈ L0

2(Fj) such that
∑

j EX2
j < ∞ there is the unique additive solution

Z to (1), and it satisfies E|Z|2 ≤ 1+R`

1−R`

∑
j E|Xj |2. Moreover, if d < ∞ then Z is given by ACE

formula [3].

If one isn’t interested in sharp moment estimates for Z, and only finite families d < ∞ are of
interest, then one can iterate Theorem 2.11 for a pair of σ-fields, relaxing R < 1. By Lemma 3.2,
this yields the following.

Theorem 2.2 If d < ∞,
ρ? = max

1≤j≤d
ρ(F{1,...,j},Fj+1) < 1, (6)

and 1 < p < ∞, then aquation (1) has an additive (4) solution Z for all Xj ∈ L0
p(Fj).

Moreover, inequality (12) holds with q = 2 and δ = (1− ρ?)d/2.

The following criterion for solvability of the additive version of (1) uses the pairwise maximal
correlation r and gives explicit alternative to ACE. For d = 2 the assumptions are close to [4], except
that we assume p = 2 and (implicitly) linear independence.

Theorem 2.3 If d < ∞, r < 1
d−1 , and p = 2, then for all Xj ∈ L2(Fj) with EXi = EXj there is

unique Z ∈ L2 such that (1) and (4) hold.
Moreover, the solution is given by the explicit series expansion

Z = EX1

+
∞∑

k=0

(−1)k
∑

i1∈I

∑
i2∈I\i1

. . .
∑

ik∈I\ik−1

Ei1 . . . Eik

∑
j∈I\ik

(Xj − EXj) (7)

(with the convention
∑

j∈∅ Xj = 0).

Furthermore, V ar(Z) ≤ 1
1−r(d−1)

∑d
j=1 V ar(Xj).

3



For finite families of σ-fields, inequality (12) is equivalent to solvability of (1). Lemma 3.3 gives
a pairwise condition for (12) and was motivated by Breiman & Friedman [3]. This implies [3,
Proposition 5.2].

Corollary 2.4 ([3]) If d < ∞, vector spaces L0
2(Fj) are linearly independent, and for all 1 ≤ j ≤

d, k 6= j, the operators EjEk : L0
2(Fk) → L0

2(Fj) are compact, then for all square integrable X1, . . . , Xd

with equal means EXi = EXj, there is the unique additive solution Z of (1).

2.3 Conditioning with respect to random variables

We now state sufficient conditions for solvability of (1) in terms of joint distributions for finite
families d < ∞ of σ-fields generated by random variables Fj = σ(ξj), where ξ1, . . . , ξd is a given
random sequence.

We begin with the density criterion that gives explicit estimate for R, and was motivated by [14].
By Lemma 3.2, it implies that (1) has unique additive solution Z for all 1 < p < ∞. Although it
applies both to discrete and continuous distributions (typically, the density in the statement is with
respect to the product of marginals), it is clear that the result is far from being optimal.

Theorem 2.5 Suppose there is a product probability measure µ = µ1 ⊗ . . . ⊗ µd such that the
distribution of ξ1, . . . , ξd on IRd is absolutely continuous with respect to µ and its density f is bounded
away from zero and infinity, 0 < b ≤ f(x1, . . . , xd) ≤ B < ∞. Then R ≤ 1− b

B2 .

The next result follows from Corollary 2.4 by [13, page 106, Exercise 15]; it is stated for com-
pleteness.

Proposition 2.6 ([3]) Suppose d < ∞ and for every pair of i 6= j the density fi,j of the distribution
of (ξi, ξj) with respect to the product measure µi,j = µi ⊗ µj of the marginals exists and

max
i 6=j

∫ ∫
f2

i,j(x, y)dµi(x)dµj(y) < ∞. (8)

If vector spaces L0
2(Fj) are linearly independent p = 2, then R` < 1. In particular, (1) has unique

additive solution Z for all square integrable X1, . . . , Xd with equal means EXi = EXj.

In general, linear independence is difficult to verify (vide [11], where it fails). The following
consequence of Proposition 2.6 gives a relevant “density criterion”.

