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Conditional moments, gamma, free gamma, and
free Poisson laws

Wilodzimierz Bryc

Mahdia, June 1, 2005

Abstract
This talk is based on joint paper with M. Bozejko "On a

class of free Lévy laws related to a regression problem”.

Notation and Plan of talk

X, Y random variables S=X+Y

X,Yrandom S=X+Y

symmetric n X n matrices

n = 00 X, Y LLN limits of X/n,Y/n, aka S=X+Y

noncommutative random variables
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1 Univariate gamma law

Suppose X,Y > 0 are non-degenerate independent random
variables. Let S = X +Y be their sum and Z = % be the quotient.

Theorem 1 ([Lukacs, 1955]) If S and Z are independent, then
X is gamma with density ﬁajpfleﬂ”, x>0,p>0 after
normalization.

Simple proof
Use conditional moments. If Z and S are

independent then E(X|S) = E(ZS|S) = SE(Z) and
E(X?|S) = E(Z25%|S) = S?E(Z?)
Thus E(X|S) = uS and E(X?|S) = (02 + p2)S2. Or

E(X|S) = puS and Var(X|S) = 0252

Can we determine the distribution of X from F(X|S) and Var(X|S)?

Yes, as noticed in [Wesolowski, 1989].

Theorem 2 [Laha and Lukacs, 1960] Suppose X,Y are
independent, E(X)=E(Y)=0, E(X?)=E(Y?*)=1,S=X+Y.

1
B(xX]) = 35,
and for some constants C,a,b
a b .
Var(X|S) =C(1+ 55’ + ZS ).

Then X andY have the classical Meixner type law. In particular,
C=1/(2+0b) and X is ...
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E(X|S) =18, Var(X|S) = C(1 + 45 + 25?).
(i) Normal (Gaussian), if a =b=0;

(i) ’Poisson type, if b=0 and a # 0; A = 1/a? ‘

ii) Pascal (negative binomial) type, if b > 0 and a® > 4b;
(iii) g Y

(iv) ‘ Gamma type, if b> 0 and a® = 4b; p = 1/b‘

(v) Meizner type, if b > 0 and a? < 4b;

(vi) Binomial type, if b= —1/n and n is an integer.
|
Sy 1 g5 157 - (a5

Note: Conversely, centered standardized Meixner laws have these

conditional moments.

Note: [Morris, 1982] exponential families, orthogonal polynomials

2 Matrix gamma: Wishart law

Suppose X,Y are non-degenerate independent symmetric
semi-positive-definite matrices. Consider

S=X+Y, Z=S812X8"1/?

[Olkin and Rubin, 1962], [Casalis and Letac, 1996],
[Bobecka and Wesotowski, 2002] prove

Theorem 3 IfS > 0, X, Y are not concentrated on the same
one-dimensional subspace, the law of Z is invariant under
orthogonal transformations, or X, Y have strictly positive
twice-differentiable densities, and Z and S are independent, then X
is Wishart, E(exp(f,X)) = det(I—6)"?, p > ”771, after

re-normalization.
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Simplest proof? I
For any i.i.d. matrices,

E(X]S)

1
=-5
2
If X,Y are independent Wishart matrices with shape parameters
p,q, then [Letac and Massam, 1998] show that there are
a = a(p,q), b = b(p,q) such that

Var(X|S) = a(trS)S + bS?

The ”simplest proof” fails. A ”simple proof” in
[Letac and Massam, 1998] relies on the quadratic regression
property of other quadratic functions of X.

2.1 Large Wishart matrices

X, Y, are i.i.d. n x n Wishart matrices with shape parameter
p>(n—1)/2. S, =X, +Y,.

.
What can we say about the limit as n — oo, p — o0,
p/n— A/2>07?

E(%|ST") = %ST" in the limit gives £(X|S) = %S
> X, 2 S, np Snt Sn+ 4P2+2p— 1/8, 2
—_— = ——try,—F+—5—— —_
n n 16p2 +4p—2 n n  16p2+4p—-2 \ n

E(exp(0,S,)) = det(I — 0)~2, so Eexp atr, 32 = (1 — a/n?)72",
So tr, (Sn") — X in prob.

1
Var(X|S) = é& or Var(2X|2S) = Z(QS)

Slide 5: Conditional variance of 2X is like Poisson, not like gammal
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3 What are non-commutative r.v.?

