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Abstract. This short note explains how to use ready-to-use components of
symbolic software to convert between the free cumulants and the moments of

measures without sophisticated programming. This allows quick access to low
order moments of free convolutions of measures, which can be used to test

whether a given probability measure is a free convolution of other measures.

1. Introduction

Free additive convolution µ�ν of compactly supported probability measures µ, ν
was introduced by Voiculescu [11]; it was extended to measures with finite variance
in [6] and to arbitrary probability measures in [1]. It becomes an increasingly
important tool in applications, see [10].

There are two definitions of free convolution which offer different advantages.
The analytical definition relies on the Cauchy-Stieltjes transforms and employs
inverse functions which may be difficult to implement on a computer; but this
definition is applicable to arbitrary probability measures [1, 6]. Ref. [7] advances
this approach towards computer-assisted computations when the Cauchy-Stieltjes
transforms of the distributions satisfy polynomial equations.

The combinatorial definition of Speicher [8] is applicable only to probability
measures with all moments, but this case is often encountered in practice, and it
yields direct analytical relations between polynomials that can be programmed into
symbolic software. This definition relies on free cumulants and their combinatorial
relation to moments, through the sums over the latticed of non-crossing partitions.
Our goal is to express this elegant theory in the analytic form which is ready for
use with symbolic software. The resulting formulas can be used to explore whether
a given probability measure with known moments can be represented as a free
convolution of some other measures with known moments. In fact, Theorem 1
originated in the early stages of work on [3, Theorem 1.3] as an exploratory tool to
identify the limiting law.

2. Background on free convolution

2.1. Free cumulants. For a probability measure µ which has finite moments

mk =
∫

xkµ(dx)
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of all orders k = 1, 2, . . . , let

(1) M(z) = 1 +
∞∑

k=1

mkzk

be the formal moment generating function. Define the R-series as the formal power
series

(2) R(z) =
∞∑

k=1

ckzk−1

such that

(3) M(z) = 1 + zM(z)R(zM(z))

see [9, formula (75)]. (We note that this composition of formal power series is
indeed well defined.) The coefficients ck = ck(µ) in (2) are called free cumulants of
probability measure µ.

Denoting by Rµ(z) the R-series for probability measure µ, the fundamental result
of the theory is that for a pair of probability measures µ, ν with finite moments
there exists a probability measure µ � ν called the free (additive) convolution of
µ, ν such that

Rµ�ν(z) = Rµ(z) + Rν(z).

This relation determines uniquely probability measure µ � ν when it is uniquely
determined by moments; this is the case, for example, when measures µ, ν have
compact support. Of course, the equivalent form of the defining relation is

ck(µ � ν) = ck(µ) + ck(ν), k = 1, 2, . . . .

2.2. Algorithmic version of the relations. For computer usage, the relation be-
tween moments and free cumulants should be expressed in terms of the polynomials
obtained by truncation of the formal power series. Let

Mn(z) ≡ M(z) mod zn+1, Rn(z) ≡ R(z) mod zn+1

denote the n-th truncations of the formal series, i.e., Mn(z) = 1 +
∑n

k=1 mkzk and
Rn(z) =

∑n+1
k=1 ckzk−1.

Theorem 1. (i) The consecutive truncations of M(z) are determined from
the consecutive truncations of R(z) by the following recurrence. With
M0(z) = 1,

(4) Mn(z) ≡ 1 + zMn−1(z)Rn−1(zMn−1(z)) mod zn+1, n ≥ 1.

(ii) Coefficients ck in (2) are determined from the consecutive truncations Mn

of M(z) by c1 = M ′
1(0), and for 2 ≤ k ≤ n,

(5) ck = − 1
k − 1

1
k!

dk

dzk

1
Mk−1

n (z)

∣∣∣∣
z=0

.