Corollary 2.7 Suppose the density f of the distribution of ξ1, . . . , ξd (d < ∞) with respect to
the product of marginals µ = µ1 ⊗ . . . ⊗ µd exists. If f is strictly positive, i.e., µ({(x1, . . . , xd) :
f(x1, . . . , xd) = 0}) = 0 and

∫
f2dµ < ∞ then there is an additive solution to (1) for all Xj ∈ L2(Fj)

such that EXi = EXj.

In relation to Theorem 2.5, one should note that the lower bound on the density is of more relevance.
(On the other hand, in Theorem 2.5 we use the density with respect to arbitrary product measure
rather than the product of marginals.)

Proposition 2.8 Let f be the density of the absolute continuous part of the distribution of ξ1, . . . , ξd

(d < ∞) with respect to the product of marginals µ = µ1 ⊗ . . . ⊗ µd. If f is bounded away from
zero, i.e., there is b > 0 such that µ({(x1, . . . , xd) : f(x1, . . . , xd) ≥ b}) = 1, then (12) holds for all
1 < q < ∞. In particular, for 1 < p < ∞

for Xj ∈ Lp(Fj) such that EXi = EXj there is an additive solution to (1).
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2.4 Results for two σ-fields

This case is rather completely settled. Most of the results occurred in various guises in the literature.
They are collected below for completeness, and to point out what to aim for in the more general
case.

The following shows that for d = 2 there is at most one solution of (1) and (4). (Clearly, there
is no Z if X1, X2 are not consistent, e.g., if EX1 6= EX2.)

Proposition 2.9 Given Xj ∈ Lp(Fj), 1 ≤ p ≤ ∞, there is at most one Z = Z1 + Z2 + Z ′ ∈ L1

such that (1) holds and E(Zj |F1 ∩ F2) = 0.

Since best additive approximations satisfy (1), uniqueness allows to consider the inverse problem
(1) instead. This is well known, c.f., [7].

Corollary 2.10 If p = 2 and the best additive approximation Z = Z1 + Z2 + Z ′ of Y ∈ L2 (i.e., Z

minimizing E (Y − E(Y |F1 ∩ F2)− (Z1 + Z2))
2) exists, then it is given by the solution to Problem

SA (if solvable).

The following result points out the role of maximal correlation and comes from [4].

Theorem 2.11 ([4]) Suppose 1 < p < ∞ is fixed. The following conditions are equivalent:

1. There is a minimal solution to (1) for all consistent X1, X2 in Lp(F1), Lp(F2) respectively;

2. here is an additive solution to (1) for all consistent X1, X2 in Lp(F1), Lp(F2) respectively;

3. ρ̃ < 1.

Moreover, the explicit consistency condition is

E{X1|F1 ∩ F2} = E{X2|F1 ∩ F2}.

Furthermore, if E(Z|F1 ∩ F2) = 0, the minimum norm in (3) is bounded by E|Z|2 ≤ 1
1−ρ̃ (EX2

1 +
EX2

2 ) and the bound is sharp.
The solution is explicit:

Z = E(X1|F1 ∩ F2) +
∞∑

k=0

(E2E1)k(X2 − E2X1) +
∞∑

k=0

(E1E2)k(X1 − E1X2) (9)

and both series converge in Lp.

Remark 2.2 For p = 2 formula (9) resembles the following explicit expansion for the orthogonal
projection L2 → cl (L2(F1)⊕ L2(F2)) (see [1]).

Z = E{Y |F1 ∩ F2}+
∞∑

k=1

(
E1(E2E1)k + E2(E1E2)k − (E1E2)k − (E2E1)k

)
Y ; (10)

(the series converges in L2).
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3 Proofs

The following uniqueness result is proved in [3] for the square-integrable case p = 2 (the new part is
1 < p < 2).

Lemma 3.1 (i) If L0
p(Fj) are linearly independent and d < ∞, then for every {Xj} in Lp(Fj),

p ≥ 2, there is at most one solution of (1) in the additive class (4).
(ii) If (12) holds with q = 2, then for every {Xj} in Lp(Fj), p ≥ 2, there is at most one solution of
(1) in the additive class (4).
(iii) Fix 1 < p < ∞. If there are constants c, C such that for all centered {Xj} ∈ Lq(Fj)

cE(
d∑

j=1

X2
j )q/2 ≤ E|

d∑
j=1

Xj |q ≤ CE(
d∑

j=1

X2
j )q/2 (11)

holds for q = p and for the conjugate exponent q = p
p−1 , then for every {Xj} in Lp(Fj) there is at

most one solution of (1) in the additive class (4).

