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Abstract

This is a third installment of the series of talks April 3, 2006 and Oct
27, 2011. This talk is based on a forthcoming paper
http://arxiv.org/abs/1708.05343 with Raouf Fakhfakh and
Wojciech Mlotkowski. The topic of this paper are properties of
variance functions of Cauchy-Stieltjes Kernel families generated by a
compactly supported (standardized) probability measure. After a brief
introduction, I will describe some algebraic operations that can be used
to construct additional variance functions from known variance
functions. I will describe all quadratic and all cubic variance functions.
I will also show how Cauchy-Stieltjes Kernel families with polynomial
variance functions are related to generalized orthogonality of some
families of polynomials.
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Exponential family

Lehmann (1959), Barndorff-Nielsen (1978), Morris (1982), Letac, Mora
(1990).
For a probability measure µ on R we define its Laplace transform:

Lµ(θ) :=

∫
exp(θx)µ(dx),

cumulant function:
kµ(θ) := log Lµ(θ),

and define set
Θ(µ) := interior{θ : Lµ(θ) <∞}.

We assume that µ is not concentrated at one point and that Θ(µ) is
nonempty.
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For θ ∈ Θ(µ) we define family of probability distributions

Pθ(dx) := exp(θx − kµ(θ))µ(dx)

we call this the natural exponential family (NEF) generated by µ.
The mean function

θ 7→ m(θ) =

∫
xPθ(dx)

is strictly increasing on Θ(µ), so there is an inverse function

ψ : Mµ 3 m 7→ θ ∈ Θ(µ).

The variance function of the NEF generated by µ is defined by

Vµ(m) :=

∫
(x −m)2Pψ(m)(dx), m ∈ Mµ.
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Question: describe variance functions

Morris (1982) characterized those polynomials of order at most 2 which
are variance functions. They correspond to Gaussian, Poisson, binomial,
negative binomial, gamma and hyperbolic cosine distributions.

Letac and Mora (1990) characterized variance functions which are
polynomials of degree at most 3. Here in addition they obtained: Abel,
Takacs, strict arcsine, large arcsine, Ressel, inverse Gaussian distribution.

Ismail, M. E. H., and May, C. P.
On a family of approximation operators.
J. Math. Anal. Appl. 63, 2 (1978), 446–462.

Morris, C. N.
Natural exponential families with quadratic variance functions.
Ann. Statist. 10, 1 (1982), 65–80.

Letac, G., and Mora, M.
Natural real exponential families with cubic variance functions.
Ann. Statist. 18, 1 (1990), 1–37.
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Kernel family (Weso lowski, unpublished manuscript, 1999)

Kernel family generated by k(x , θ) and ν

For θ ∈ Θ(ν),

Pθ(dx) = Z−1θ k(x , θ)ν(dx), where Zθ =
∫
k(x , θ)ν(dx)

Exponential family:
k(x , θ) = exp(xθ).

Cauchy-Stielties Kernel (CSK) family:

k(x , θ) =
1

1− xθ
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Cauchy Stielties family generated by a distribution ν:

Pθ(dx) :=
1

Zθ(1− θx)
ν(dx), θ ∈ Θ, (1)

where

Zθ =

∫
ν(dx)

1− θx
.

We assume that ν is compactly supported in [a, b], with mean 0 and
nondegenerate, with variance, say 1. Then a < 0 < b and Θ = (1/a, 1/b).

(Somewhat more generally, if ν has mean m0 then one can find Θ that
works, but it is quite convenient to work with the explicit Θ for m0 = 0.)
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Parametrization by the mean

The mean m(θ) :=
∫
xPθ(dx) of Pθ is

m(θ) =
Zθ − 1

θZθ
.

The function θ 7→ m(θ) is strictly increasing on Θ.
Let ψ(m) denote the inverse function, on a neighborhood of

∫
xν(dx) = 0.

