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1. Results 

Let L&l, a 1 be a family of real random variables. An often useful step in establishing the large deviation 
principle for (X,) is to show that there is E > 0 such that 

[I(a) := lim t-’ log E{exp(taX,)] 
*+m 

(1.1) 

exists for all real a, I a 1 < E; see e.g., Dembo and Zeitouni (1993, Theorem 2.3.6) or Cox and Griffeath 
(1984, Lemma 1). 

In some more algebraic proofs of (l.l), however, one gets the convergence for complex values as well. 
For instance, the proofs in Burton and Dehling (1990), Cox and Griffeath (1984) and in Bryc and 
Smolenski (1993) admit complex arguments. The purpose of this short note is to point out that in such 
circumstances the Central Limit Theorem follows by a very simple argument. In Cox and Griffeath 
(1984) a similar approach based on real arguments is described and used; however, their paper depends 
on an unpublished theorem of R.S. Ellis. The only other relevant general result in print that we are 
aware of is Iagolnitzer and Souillard (1979), who deal with the averages of two valued random variables; 
their proof does not seem to extend to random variables with infinite support. 

Proposition 1. Suppose {X,z z 1 satisfies E{X,} = 0. Zf there is E > 0 such that 

k( 2) = ,‘iy t-’ log E{exp( tzXt)} (1.2) 

exists for all complex z, I z I < E then t l/*X converges in distribution to the N(0, a) distribution, where f 
a* = L”(0) > 0. 
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Remark 1. The use of complex numbers in (1.2) can be avoided with the help of some additional 
assumptions, as in Cox and Griffeath (1984, Lemma 1); however, the assumption that all the functions 
under consideration are real-analytic is not sufficient. For instance, consider symmetric random variables 

{X*1* > 1 with distributions P( I X, 1 > x) = exp( -x’t). The moment generating functions 

E{exp( tyx,)} = 1 + +yt-‘/’ exp( iry’)tz,r e-” du 

are analytic; their normalized logarithms are real-analytic and converge to (analytic) IL(y) = iy2, but the 
convergence holds for the real arguments y only and the central limit theorem fails. On the other hand, 
the large deviation principle holds with the Gaussian rate function. 

Proposition 1 can also be used to obtain the central limit theorem as a consequence of the large 
deviation principle. To state the result we need to introduce some notation. Let Ze, c C denote the set 
of zeros of z + E{exp(tzX,)). Under integrability condition (1.3) below, each of the functions a + 
E(exp(tzX,)} is analytic in a neighborhood of 0, see e.g. Lukacs (1970); hence each set Ze, consists of the 
isolated points of the complex domain. 

Proposition 2. If 

s;p (E{exp(ts I X, I)})“’ < 03 for some F > 0, 

and 

then the Large deviation principle impiies (1.2). 

(1.3) 

(1.4) 

Remark 2. Condition (1.4) is usually difficult to verify directly, but follows from (1.2); it is sometimes 
considered in statistical physics literature, where E{exp(tzX,)) is called a partition function. Once (1.4) is 
satisfied, the rate function in the large deviation principle is strictly convex and in addition to the CLT 
we also get exponential convergence, see Ellis (198.5, Theorem 11.6.3). 

Remark 3. In general, the central limit theorem is not a consequence of the large deviation principle, see 
the example given in Remark 1. 

2. Proofs 

Proof of Proposition 2. By (1.4), there is .a > 0 such that functions L, : C + C defined by 

L,( 2) = t-’ log E(exp( Ml,)} 

are analytic in the disk I z I < 3.5. By Caratheodory’s inequality, see e.g. Levine (1956, p. 17, Theorem 8), 
we have 

I L,(Z) I G 2t-’ log ,;;J~, I E{exp( tat)} I G 2t-’ log E{exp(t& I X, I)} 

for ( z I < E. Therefore, by (1.3), 

sup IL,(z)1 <a. 
t>l,lrlss 
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Furthermore, by the large 
induced convergence, see 
moreover, convergence is 
argument z. 0 
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deviation principle and (1.3), {L,(x)), >, converges for real x. Therefore by 

e.g. Hille (1962, Theorem 15.3.4), the limit (1.2) exists for each 1 z 1 GE; 

uniform in the disc I z I G E and the limit is an analytic function of the 

Proof of Proposition 1. This proof is a continuation of the previous proof. Since (1.2) implies (1.41, by the 
previous argument, convergence in (1.2) is uniform in a disc. Thus there is E > 0 such that for 
k= 1, 2,..., 

(k!)-‘2Ti$L(z) 
Z =o 

= / lL( z),z,+’ dz= lim t-’ 
/ZI=& I-a / 

, , =. log E{exp( tzX,)}/zk+’ dz. 
Z t 

(2.1) 

The value of the integral llZ, _log Elexp(tzX,ll/z k+’ dz is not affected by changing the integration 

path from I z I = e to I z I = E/t ‘P Therefore substituting u = zt112 we get . 

lim tk/2-’ 
/ 

log E{exp( f ‘/2uX,)}/c4 k+’ du =(k!)-‘2ni[a/az]klL(z)l,=,. (2.2) 
f--t’= I11l’F 

Since 

/ lUl=E 
log E{exp( t1/2UX,)}/U k+l du = (k!)-12vi[a/&]k log E{exp(t1/2xX,)}[x=0 

equals (k!)-‘2Ti times the kth cumulant of real random variable t 1/2Xt, from (2.2) we see that for k a 3 

the kth cumulant of t 1/2X converges to zero as t 4 co; moreover, f 

[a/&~]” log E(exp(t”‘~Xi)}[+=a = 0(t1-k/2) as t --) m. 

For k = 2, (2.2) reads 

Var[ t’/2X,] -+ [a/&~]~iL( x) Ix=“. 

Since E{X,l = 0, all the cumulants converge to the corresponding cumulants of the normal distribution. 
This shows that t’12X, has asymptotically normal distribution with the variance [a/ax]‘L(x) ) x=o. (For a 
more subtle normal convergence criterion, see Janson (19881.1 0 
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