Proof of Lemma 3.1. The case p = 2 goes as follows. Suppose Z = Z1 + Z2 + . . . has Ej(Z) = 0
for all j. Then EZ2 =

∑
j EZZj =

∑
j E(ZjEj(Z)) = 0. This implies that Zj = 0 for all j either by

linear independence, or by (12).
The second part uses the existence part of the proof of Theorem 2.1. Take Z =

∑
j Zj (Lp-

convergent series) such that Ej(Z) = 0. Then by (11)

‖Z‖p ≤ C(E(
∑

j

Z2
j )p/2)1/p = C

∑
j

E(ZjXj),

where E(
∑

j X2
j )q/2 = 1, 1/p + 1/q = 1 and Xj ∈ L0

q(Fj). The latter holds because the conjugate
space to L0

q(`2(Fj)) is L0
p(`2(Fj)). The existence part of the proof of Theorem 2.1 implies that there

is Z̃ ∈ Lq such that Ej(Z̃) = Xj and Z̃ =
∑

j Z̃j with Z̃j ∈ L0
q(Fj). Therefore∑

j

E(ZjXj) =
∑

j

E(ZjZ̃) = E(ZZ̃) = E(Z
∑

j

Z̃j) =
∑

j

E(Z̃jEj(Z)) = 0.

This shows E|Z|p = 0 and by the left hand side of (11) we have Zj = 0 a.s. for all j. 2

Proof of Proposition 2.9. Clearly Z ′ = E{Z|F1 ∩F2} is uniquely determined by Z and without
loosing generality we may assume Z ′ = 0. Suppose that a particular Z = Z1+Z2 has EjZ = 0. Then
Z1 = E1E2Z1. Using this iteratively, by “alterniende Verfahren” (see [12]) we get Z1 = (E1E2)kZ1 →
E(Z1|F1 ∩ F2) = 0. By symmetry, Z2 = 0 and uniqueness follows. 2

Proof of Corollary 2.10. Without loss of generality we may assume E(Y |F1 ∩ F2) = 0. For
optimal Z = Z1 + Z2 we have

min = E (Y − (Z1 + Z2))
2

= E (Y − (E1(Y )− E1(Z2) + Z2))
2 + E (E1(Y )− E1(Z))2 ≥ min+E (E1(Y )− E1(Z))2 .

Since the same analysis applies to E2, the optimal Z has to satisfy (1). By Theorem 2.9, there is
only one such Z, so this one has to be the optimal one.2

Proof of Theorem 2.11. For E(Yj |F1 ∩ F2) = 0 we have

E(Y1 + Y2)2 ≥ EY 2
1 + EY 2

2 − 2ρ̃(EY 2
1 EY 2

2 )1/2 ≥ (1− ρ̃)(EY 2
1 + EY 2

2 )
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Therefore the linear operator T : L0
2 → L0

2(F1) × L0
2(F2) given by T (Y ) = (E1(Y ), E2(Y )) is onto

and the norm of its left inverse is bounded by (1 − ρ̃)−1/2 (here L0
p denotes the null space of the

linear operator E(·|F1 ∩ F2) on Lp). This proves the bound EZ2 ≤ (EX2
1 + EX2

2 )/(1− ρ̃).
Because of the explicit formula for Z, it is clear that 3⇒2; implication 2⇒1 holds by general

principles (see Remark 2.1). The equivalence 1⇔3 is in [4]. 2

It is easy to see that if for given {Xj} (1) is solvable in the additive class (4), then there is also
a minimal solution (3), see Remark 2.1. The following shows that for finite families of σ-fields the
solvability of both problems is actually equivalent, at least when trivial constraints EXi = EXj are
the only ones to be used.

