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Conditional moments, gamma, free gamma, and
free Poisson laws

WÃlodzimierz Bryc

Mahdia, June 1, 2005

Abstract

This talk is based on joint paper with M. Bożejko ”On a

class of free Lévy laws related to a regression problem”.
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Notation and Plan of talk

n = 1 X,Y random variables S = X + Y

↓
1 < n < ∞ X,Y random S = X + Y

symmetric n× n matrices

↓
n = ∞ X,Y LLN limits of X/n,Y/n, aka S = X+ Y

noncommutative random variables

1

Slide 3

1 Univariate gamma law

Suppose X,Y > 0 are non-degenerate independent random
variables. Let S = X + Y be their sum and Z = X

S be the quotient.

Theorem 1 ([Lukacs, 1955]) If S and Z are independent, then
X is gamma with density 1

Γ(p)x
p−1e−x, x > 0, p > 0 after

normalization.

Simple proof
Use conditional moments. If Z and S are

independent then E(X|S) = E(ZS|S) = SE(Z) and
E(X2|S) = E(Z2S2|S) = S2E(Z2)

Thus E(X|S) = µS and E(X2|S) = (σ2 + µ2)S2. Or

E(X|S) = µS and Var(X|S) = σ2S2
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Can we determine the distribution of X from E(X|S) and Var(X|S)?

Yes, as noticed in [WesoÃlowski, 1989].

Theorem 2 [Laha and Lukacs, 1960] Suppose X, Y are
independent, E(X) = E(Y ) = 0, E(X2) = E(Y 2) = 1, S = X + Y .

E(X|S) =
1
2
S,

and for some constants C, a, b

Var(X|S) = C(1 +
a

2
S +

b

4
S2).

Then X and Y have the classical Meixner type law. In particular,
C = 1/(2 + b) and X is ...
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E(X|S) = 1
2S, Var(X|S) = C(1 + a

2S + b
4S2).

(i) Normal (Gaussian), if a = b = 0;

(ii) Poisson type, if b = 0 and a 6= 0; λ = 1/a2

(iii) Pascal (negative binomial) type, if b > 0 and a2 > 4b;

(iv) Gamma type, if b > 0 and a2 = 4b; p = 1/b

(v) Meixner type, if b > 0 and a2 < 4b;

(vi) Binomial type, if b = −1/n and n is an integer.

Gamma-type
1

2+b (1 + a
2S + b

4S2) = a2

16+2a2 ( 4
a + S)2

Note: Conversely, centered standardized Meixner laws have these
conditional moments.

Note: [Morris, 1982] exponential families, orthogonal polynomials
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2 Matrix gamma: Wishart law

Suppose X,Y are non-degenerate independent symmetric
semi-positive-definite matrices. Consider

S = X + Y, Z = S−1/2XS−1/2

[Olkin and Rubin, 1962], [Casalis and Letac, 1996],
[Bobecka and WesoÃlowski, 2002] prove

Theorem 3 If S > 0, X,Y are not concentrated on the same
one-dimensional subspace, the law of Z is invariant under
orthogonal transformations, or X, Y have strictly positive
twice-differentiable densities, and Z and S are independent, then X
is Wishart, E(exp〈θ,X〉) = det(I− θ)−p, p > n−1

2 , after
re-normalization.
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Simplest proof?
For any i.i.d. matrices,

E(X|S) =
1
2
S

If X,Y are independent Wishart matrices with shape parameters
p, q, then [Letac and Massam, 1998] show that there are
a = a(p, q), b = b(p, q) such that

Var(X|S) = a(trS)S + bS2

The ”simplest proof” fails. A ”simple proof” in
[Letac and Massam, 1998] relies on the quadratic regression
property of other quadratic functions of X.
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2.1 Large Wishart matrices

Xn,Yn are i.i.d. n× n Wishart matrices with shape parameter
p > (n− 1)/2. Sn = Xn + Yn.

Goal:
What can we say about the limit as n →∞, p →∞,

p/n → λ/2 > 0?

E(Xn

n |Sn

n ) = 1
2

Sn

n in the limit gives E(X|S) = 1
2S

E

((
Xn

n

)2 ∣∣∣Sn

n

)
=

np

16p2 + 4p− 2
Sn

n
trn

Sn

n
+

4p2 + 2p− 1
16p2 + 4p− 2

(
Sn

n

)2

E(exp〈θ,Sn〉) = det(I − θ)−2p, so E exp αtrn
Sn

n = (1− α/n2)−2pn.
So trn

(
Sn

n

) → λ in prob.

Var(X|S) =
1
8
S, or Var(2X|2S) =

1
4
(2S)

Slide 5: Conditional variance of 2X is like Poisson, not like gamma!
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3 What are non-commutative r.v.?

Self-adjoint elements X = X∗ of a complex *-algebra A with
identity; preferably, von Neumann algebra.

• State E : A → C. Faithful. Tracial; preferably, normal
normalized positive linear functional: E(a∗) = E(a), E(I) = 1,
E(aa∗) ≥ 0. E(aa∗) = 0 implies a = 0. E(ab) = E(ba);
preferably, continuous in weak*-topology.