Self-adjoint elements X = X* of a complex *-algebra A with
identity; preferably, von Neumann algebra.

e State £ : A — C. Faithful. Tracial; preferably, normal
normalized positive linear functional: €(a*) = &(a), E(I) = 1,
E(aa*) > 0. E(aa*) = 0 implies a = 0. E(ab) = E(ba);
preferably, continuous in weak*-topology.

e Law of X: probability measure x such that £(X") = [, " u(dx)

Example A=random n X n matrices with £(a) = E(tr,(a)).
X,Y,... are random Hermitian matrices Voiculescu’s theorem
[Dykema, 1993] says that as n — co Hermitian matrices X/n, Y/n
with i.i.d entries are asymptotically free.

[Capitaine and Casalis, 2004] show that independent Wishart
matrices are asymptotically free. Note: XY is not a r.v.!

3.1 Free random variables
Z,S are free if
£ (p1 (8) 01 @p2(S) () - i ()1 (Z))pi () <Z>) ~0
~—— ——

s Pk 4k such that E(pj (S)) = O7
E(q;(Z)) = 0. For example, if Z,S are centered and free, then

for all polynomials p1,q1, ...

E(ZSZS) = 0.
So commuting free random variables are boring! If centered:
0= 5(2282) = 5((22 - mg]I)SQ) + mQE(SQ) = mz(Z)W’LQ(S)

If not centered: Var(Z)Var(S) = 0.
See [Voiculescu, 2000]. Combinatorial approach [Speicher, 1997].

Slide 11

Slide 12

3.2 Conditional expectations

Let B C A be a x-subalgebra. The conditional expectation is a
linear map &g : A — B such that Eg(Y;XYs) = Y1E5(X)Y, for all
X e A, Y1,Y, € B. Note: here X, Y are not r.v.!

Probabilistic notation: Ez(X) = £(X|B).

(i) X e A Y € BC A, then £(XY) = E(E(X|B)Y)
(ii) If random variables U,V € A are free then E(U|V) = E(U)L.

(iii) Let W be a (self-adjoint) element of the von Neumann algebra
By generated by a self-adjoint V € A. If for all n > 1 we have
E(UV™) = E(WV™) then E(U|V) = W.

(iv) If £(U1V"™) = E(UV™) for all n > 1, then E(U,|V) = E(U|V).

Proof

(i) See [Takesaki, 1972]. (iv) Apply (iii). (ii) If Z is in the von
Neumann algebra generated by V, then

E((U = c)Z) = E(U — eD)E(Z). Applying this to

Z = E(UV) — E(U)T and ¢ = £(U) after taking into account (i) we
get £(Z?) = E(Z(E(U|V) —cl)) = £ (ZE(U — V) =

E(Z(U — cl)) = E(Z)E(U — cl) = 0. Thus E(U|V) = E(U)L

(iii) Let W' = £(U|V). Then & (W — W/ )p(V)) = 0 for all
polynomials p. Since polynomials p(V) are dense in the von
Neumann algebra generated by V, and £(-) is normal, this implies
that E(W — W )(W — W")*) = 0; by faithfulness of £(-) we deduce
that W = W.
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4 Free version of Olkin-Rubin Theorem

Proposition 4 ([Bozejko and Bryc, 2004]) Suppose random
variables X,Y € A are free, identically distributed,

o= \/\T(XM > 0, and such that S = X+ Y 1is strictly positive; in
particular, m = E(X) > 0. Let Z = S™V/2XS™Y2, If Z and S are
free, then X has free-Poisson type law piq,0 with a = o/m.

For converse, see [Capitaine and Casalis, 2004, Corollary 7.2].
By exchangeability, £(X|S) = S/2. Also £(Z) =1/2,
as £(Z) = £(STV/2YS™V/2) and £(S™V2(X +Y)S™/2) = £(I) = 1.

We now verify that Var(X|S) is a linear function of S. Denote the
centering operation by U° = U — £(U)L

Using tracial property and freeness of S, Z:

E(X?S™) = £(ZSZS™ ) = £(ZS(Z° + 1/2I)S™ )
= %5(2@”*2) + E(Z(S° + 2mI)Z°S™ 1)
1
= 1g(sm+2) + 2mE(ZZ°S™ ) + £(ZS°Z°S™ )

= ig(sm“) + 2mVar(Z)E(S™) + £(ZS°Z°S™ ).

The last term vanishes by freeness:
E(ZS°Z°S™ ) = £((Z° + 1/2D)S°Z°S™ )
= 1/2E(Z°)E(S™F?) + £(Z°S°Z°S™ )
=0+ E(Z°S°Z°)E(S™ ) = 0.
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Therefore,
E(X2S™) =€ ((iSQ + 2mVar(Z)S) S””) :
which by Slide 11 (iii) implies that
E(X?IS) = iSQ + 2mVar(Z)(S — 2m) + 4m*Var(Z)L.