Lemma 3.2 Fix 1 < p < ∞ and suppose d < ∞. The following conditions are equivalent
(i) Equation (1) has an additive (4) solution Z for all Xj ∈ L0

p(Fj);
(ii) Equation (1) has a minimal (3) solution Z for all Xj ∈ L0

p(Fj);
(iii) There is δ = δ(q) > 0 such that for all Xj ∈ L0

q(Fj)

E|
∑

j

Xj |q ≥ δq
∑

j

E|Xj |q, (12)

where 1/p + 1/q = 1.
Moreover, if inequality (12) holds, then there is an additive solution Z to (1) with E|Z|p ≤

1
δp

∑
j E|Xj |p.

Remark 3.1 In addition, if L0
q(Fj) are linearly independent then the following equivalent condition

can be added:
(iv) L0

q(F1)⊕ . . .⊕ L0
q(Fd) is a closed subspace of Lq(FI).

Proof of Lemma 3.2. (iii)⇒(i) Consider the linear bounded operator T : Lp → `p(L0
p(Fj)) defined

by Z 7→ (E(Z|Fj) : j = 1, . . . , d). The conjugate operator T ? : `q → Lq is given by (Xj) 7→
∑d

j=1 Xj .
Coercivity criterion for T being onto is ‖T ?(Xj)‖Lq

≥ δ‖(Xj)‖`q
, which is (12), see [13, Theorem

4.15]. Therefore (i) follows.
The left-inverse operator has `p → Lp operator norm ‖T−1‖ ≤ 1/δ, which gives the estimate of

the norm of Z as claimed.
(i)⇒(ii) If there is additive solution, then Xj are consistent and Remark 2.1 implies that there

is the minimal norm solution.
(ii)⇒(iii) This is a simple operator coercivity of linear operators analysis, see [13, Theorem

4.15]. Namely, if for all Xj there is Z such that (1) holds, then the linear operator T : L0
p →

L0
p(F1)× . . .× L0

p(Fd) given by Z 7→ (Ej(Z)) is onto. Therefore the conjugate operator satisfies

‖T ?(X1, . . . , Xd)‖q ≥ δ‖(X1, . . . , Xd)‖`q(Lq(Fj))

and inequality (12) follows.
2

Proof of Remark 3.1. (iv)⇒(iii) If L0
q(F1) ⊕ . . . ⊕ L0

q(Fd) is a closed subspace of Lq(FI) then
(12) holds. Indeed, by linear independence, the linear operator (X1 + . . . + Xd) 7→ (X1, . . . , Xd) is
an injection of the Banach space L0

q(F1) ⊕ . . . ⊕ L0
q(Fd) into L0

q(F1) × . . . × L0
q(Fd) with `q norm.

Since the range is closed, open mapping theorem ([13, Theorem 2.11]) implies (12).
(iii)⇒(iv) is trivial. 2

Proof of Theorem 2.1. From the proof of Bryc & Smolenski [6, (7)] we have the left hand side of
the inequality

cE|
d∑

j=1

εjXj |q ≤ E|
d∑

j=1

Xj |q ≤ CE|
d∑

j=1

εjXj |q.
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(The right hand side is [6, (7)].)
By the Khinchin inequality this implies (11). Note, that a more careful analysis gives explicit

estimates for the constants involved.
For q = 2 the above is replaced by

1−R`

1 + R`

d∑
j=1

EX2
j ≤ E|

d∑
j=1

Xj |2 ≤
1 + R`

1−R`

d∑
j=1

EX2
j ,

which is given in [2, Lemma 1].
Existence of the solution follows now from functional analysis: Consider the linear bounded (cf

(11)) operator T : L0
p → L0

p(`2(Fj)) defined by Z 7→ (E(Z|Fj) : j = 1, 2, . . .). The conjugate
operator T ? : L0

q(`2) → L0
q is given by (Xj) 7→

∑∞
j=1 Xj .

Coercivity criterion for T being onto, see [13, Theorem 4.15], is ‖T ?(Xj)‖Lq
≥ δ‖(Xj)‖Lq(`2),

which follows from (11). Therefore the existence of a solution to (1) follows and the minimal solution
exists by Remark 2.1.

For p = 2 inequalities (11) show that L0
2(`2) = `2

(
L0

2(Fj)
)
3 (Xj) generates the L2 convergent

series
∑

j Xj . Denote by H the set of random variables represented by such series. By (11) H
is closed and since the orthogonal projection onto H shrinks the norm, the minimal solution to
(1) has to be in H, thus it is additive (4). The left-inverse operator has `2 → L2 operator norm
‖T−1‖ ≤ ( 1−R`

1+R`
)1/2, which gives the estimate for the norm of Z as claimed.

