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Introduction

∙ Patterned random matrices.

∙ Limiting spectral distribution.

∙ Extensions (joint convergence, free limit, half independence).

∙ Some questions.
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Examples I

Sample variance covariance matrix (S matrix). n−1Xn×pX T
p×n,

X is an IID matrix.

Wigner matrix n−1/2Xn×n symmetric with IID entries.

Triangular symmetric Wigner matrix

W u
n =

⎡⎢⎢⎢⎢⎢⎣
x11 x12 x13 . . . x1(n−1) x1n
x12 x22 x23 . . . x2(n−1) 0

...
x1(n−1) x2(n−1) 0 . . . 0 0

x1n 0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎦ , (1)

n−1Xn×pX T
p×n matrices, X is not necessarily IID.

Toeplitz matrix ((n−1/2x∣i−j∣)).

Hankel matrix ((n−1/2xi+j)).

Reverse Circulant matrix ((n−1/2xi+j mod n)).
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Examples II

n−1/2IID matrix

Sample autocovariance matrix ((∣i−j∣)),

(k) = n−1
n−k∑
j=1

xjxk+j .

Circulant, k circulant and its variants.

Band matrices. r–diagonal matrices.

Heavy tailed or dependent entries.

We shall focus on real symmetric matrices
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Empirical spectral distribution (ESD)

ESD:

Fn(x) = n−1
n∑

i=1

I{�i ≤ x}.

Random probability distribution with mass 1/n at each �i .

How does it behave as n→∞?

Limiting spectral distribution (LSD): the weak limit of ESD either
almost surely or in probability.
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IID
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Scaled iid matrix of order 400 with Bernoulli entries.
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Circulant
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Scaled Circulant matrix of order 400 with Bernoulli entries.



Intro. LSD Sim. Patterned matrix Moment Prop. B Words Limits Prop. B, M Jt. conv. Q. Collaborators Ref. Supp.

Wigner
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15 (scaled) Wigner matrices of order 400 with Bernoulli entries.
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Triangular Wigner
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Toeplitz
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15 scaled Toeplitz matrix of order 400 with Bernoulli entries.
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Hankel
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15 scaled Hankel matrix of order 400 with Bernoulli entries.
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Triangular Hankel
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Input, link and patterned matrices

Input sequence: the sequence of variables used to construct
the matrix: independent with mean zero and variance one.

For simplicity assume that it is uniformly bounded.

Patterned matrix:

Pn = ((xL(i,j))) 1 ≤ i , j ≤ n.

Link function: L. Symmetry is assumed wherever applicable.

Interested in LSD of n−1/2Pn.
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Link functions of the matrices

Wigner: L(i , j) = (min(i , j),max(i , j)).

Toeplitz: L(i , j) = ∣i − j ∣.

Hankel: L(i , j) = i + j .

Reverse Circulant: L(i , j) = (i + j) mod n.

Symmetric Circulant: L(i , j) = n/2− ∣n/2− ∣i − j ∣∣.

S: L1(i , j) = (i , j), L2(i , j) = (j , i).
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Digression to CLT: pair partition

{xi} are independent uniformly bounded with mean zero and
variance one. Let

Yn = n−1/2(x1 + x2 + . . .+ xn).

Hence
E[Yn]h =

1
nh/2

∑
1≤i1,i2,...,ih≤n

E[xi1xi2 ⋅ ⋅ ⋅ xih ].

Taking expectation and using elementary order calculations,

E[Yn]2k+1 = o(1)

E[Yn]2k =
(2k)!

2kk !
+ o(1).

(2k)!

2kk !
= Total number of pair partitions of {1,2, . . .2k}.

(ab....a..b....)

.
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Moment Method

The h-th moment of the ESD has the following nice form:

1
n

n∑
i=1

�h
i =

1
n

tr(Ah) = �h(A) (say).

If

(M1) E [�h(An)] −→ �h (convergence of the average ESD).

(M2) V [�h(An)] −→ 0.

(C) {�h} satisfies Carleman’s condition:
∞∑

h=1

�
−1/2h
2h =∞.

Then LSD of {An} exists (in probability).

We will focus only on condition (M1).
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Property B: subsequential limits, Gaussian
domination, Carleman condition

Property B: Δ, the maximum number of times any variable
appears in any row remains finite as dimension increases.

Δ = 1: Wigner and Reverse Circulant.
Δ = 2: Toeplitz, Hankel and Symmetric Circulant.

Result 1

Suppose Property B holds. Then the ESD of {n−1/2Pn} is
tight a.s.. Any subsequential limit G satisfies,

(i) �2k (G) ≤ (2k)!Δk

k!2k (implies Carleman’s condition).

(ii) �2k+1(G) = 0 (implies symmetry of G)

(iii) LSD exists for {n−1/2Pn} iff for every h,

lim E[�h(n−1/2Pn)] = �h (say). (2)
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Circuit

h-th moment of n−1/2Pn is:

1
n

Tr
(

Pn√
n

)h

=
1

n1+h/2

∑
1≤i1,i2,...,ih≤n

xL(i1,i2)xL(i2,i3) ⋅ ⋅ ⋅ xL(ih−1,ih)xL(ih,i1).