• Law of X: probability measure µ such that E(Xn) =
∫
R xnµ(dx)

Example A=random n× n matrices with E(a) = E(trn(a)).
X,Y, . . . are random Hermitian matrices Voiculescu’s theorem
[Dykema, 1993] says that as n →∞ Hermitian matrices X/n, Y/n

with i.i.d entries are asymptotically free.
[Capitaine and Casalis, 2004] show that independent Wishart
matrices are asymptotically free. Note: XY is not a r.v.!

Slide 10

3.1 Free random variables

Z, S are free if

E
(

p1(S)︸ ︷︷ ︸ q1(Z)p2(S)q2(Z) . . . pk−1(S)qk−1(Z))pk(S)qk(Z)︸ ︷︷ ︸
)

= 0

for all polynomials p1, q1, . . . , pk, qk such that E(pj(S)) = 0,
E(qj(Z)) = 0. For example, if Z, S are centered and free, then

E(ZSZS) = 0.

So commuting free random variables are boring! If centered:

0 = E(Z2S2) = E((Z2 −m2I)S2) + m2E(S2) = m2(Z)m2(S)

If not centered: Var(Z)Var(S) = 0.

See [Voiculescu, 2000]. Combinatorial approach [Speicher, 1997].

5

Slide 11

3.2 Conditional expectations

Let B ⊂ A be a ∗-subalgebra. The conditional expectation is a
linear map EB : A → B such that EB(Y1XY2) = Y1EB(X)Y2 for all
X ∈ A, Y1,Y2 ∈ B. Note: here X,Y are not r.v.!
Properties:

Probabilistic notation: EB(X) = E(X|B).

(i) If X ∈ A,Y ∈ B ⊂ A, then E(XY) = E(E(X|B)Y)

(ii) If random variables U,V ∈ A are free then E(U|V) = E(U)I.

(iii) Let W be a (self-adjoint) element of the von Neumann algebra
BV generated by a self-adjoint V ∈ A. If for all n ≥ 1 we have
E(UVn) = E(WVn) then E(U|V) = W.

(iv) If E(U1Vn) = E(U2Vn) for all n ≥ 1, then E(U1|V) = E(U2|V).
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Proof

(i) See [Takesaki, 1972]. (iv) Apply (iii). (ii) If Z is in the von
Neumann algebra generated by V, then
E((U− cI)Z) = E(U− cI)E(Z). Applying this to
Z = E(U|V)− E(U)I and c = E(U) after taking into account (i) we
get E(Z2) = E (Z(E(U|V)− cI)) = E (ZE(U− cI|V)) =
E(Z(U− cI)) = E(Z)E(U− cI) = 0. Thus E(U|V) = E(U)I.

(iii) Let W′ = E(U|V). Then E ((W−W′)p(V)) = 0 for all
polynomials p. Since polynomials p(V) are dense in the von
Neumann algebra generated by V, and E(·) is normal, this implies
that E((W−W′)(W−W′)∗) = 0; by faithfulness of E(·) we deduce
that W′ =W.
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4 Free version of Olkin-Rubin Theorem

Proposition 4 ([Bożejko and Bryc, 2004]) Suppose random
variables X,Y ∈ A are free, identically distributed,
σ =

√
Var(X) > 0, and such that S = X+ Y is strictly positive; in

particular, m = E(X) > 0. Let Z = S−1/2XS−1/2. If Z and S are
free, then X has free-Poisson type law µa,0 with a = σ/m.

For converse, see [Capitaine and Casalis, 2004, Corollary 7.2].
Simple proof

By exchangeability, E(X|S) = S/2. Also E(Z) = 1/2,
as E(Z) = E(S−1/2YS−1/2) and E(S−1/2(X+ Y)S−1/2) = E(I) = 1.

We now verify that Var(X|S) is a linear function of S. Denote the
centering operation by U◦ = U− E(U)I.
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Using tracial property and freeness of S,Z:

E(X2Sm) = E(ZSZSm+1) = E(ZS(Z◦ + 1/2I)Sm+1)

=
1
2
E(ZSm+2) + E(Z(S◦ + 2mI)Z◦Sm+1)

=
1
4
E(Sm+2) + 2mE(ZZ◦Sm+1) + E(ZS◦Z◦Sm+1)

=
1
4
E(Sm+2) + 2mVar(Z)E(Sm+1) + E(ZS◦Z◦Sm+1).

The last term vanishes by freeness:

E(ZS◦Z◦Sm+1) = E((Z◦ + 1/2I)S◦Z◦Sm+1)

= 1/2E(Z◦)E(Sm+2) + E(Z◦S◦Z◦Sm+1)

= 0 + E(Z◦S◦Z◦)E(Sm+1) = 0.
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Therefore,

E(X2Sm) = E
((

1
4
S2 + 2mVar(Z)S

)
Sm

)
,

which by Slide 11 (iii) implies that

E(X2|S) =
1
4
S2 + 2mVar(Z)(S− 2m) + 4m2Var(Z)I.