The uniqueness follows from (11) by Lemma 3.1.2

Proof of Theorem 2.2. Use Theorem 2.11 to produce recurrently
F1,2-measurable Z1 such that E1(Z1) = X1, E2(Z1) = X2;
F1,2,3-measurable Z2 such that E1,2(Z2) = Z1, E3(Z2) = X3;
...
F1,...,d-measurable Zd such that E1,...,d−1(Zd) = Zd−1, Ed(Zd) = Xd.
This shows that for all d < ∞ there is a solution to (1), and hence there is a minimal solution.
Therefore, by Lemma 3.2 there is an additive solution (4), and (12) holds.

Notice that for d < ∞ inequality (12) implies (11), which by Lemma 3.1 implies uniqueness.
The inequality (12) for q = 2 follows recurrently from E(

∑k
j=1 Xj+Xk+1)2 ≥ (1−ρ?)(E(

∑k
j=1 Xj)2+

EX2
k+1). 2

Proof of Theorem 2.3.
To verify that the series in (7) converge, notice that for j 6= ik

‖Ei1 ...Eik
‖L0

2(Fj)→L0
2
≤ rk.

Therefore
‖

∑
k

(−1)k
∑
i1∈I

∑
i2∈I\i1

. . .
∑

ik∈I\ik−1

Ei1 . . . Eik

∑
j∈I\ik

(Xj − EXj)‖2

≤ 2d
∑

k

(d− 1)krk max
j
‖Xj‖2.

Clearly, (4) holds true. We check now that Z defined by (7) satisfies (1). To this end, without
loss of generality we assume EXj = 0 and we verify (1) for j = 1 only. Splitting the sum (7) we get

E1(Z) =
∞∑

k=0

(−1)k
∑

i2∈I\1

. . .
∑

ik∈I\ik−1

E1Ei2 . . . Eik

∑
j∈I\ik

(Xj − EXj)
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+
∞∑

k=0

(−1)k
∑

i1∈I\1

∑
i2∈I\i1

. . .
∑

ik∈I\ik−1

E1Ei1 . . . Eik

∑
j∈I\ik

(Xj − EXj).

The 0-th term of the sum on the left is X1 and the k-th term of the sum on the left cancels the
(k − 1) term of the sum on the right. Therefore E1(Z) = X1.

To prove the uniqueness, it suffices to notice that r < 1
d−1 implies linear independence. Alterna-

tively, suppose that both Z = Z1+. . .+Zd and Z ′ = Z1
′+. . .+Zd

′ have the same conditional moments
E1. Then ‖Z1−Z1

′‖2 = ‖E1(Z2+. . .+Zd)−E1(Z2
′+. . .+Zd

′)‖ ≤ r
∑d

j=2 ‖Zj−Zj
′‖2, and the similar

estimate holds for all other components. Therefore
∑d

j=1 ‖Zj − Zj
′‖2 ≤ r(d− 1)

∑d
j=1 ‖Zj − Zj

′‖2.
Since r < 1/(d− 1), this implies the sum vanishes, proving uniqueness.

To prove the variance estimate notice that r < 1/(d − 1) implies (12) with p = 2 and δ2 =
1− r(d− 1). Indeed,

E|
d∑

j=1

Xj |2 ≥
d∑

j=1

EX2
j − r

∑
j 6=k

(EX2
j EX2

k)1/2.

The estimate now follows from the elementary inequality

1
d− 1

d∑
j=1

d∑
k=1,k 6=j

akaj ≤
1

d− 1

d∑
j=1

d∑
k=1,k 6=j

1
2
(a2

k + a2
j ) =

d∑
j=1

a2
j ,

valid for arbitrary numbers a1, . . . , ad. 2

Lemma 3.3 If d < ∞, vector spaces L0
2(Fj) are linearly independent, and for all 1 ≤ j ≤ d, k 6= j,

the operators EjEk : L0
2(Fk) → L0

2(Fj) are compact, then R` < 1; hence inequality (12) holds for
q = 2.