(3)
Circuit � : {0,1,2, ⋅ ⋅ ⋅ ,h} → {1,2, ⋅ ⋅ ⋅ ,n} with �(0) = �(h).

Condition (M1):

E[�h(n−1/2Pn)] = 1
n1+h/2

∑
�: � circuit EX� → �h where

X� = xL(�(0),�(1))xL(�(1),�(2)) ⋅ ⋅ ⋅ xL(�(h−2),�(h−1))xL(�(h−1),�(h)).
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Matched and pair matched circuits

Matched circuit: For any i , there is at least one j ∕= i such that

L(�(i − 1), �(i)) = L(�(j − 1), �(j)).

Pair matched circuit: such values occur only in pairs.

� nonmatched implies E(X�) = 0. Hence

E[�h(n−1/2Pn)] =
1

n1+h/2

∑
�: � matched circuit

EX�.

Only matched circuits need to be considered .
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Equivalence of circuits: words

�1 and �2 are equivalent if they match at the same positions.

Equivalence class ↔ partition of {1,2, ⋅ ⋅ ⋅ ,h} ↔ word w of
length h of letters where the first occurrence of each letter is in
alphabetical order.

Example: h = 5. {{1,3,5}, {2,4}} ↔ ababa.

Π(w) = Equivalence class corresponding to w .

(M1) can be written as:

E[
1
n

Tr
(

Pn√
n

)h

] =
1

n1+h/2

∑
w

∑
�∈Π(w)

EX� → �h.
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Limit moments: pair matched words

∙ The first sum is a finite sum.

∙ EX� = 1 for pair matched words.

Let (for w of length h),

p(w) = lim
n

1
n1+h/2 #Π(w) whenever the limit exists.

∙ Only pair matched words survive if we assume Property B:

p(w) = 0 if w is not pair matched.

Hence �2k+1 = 0 for all k .

IF p(w) exists for each pair matched word, then

�2k =
∑

w pair matched

p(w)

(w is of length 2k ).
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The five matrices

Result 2
LSD exists for Wigner, Toeplitz, Hankel, Symmetric Circulant
and Reverse Circulant.
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Symmetric Circulant, Gaussian limit

∙ Recall that Guassian is an “upper bound”.

∙ For Symmetric Circulant, p(w) = 1 for all (pair matched) w .
Hence the LSD is standard Gaussian.

∙ Not so for other link functions.

∙ Guassian limit is an “exception”.
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Symmetric words and Reverse Circulant

Symmetric word: each letter appears exactly once in an odd
and exactly once in an even position.

abcabc is symmetric while abab is not.

There are k ! symmetric words of length 2k .

For Reverse Circulant, p(w) = 1 for all symmetric words (and 0
otherwise). Hence the LSD is

fR(x) = ∣x ∣e−x2
, −∞ < x <∞.

This is the distribution of the symmetrized square root of
chi-square two distribution.
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Catalan words, Wigner matrix and Semi Circle law

Catalan: a symmetric word where sequentially deleting all
double letters leads to the empty word.

abcabc is symmetric but not Catalan. abccba is Catalan.

Catalan words
⇕

noncrossing pair partitions
⇕

SRW paths, origin to origin, on or above the axis.

There are (2k)!
k!(k+1)! Catalan words of length 2k .

For the Wigner matrix p(w) = 1 if w is Catalan (and 0
otherwise). Hence the LSD is the semicircle law

fw (x) =
1

2�

√
4− x2, −2 ≤ x ≤ 2.
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Toeplitz and Hankel

For both, p(w) = 1 if w is Catalan.

For symmetric words pT (w) = pH(w).

LSD are unbounded.

Hankel LSD is not unimodal.

Toeplitz LSD has a density which is bounded.



Intro. LSD Sim. Patterned matrix Moment Prop. B Words Limits Prop. B, M Jt. conv. Q. Collaborators Ref. Supp.

Table: Pair matched words and moments, X symmetric. Similar
table for XX ′

MATRIX w Cat. w sym.
not cat. Other w �2k or LSD

SC 1 1 1 (2k)!

2k k!
, N(0, 1)

R 1 1 0 k !, ±
√
�2

2

T 1 pT (w) ∕= 0, 1 pT (w) ∕= 0, 1 (2k)!
k!(k+1)!

≤ �2k ≤ (2k)!

k!2k

H 1 pH(w) = pT (w) 0 (2k)!
k!(k+1)!

≤ �2k ≤ k !

W 1 0 0 (2k)!
k!(k+1)!

, semicircle
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Triangular matrices

Result 3
LSD exists for triangular versions of Wigner, Toeplitz, Hankel,
Symmetric Circulant and Reverse Circulant. The LSD is
symmetric.
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Triangular Wigner

Only Catalan words contribute but not equally.

LSD is supported in [−
√

e,
√

e] with density unbounded at 0.

�2k =
kk

(k + 1)!
.

Word pu(w)

aa 1/2
aabb 1/3
abba 1/3

aabbcc 1/4
abbcca 1/4
abbacc 5/24
aabccb 5/24
abccba 5/24
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Catalan words and semicircle law

Let �n = max occurrence of a variable in the matrix.