Remark 1. One can also write (4) as

Mn(z) ≡ 1 +
n∑

k=1

mk−1z
kRn−k−1(zMn−k−1(z)) mod zn+1.
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Proof. Since (zM(z))k ≡ 0 mod zn+1 for k ≥ n + 1 , we get Mn(z) ≡ 1 +
zMn−1(z)Rn−1(zM(z)) mod zn+1. Considering separately k = 0 and k > 0 we
see that for all k ≥ 0

(zM(z))k ≡ zkMk
n−k(z) ≡ zkMk

n−1(z) mod zn+1.

Thus Rn−1(zM(z)) ≡ Rn−1(zMn−1(z)) mod zn+1.
We now prove (5). For n ≥ k ≥ 1 we have

ck =
1

2πi

∮
|u|=ε

1 + uRn(u)
uk+1

du.

Since z 7→ zMn(z) maps the origin back into itself, and the derivative at 0 is 1 6= 0,
for small enough ε > 0 we can substitute u = zMn(z) to get

ck =
1

2πi

∮
|z|=ε

1 + zMn(z)Rn(zMn(z))
zk+1Mk+1

n (z)
(Mn(z) + zM ′

n(z))dz.

From (4) it follows that there are real coefficients {dj} such that 1+zMn(z)Rn(zMn(z)) =
Mn+1(z) +

∑n2+n+2
j=n+2 djz

j = Mn(z) +
∑n2+n+2

j=n+1 djz
j . Since k ≤ n and Mn(z) 6= 0

in the neighborhood of 0,

(Mn(z) + zM ′
n(z))

∑n2+n+2
j=n+1 djz

j−k−1

Mk+1
n (z)

is an analytic function. So for small enough ε > 0 we have

ck =
1

2πi

∮
|z|=ε

Mn(z)
zk+1Mk+1

n (z)
(Mn(z) + zM ′

n(z))dz

=
1

2πi

∮
|z|=ε

1
zk+1Mk−1

n (z)
dz +

1
2πi

∮
|z|=ε

M ′
n(z)

zkMk
n(z)

dz.

We now use the fact that the derivative of
−1

zkMk−1
n (z)

is
k

zk+1Mk−1
n (z)

+
(k − 1)M ′

n(z)
zkMk

n(z)
.

Thus, for k > 1,∮
|z|=ε

M ′
n(z)

zkMk
n(z)

dz = − k

k − 1

∮
|z|=ε

1
zk+1Mk−1

n (z)
dz,

and

ck = − 1
(k − 1)2πi

∮
|z|=ε

1
zk+1Mk−1

n (z)
dz,

which ends the proof. �

3. Applications

In this section we show how to use formulas (4) and (5) to compute free cumulants
and moments of free convolutions of measures.
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3.1. Symbolic software implementation. Using symbolic software and M6(z) =
1 +

∑6
k=1 mkzk, we can use Theorem 1(ii) together with Mathematica code

Table[{k, -1/(k-1)/k!D[(M[z])^(1-k),{z,k}]/.{z->0}}, {k,2,6}]

to generate the following expressions for the free cumulants.

Table 1. Free cumulants expressed through moments.

c2 = −m1
2 + m2

c3 = 2m1
3 − 3 m1 m2 + m3

c4 = −5 m1
4 + 10 m1

2 m2 − 2 m2
2 − 4 m1 m3 + m4

c5 = 14m1
5 − 35 m1

3 m2 + 15 m1
2 m3 − 5 m2 m3 + 5 m1

(
3 m2

2 −m4

)
+ m5

c6 = −42 m1
6 + 126 m1

4 m2 + 7 m2
3 − 56 m1

3 m3 − 3 m3
2 − 6 m2 m4

+21m1
2

(
−4 m2

2 + m4

)
+ 6 m1 (7 m2 m3 −m5) + m6
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Similarly, Theorem1(i) has straightforward implementation in Mathematica:
M[z_] = 1; Do[

Rtmp[z_] = PolynomialMod[z R[z], z^(k + 1)];
M[z_] = PolynomialMod[1 + Rtmp[z M[z]], z^(k + 1)].
, {k, 0, 5}]