Passing to standardized random variables X◦/σ,Y◦/σ, we get

Var(
1
σ
X◦|S) =

m2Var(Z)
σ2

(
4I+ 2

σ

m
S◦/σ

)
.

This shows that standardized random variables satisfy

Var(Xs|S) = C(I+
a

2
Ss)

with a = σ/m. (This also determines Var(Z) = σ2/(8m2).)
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Can we determine the distribution of X from E(X|S) and Var(X|S)?

Theorem 5 ([Bożejko and Bryc, 2004]) Suppose X,Y ∈ A are
free, self-adjoint, E(X) = E(Y) = 0, E(X2) = E(Y2) = 1, S = X+ Y
and

E(X|S) =
1
2
S (1)

and there are numbers C, a, b ∈ R such that

Var(X|S) = C(I+
a

2
S+

b

4
S2). (2)

Then X and Y have the free Meixner law. In particular, b ≥ −1,
C = 1/(2 + b) and the law of X is ...
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Var((X|S) = C(I+ a
2S+ b

4S
2).

(i) the Wigner’s semicircle law if a = b = 0;

(ii) the free Poisson type law if b = 0 and a 6= 0; λ = 1/a2

(iii) the free Pascal type law if b > 0 and a2 > 4b;

(iv) the free gamma type law if b > 0 and a2 = 4b ;

(v) the pure free Meixner type law if b > 0 and a2 < 4b;

(vi) the free binomial type law if −1 ≤ b < 0.

Note: (i)-(v) are ¢-infinitely divisible. But this is not the
Berkovici-Pata correspondence!
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Standardized free Meixner laws

∫

R

1
z − y

µa,b(dy) =
(1 + 2b)z + a−

√
(z − a)2 − 4(1 + b)

2(bz2 + az + 1)
, (3)

The absolutely continuous part of µa,b is
√

4(1 + b)− (x− a)2

2π(bx2 + ax + 1)

on a− 2
√

1 + b ≤ x ≤ a + 2
√

1 + b; the measure may also have an
atom if a2 > 4b ≥ 0, and a second atom if −1 ≤ b < 0. See
[Saitoh and Yoshida, 2001]
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5 Free Olkin-Rubin Theorem II

Proposition 6 ([Bożejko and Bryc, 2004]) Suppose X,Y ∈ A
are free, identically distributed, σ =

√
Var(X) > 0 and such that

S = X+ Y is strictly positive; in particular, m = E(X) > 0. Let
Z = S−1X2S−1. If Z and S are free, then X has free-gamma type
law µ2a,a2 with a = σ/m.

Simple proof:
By exchangeability, E(X|S) = S/2. By freeness,

E(X2|S) = SE(Z|S)S = E(Z)S2. Thus

Var(X|S) = cS2,

where c = E(Z)− 1/4 ≥ 0. After standardization Slide 16 (2) holds
with a = 2σ/m, b = σ2/m2. (And c = σ2/(2m2 + σ2).)
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6 Questions and Speculations

(i) Why n = 1 and n = ∞ are simpler?

(ii) If X,Y are free gamma, S = X+ Y, are S and S−1X2S−1 indeed
free?

(iii) Does the matrix version of Olkin-Rubin II hold? Are there
nontrivial i.i.d. n× n symmetric random matrices X,Y with

independent sum S = X + Y and quotient Z = S−1X2S−1?

(iv) Is there a matrix version of [Laha and Lukacs, 1960]?

(v) [Laha and Lukacs, 1960] holds in more generality. Does the free
version generalize, too?
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Question:
Are there i.i.d. symmetric random matrices X,Y

with independent S = X + Y and Z = S−1X2S−1 ?

p%-trivial answers:

100% Let X = diag(X1, .., Xn) where Xj are independent gamma

95% A distribution of X is a 95%-trivial answer to the query, if one
can produce from it a new answer by taking X′ = UXU∗ for a
fixed deterministic orthogonal matrix U .

Example: The Wishart distribution on the Lorenz cone i.e.

X =


 x y

y x


 defined on Ω = R2 with the density

f(x, y) = Ce−ax−by(x2 − y2)p−1, where x > |y| , p > 0, a, b > 0
is a 95%-trivial answer.

0% Invariant under orthogonal transformations.
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Theorem 7 ([Laha and Lukacs, 1960]) Suppose X, Y are
independent, E(X) = E(Y ) = 0, E(X2) > 0, E(Y 2) > 0,
S = X + Y , and for some constants C, a, b, ρ

E(X|S) = ρS, Var(X|S) = C(1 +
a

2
S +

b

4
S2).

Then X and Y have the classical Meixner type law. In particular,
X is as in Slide 4.

Question:
Does the free version hold in more generality, too? If

X,Y are free, non-degenerate, E(X|S) = ρS,
Var(X|S) = C(1 + aS+ bS2), does the analogous six-part conclusion
from Slide 17 follow?
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