�n = 2: Wigner.

�n = O(n): Symm. circ., Reverse Circ., Toeplitz and Hankel.

Result 4
(i) If �n = o(n), then w non-Catalan implies p(w) = 0.

Any subsequential limit has support contained in [−2
√

Δ,2
√

Δ].

(ii) If Δ = 1, then w Catalan implies p(w) = 1.

If further, �n = o(n), then the LSD is semicircular.
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Properties B and M, Catalan words and semicircle law

Property M: the maximum number of rows where matches
between any two columns occur is finite across all dimensions.

This is satisfied for all the matrices we considered.

Result 5
(i) Suppose L satisfies Property B.

Then, �2k ≥
(2k)!

k !(k + 1)!
for any subsequential limit.

(ii) Suppose L satisfies Properties B and M.

Then for any Catalan word w , p(w) = 1.

(iii) Suppose in (ii) we also assume �n = o(n).

Then the LSD of {n−1/2Pn} is the semicircle law.
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Joint convergence: Non comm. prob. space

Noncommutative probability space: (A, �). A is a unital
algebra, � : A → ℂ is a linear functional satisfying �(1) = 1.

An = n × n real symm. random matrices, �n = 1
n [Tr(⋅)].

A = algebra of polynomials in J noncommutative variables
a1, . . . ,aJ .

Result 6
Consider J (indices) sequences of independent matrices
{Ai,n,1 ≤ i ≤ J} with link function L satisfying Property B.
If p(w) exists, then for any k and any monomial,

lim Tr
[

1
n

Ai1,n√
n
. . .

Aik ,n√
n

]
= lim�n(ai1 . . . aik ) = �(ai1 . . . aik ) (say)

exists almost surely. (An, �n)→ (A, �).
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Joint convergence: total, free and half independence

∙ Symmetric Circulants commute.
Each index pair matched word contributes 1: totally indept.

∙ The Wigner limit.
Each indexed Catalan word contributes 1: free independent.

∙ The Reverse Circulants satisfy ABC = CBA (half commute).
Each indexed symmetric word contributes 1: half independent.
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Colors and indices

Different matrices: colors. So we have five colors (W, T, H,
Symm. circ., Rev. circ.).

Multiple copies: indices.

Result 7
Joint convergence holds if we have several indices of all the five
colors. The Wigner components are free of the rest of the four
colors.



Intro. LSD Sim. Patterned matrix Moment Prop. B Words Limits Prop. B, M Jt. conv. Q. Collaborators Ref. Supp.

Half independence

Symmetric elements. {ai}i∈J ⊂ A. For any {ij} ⊂ J, let
a = ai1ai2 ⋅ ⋅ ⋅ aik . Let Ei(a) and Oi(a) = the number of times ai
has occurred in the even/odd positions in a.
a is symmetric (wrt {ai}i∈J ) if Ei(a) = Oi(a) for all i ∈ J.

Half independent elements. Suppose {ai}i∈J half commute
(that is aiajak = akajai for all i , j , k ). {ai} are half
independent if the following conditions are satisfied.

1. {a2
i }i∈J are independent (joint moment splits).

2. For all nonsymmetric a, �(a) = 0.
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Remarks

(i) Property B implies convergence of the moments↔
existence of LSD. Subsequential limits always exist. What
further restrictions on the link function implies the convergence
of moments?

(ii) Under what conditions on the link does the LSD have
bounded or unbounded support? Density? One mode?

(iii) Classes of limits possible under Property B (?)

(iv) More on classes of contributing words and link functions?

(v) More about the LSD of T, H ?

(vi) More about the LSD of triangular T, H, ...?

(v) Further properties of joint convergence?
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Boundedness assumption

kn = #{Lk (i , j) : 1 ≤ i , j , k ≤ n},
�n = max

k
#{(i , j) : Ln(i , j) = k , 1 ≤ i , j ≤ n}.

�n = 2 for Wigner and �n = O(n) for Symmetric Circulant,
Reverse Circulant, Toeplitz and Hankel.

kn = O(n2) for Wigner and kn = O(n) for Symmetric
Circulant, Reverse Circulant, Toeplitz and Hankel.

Result

(The i.i.d. case): if �nkn = O(n2), kn →∞, then it is enough to
restrict to bounded inputs among finite variance inputs.

Alternate assumption: (The non i.i.d. case) Any power of the
input sequence is uniformly integrable.
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Toeplitz matrix simulation with Cauchy entries
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5 replications of the Toeplitz matrix of order 400: Cauchy entries.
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Table: LSD of S = XX ′

n matrices.

MATRIX w Cat. w sym.
not cat. Other w �k or LSD

p/n→ 0√
n
p (S − Ip), 1 (in p) 0 0 (2k)!

k!(k+1)!
, semicircle

√
n
p (XX ′ − Ip),

X = T , H, R, C ℒT

p/n→ y ∕= 0,∞

S 1 0 0
k−1∑
t=0

1
t + 1

(
k
t

)(
k − 1

t

)
y t

X = T ,H,R,C different, but universal
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