Proof of Lemma 3.3. The proof is similar to the proof of Proposition 2.9 with T = PSPQ, where
S, Q are disjoint and PQ denotes the orthogonal projection onto the L2-closure of

⊕
j∈Q L0

2(Fj);
operator T is compact, compare [3, Proposition 5.3]. Details are omitted. 2

Proof of Theorem 2.5. Take U ∈ L2(FS), V ∈ L2(FT ) with disjoint S, T ⊂ I and such that
EU = EV = 0, EU2 = EV 2 = 1, EUV = ρ. Then

E(U − V )2 = 2− 2ρ ≥ 2
b

B2
.

Indeed, we have

E(U − V )2 =
∫

IRd

(U(x)− V (x))2f(x)dµ(x) ≥ b

∫
IRd

(U(x)− V (x))2dµ(x)

= b

∫
IRd

∫
IRd

(U(x)− V (y))2dµ(y)dµ(x)

≥ b

B2

∫
IRd

∫
IRd

(U(x)− V (y))2f(y)dµ(y)f(x)dµ(x) =
2b

B2
.

2

Since the above analysis can also be carried through for E(U + V )2, we get the following.

Corollary 3.4 (c.f.[14] Lemma 1) Under the assumption of Theorem 2.5, for Vj ∈ L0
2(Fj) we

have
E|V1 + . . . + Vd|2 ≥

b

2B2 − b
(EV 2

1 + . . . + EV 2
d )
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Lemma 3.5 Let f be the density of the absolute continuous part of the distribution of ξ1, . . . , ξd

(d < ∞) with respect to the product of marginals µ = µ1 ⊗ . . . ⊗ µd. If f is strictly positive, i.e.,
µ({(x1, . . . , xd) : f(x1, . . . , xd) = 0}) = 0, then vector spaces L0

2(Fj) are linearly independent.

Proof of Lemma 3.5. Suppose X1 = X1(ξ1), . . . , Xd = Xd(ξd) ∈ L0
2 are non-zero. Denote by µ

the product of marginal measures on IRd and let Aε = {(x1, . . . , xd) : f(x1, . . . , xd) > ε}. Choose
ε > 0 such that ∫

Ac
ε

|
∑

Xj |2dµ <
1
2

∑
EX2

j .

Then
E|

∑
Xj |2 ≥

∫
Aε

|
∑

Xj(xj)|2f(x1, . . . , xd)dµ

≥ ε

∫
Aε

|
∑

Xj |2dµ ≥ ε

2

∑
EX2

j > 0.

This proves linear independence of Xj .
2

Proof of Proposition 2.8. This follows the proof of Proposition 3.5 with ε = b. Namely,

E|
∑

Xj |q ≥ b

∫
IRd

|
∑

Xj |qdµ ≥ cE(
∑

X2
j )q/2.

The last inequality holds by the Marcinkiewicz-Zygmund inequality, because under µ random vari-
ables Xj are independent and centered. 2

4 Example

The following simple example illustrates sharpness of some moment estimates.

Example 4.1 Let d < ∞. Suppose X1, . . . , Xd are in L2, centered and have linear regressions, i.e.,
there are constants ai,j such that E(Xi|Xj) = ai,jXj for all i, j (for instance, this holds true for
(X1, . . . , Xd) with elliptically contoured distributions, or when each Xj is two-valued). Let C = [Ci,j ]
be the covariance matrix. Clearly, if either R` < 1 or r < 1/(d− 1), then C is non degenerate.

Explicit solutions illustrating Theorems 2.11, 2.1, and 2.3 are then possible:

It is easy to check that Z =
∑d

j=1 θjXj, where

 θ1

...
θd

 = C−1

 1
...
1

, satisfies E(Z|Xj) = Xj for

all j, and it clearly is additive. Moreover, if corr(Xi, Xj) = ρ doesn’t depend on i 6= j, then

Z =
1

1 + (d− 1)ρ
(X1 + . . . + Xd).

In particular, for d = 2 we have Z = 1
1+ρ (X1 + X2). For negative ρ, those point out the sharpness

of estimates for EZ2.
(It is easy to see directly from E(X1+. . .+Xd)2 = d+d(d−1)ρ ≥ 1−R

1+R that (d−1)ρ ≥ − 2R
1+R > −1,

provided R` < 1. Therefore Z is well defined.)
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