Passing to standardized random variables X° /o, Y° /o, we get

m?2Var(Z) O o
mVOE) (417 g)5).

This shows that standardized random variables satisfy

1
Var(=X°[S) =
g

Var(X,[S) = O(I + %ss)

with @ = o/m. (This also determines Var(Z) = o2/(8m?).)

Can we determine the distribution of X from £(X|S) and Var(X|S)?

Theorem 5 ([Bozejko and Bryc, 2004]) Suppose X,Y € A are
free, self-adjoint, E(X) = E(Y) =0, EX?) =E(Y?) =1,S=X+Y
and

1
EXIS) = 58 (1)
and there are numbers C,a,b € R such that
a bo
Var(X|S) = C(IT + 58 + ES ). (2)

Then X and Y have the free Meizner law. In particular, b > —1,
C =1/(24b) and the law of X is ...
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Var((X[S) = C(I + 2S + £82).

(i) the Wigner’s semicircle law if a = b= 0;

(ii) | the free Poisson type law if b= 0 and a # 0; A = 1/a?

iii) the free Pascal type law if b > 0 and a® > 4b;
(iit) y

U

iv) | the free gamma type law if b > 0 and a® = 4b
(iv) ’ g yp

(v) the pure free Meizner type law if b > 0 and a® < 4b;
(vi) the free binomial type law if —1 < b < 0.

Note: (i)-(v) are B-infinitely divisible. But this is not the
Berkovici-Pata correspondence!

Standardized free Meixner laws '

1 (1 +2b)z4a—+/(z—a)?—4(1+b)
/R z— yua’b(dy) N 2(b22 +az+1) o )

The absolutely continuous part of p, p is

VITTH — (= ap
2m(bx? + ax + 1)

ona—2v1+b<z<a+ 2y1+ b; the measure may also have an
atom if a? > 4b > 0, and a second atom if —1 < b < 0. See
[Saitoh and Yoshida, 2001]

Slide 19

Slide 20

5 Free Olkin-Rubin Theorem I1

Proposition 6 ([Bozejko and Bryc, 2004]) Suppose X,Y € A
are free, identically distributed, o = 1/ Var(X) > 0 and such that
S =X +Y is strictly positive; in particular, m = £(X) > 0. Let

Z =S"'X2S"'. IfZ and S are free, then X has free-gamma type

law pog g2 with a = o/m.
By exchangeability, £(X|S) = S/2. By freeness,
E(X?|S) = SE(ZIS)S = £(Z)S?. Thus
Var(X|S) = ¢S?,

where ¢ = £(Z) — 1/4 > 0. After standardization Slide 16 (2) holds
with a = 20/m, b = 0?/m?. (And c = 02/(2m? + 0?).)

6 Questions and Speculations

(i) Why n =1 and n = oo are simpler?
(ii) If X,Y are free gamma, S = X+ Y, are S and S™*X2S~! indeed
free?

(iii) Does the matrix version of Olkin-Rubin II hold? Are there

nontrivial | i.i.d. n X n symmetric random matrices X,Y with

independent sum S = X +Y and quotient Z = S™!1X281?
(iv) Is there a matrix version of [Laha and Lukacs, 1960]?

(v) [Laha and Lukacs, 1960] holds in more generality. Does the free

version generalize, too?
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Are there i.i.d. symmetric random matrices X,Y

with independent S = X +Y and Z = S™1X2S1 ?

p%-trivial answers:

100% Let X = diag(X3, .., X,,) where X, are independent gamma

95% A distribution of X is a 95%-trivial answer to the query, if one
can produce from it a new answer by taking X’ = UXU* for a
fixed deterministic orthogonal matrix U.

Example: The Wishart distribution on the Lorenz cone i.e.

x
X = 4 defined on Q = R? with the density

y
flx,y) = Ce =% (22 — y2)P~1 where z > |y| , p > 0, a,b > 0
is a 95%-trivial answer.

0% Invariant under orthogonal transformations.

Theorem 7 ([Laha and Lukacs, 1960]) Suppose X,Y are
independent, E(X) = E(Y) =0, E(X?) > 0,E(Y?) >0,
S=X+4Y, and for some constants C,a,b, p

b
4
Then X andY have the classical Meixner type law. In particular,
X is as in Slide 4.

Does the free version hold in more generality, too? If

X,Y are free, non-degenerate, £(X|S) = pS,
Var(X|S) = C(1 + aS + bS?), does the analogous six-part conclusion
from Slide 17 follow?

E(X|S) = pS, Var(X|S) = C(1 + gs + 282,
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