This gives

M5[z] = 1 + zc1 + z2
(
c1

2 + c2

)
+ z3

(
c1

3 + 3c1c2 + c3

)
+ z4

(
c1

4 + 6c1
2c2 + 2c2

2 + 4c1c3 + c4

)
+ z5

(
c1

5 + 10c1
3c2 + 10c1

2c3 + 10c1c2
2 + 5c2c3 + 5c1c4 + c5

)
,

from which we can read out explicit expressions for low order moments (1). Of
course, explicit relations between free cumulants and moments are known in terms
of sums over non-crossing partitions [8, 9]; our point here is that these relations
have simple implementation in symbolic software.

3.2. Free cumulants of some classical laws. Lehner [5, Theorem 4.1] expresses
free cumulants as the sum of products of classical cumulants over all connected
partitions. Here, we list free cumulants derived from (4) using the well known
formulas for moment generating functions M(z) of classical laws from Table 2.
Table 3 lists numerical values. We remark that free cumulants ck of the standard
normal law are the number of connecting pairings ([2]) and free cumulants of the
Poisson law are the number of connected partitions ([5]) of {1, . . . , k}, so Table 3
enumerates these sets for k ≤ 15. Table 4 expresses free cumulants in terms of the
parameters of Poisson and Binomial laws.

Table 2. Notation for some classical laws

Name Parameters Distribution Notation
Poisson λ > 0 e−λλk/k!, k = 0, 1, 2, . . . Poiss(λ)

Exponential λ > 0 f(x) = λ exp(−λx), x > 0 Exp(λ)
Normal σ > 0, m exp(−(x−m)2/(2σ2))/(σ

√
2π) N(m,σ)

Binomial n ≥ 0, 0 ≤ p ≤ 1 (n
k )pkqn−k, k = 0, 1, . . . , n; q = 1− p. Bin(n, p)

Uniform a < b f(x) = (b− a)−11a<x<b U(a, b)
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Table 3. Free cumulants of some classical laws.

k N(0, 1) Exp(1) Poiss(1) U(−1, 1)
2 1 1 1 1

3
3 0 2 1 0
4 1 7 2 − 1

45
5 0 34 6 0
6 4 206 21 2

945
7 0 1476 85 0
8 27 12123 385 − 1

4725
9 0 111866 1907 0

10 248 1143554 10205 2
93555

11 0 12816572 58455 0
12 2830 156217782 355884 − 1382

638512875
13 0 2057246164 2290536 0
14 38232 29111150620 15518391 4

18243225
15 0 440565923336 110283179 0

Table 4. Free cumulants of the general Poisson Binomial laws.

k Poiss(λ) Bin(n, p)

2 λ npq

3 λ np (q − p) q
4 λ (1 + λ) npq (1 + (−6 + n) pq)

5 λ (1 + 5λ) np (q − p) q (1 + (−12 + 5n) pq)

6 λ (1 + 4λ (4 + λ)) npq
(

1 + 2pq
(
−15(q − p)2 + n (8 + (−41 + 2n) pq)

))
7 λ (1 + 42λ (1 + λ)) np (q − p) q (1 + 6pq (−10 + 7n + (60 + 7 (−8 + n) n) pq))
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3.3. Free convolutions with the semicircle and Marchenko-Pastur laws.
Free convolutions with the semicircle and Marchenko-Pastur laws arise frequently as
the asymptotic spectra of sums of independent matrices, see [4]. The free cumulants
of the semicircle law ωσ are zero except for c2 = σ2; the free cumulants of the
Marchenko-Pastur law πλ are all equal to λ > 0. Therefore, it is easy to describe
how the free cumulants change, and then to compute the moments from (4). To
compute the moments of free convolutions with a semicircle law ωσ, we change the
value of the second cumulant c2 in the results of the previous section to c2 +σ2, and
then use (4) to derive the corresponding moments. Similarly, to compute moments
of free convolution with Marchenko-Pastur law, we replace the k-th free cumulant
ck with ck + λ and apply (4).

To illustrate this method, we apply it first to the general relations (Table 1)
between moments and free cumulants. We get the following relations.

Table 5. Moments Mk =
∫

xk(µ � ωσ)(dx) expressed in terms
of mk =

∫
xkµ(dx).

k Mk

1 m1

2 σ2 + m2

3 3σ2m1 + m3

4 2σ4 + 2σ2m1
2 + 4σ2m2 + m4

5 5σ2m1

(
2σ2 + m2

)
+ 5σ2m3 + m5

6 5σ6 + 15σ4m1
2 + 15σ4m2 + 3σ2m2

2 + 6σ2m1m3 + 6σ2m4 + m6

Table 6. Moments Mk =
∫

xk(µ � πλ)(dx) expressed in terms
of mk =

∫
xkµ(dx).

k Mk

1 λ + m1

2 λ + λ2 + 2λm1 + m2

3 λ + 3λ2 + λ3 + 3λ (1 + λ) m1 + 3λm2 + m3

4 λ + 6λ2 + 6λ3 + λ4 + 4λ
(
1 + 3λ + λ2

)
m1 + 2λm1

2 + 2λ (2 + 3λ) m2 + 4λm3 + m4

5 λ + 10λ2 + 20λ3 + 10λ4 + λ5 + 5λ (1 + 2λ) m1
2 + 5λ

(
1 + 4λ + 2λ2

)
m2

+5λm1

(
1 + 6λ + 6λ2 + λ3 + m2

)
+ 5λm3 + 10λ2m3 + 5λm4 + m5
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As a further illustration of the method, we give the following tables of low order
moments which are based on Table 3.

Table 7. Moments of order k ≤ 10 of free convolutions with the
semicircle law

k N(0, 1) � ω1 Exp(1) � ω1 Poiss(1) � ω1

1 0 1 1
2 2 3 3
3 0 9 8
4 9 36 27
5 0 170 97
6 56 962 385
7 0 6384 1647
8 431 48954 7598
9 0 426666 37608

10 3942 4165692 199217

Table 8. Moments of order k ≤ 10 of free convolutions with the
Marchenko-Pastur law

k N(0, 1) � π1 Exp(1) � π1 Poiss(1) � π1

1 1 2 2
2 3 6 6
3 8 23 22
4 27 104 91
5 92 537 409
6 339 3134 1958
7 1276 20659 9874
8 4985 154044 52134
9 19841 1297982 287333

10 80801 12293798 1651337
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[2] Bożejko, M., and Speicher, R. Interpolations between bosonic and fermionic relations given

by generalized Brownian motions. Math. Z. 222, 1 (1996), 135–159.
[3] Bryc, W., Dembo, A., and Jiang, T. Spectral measure of large random Han-

kel, Markov and Toeplitz matrices. Ann. Probab. 34 (2006), 1–38. Expanded version:
arxiv.org/abs/math.PR/0307330.

[4] Hiai, F., and Petz, D. The semicircle law, free random variables and entropy, vol. 77 of

Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,

2000.
[5] Lehner, F. Free cumulants and enumeration of connected partitions. European J. Combin.

23, 8 (2002), 1025–1031.
[6] Maassen, H. Addition of freely independent random variables. J. Funct. Anal. 106, 2 (1992),

409–438.



COMPUTING MOMENTS OF FREE ADDITIVE CONVOLUTION OF MEASURES 9

[7] Rao, N. R., and Edelman, A. The polynomial method for random matrices, 2006.
arXiv:math.PR/0601389.

[8] Speicher, R. Multiplicative functions on the lattice of noncrossing partitions and free con-

volution. Math. Ann. 298, 4 (1994), 611–628.
[9] Speicher, R. Free probability theory and non-crossing partitions. Sém. Lothar. Combin. 39

(1997), Art. B39c, 38 pp. (electronic).
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