The variance function of the Cauchy-Stielties kernel (CSK) family (1)
generated by ν is defined by:

V (m) :=

∫
(x −m)2Pψ(m)(dx).
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Theorem (Theorem (B-2009))

For m in some neighborhood of m0 = 0 the variance function V (m) is
analytic, strictly positive and

Pψ(m)(dx) =
V (m)

V (m) + m(m − x)
ν(dx).

Conversely, if a function V (m) is analytic, strictly positive in a
neighborhood of 0 and if ν is a probability distribution, with mean m0 = 0,
such that for every m in a neighborhood of 0

V (m)

V (m) + m(m − x)
ν(dx)

is a probability measure, then ν is compactly supported, non degenerate
and determined uniquely.
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So we have correspondence:

ν ↔ V (m),

where ν is a compactly supported nondegenerate probability distribution
with mean 0 and V (m) is an analytic function in a neighborhood of 0,
with V (0) > 0.
If ν1 6= ν2, with the same mean, then the corresponding variance functions
V1(m), V2(m) are different.

Question:

Which functions V (m) are variance functions?
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New results from the paper with Fakhfakh and Mlotkowski

Notation: V
The class of all variance functions corresponding to those compactly
supported probability distributions ν which have mean 0 and variance 1.

So that if V ∈ V then V is an analytic function on a neighborhood of 0
and V (0) = 1.
Therefore the corresponding probability distribution ν has mean 0 and
variance 1. We will sometimes write V = Vν .

Notation: V∞
The class of those V ∈ V that the function m 7→ V (cm) belongs to V for
all real c.
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Quadratic variance functions I

Theorem (B-Ismail-2005)

Suppose V (m) = 1 + am + bm2. Then

1 V ∈ V iff b ≥ −1

2 V ∈ V∞ iff b ≥ 0

Idea of proof

Expand the density of Pψ(m)(dx) = V (m)
V (m)+m(m−x)ν(dx) into the power

series in m near m = 0:

V (m)

V (m) + m(m − x)
=
∞∑
k=0

pk(x)mk
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Quadratic variance functions II

The coefficients pk(x) turn out to be monic polynomials given by the
recursion:

xpn(x) = pn−1 +
n∑

k=0

V (k)(0)

k!
pn+1−k(x)

For V (m) = 1 + am + bm2, this becomes a ”constant” three step recursion

xpn = pn+1(x) + apn(x) + (b + 1)pn−1(x).

Since Pψ(m)(dx) is a probability measure, we have

1 =

∫
R
Pψ(m)(dx) =

∫
R

∞∑
k=0

pk(x)mkν(dx) =
∞∑
k=0

mk

∫
R
pk(x)ν(dx)

= 1 +
∞∑
k=1

mk

∫
R
pk(x)ν(dx)
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Quadratic variance functions III

Thus
∫
pk(x)ν(dx) = 0 for k = 1, 2, . . . . Together with the three-step

recursion

xpn = pn+1(x) + apn(x) + (b + 1)pn−1(x), (*)

this implies that {pn : n ≥ 0} are orthogonal polynomials.
So by Favard’s theorem, the last coefficient in the three step recursion (*)
must be non-negative: 1 + b ≥ 0.
(Furthermore, b = −1 corresponds to discrete ν = (1− p)δa + pδb.)

W. Bryc Cauchy-Stielties families 14 / 27



The main theorems I

Here we write V (m) for the function not for the value!

Theorem

1 If V (m) ∈ V and |c| ≤ 1 then V (cm) ∈ V;

2 If V (m) ∈ V and a ∈ R then V (m) + am ∈ V;

3 If V (m) ∈ V then V (m) + m2 ∈ V∞;

4 If V (m) ∈ V∞ then V (m)−m2 ∈ V;

5 If V (m) ∈ V∞ and a ∈ R then V (m) + am ∈ V∞;

6 If V (m) ∈ V∞ and c ≥ 1 then cV (m)− c + 1 ∈ V∞;

7 If V1(m),V2(m) ∈ V∞ then V1(m) + V2(m)− 1 ∈ V∞.
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The main theorems II

Corollary (from 3, 4)

The map V (m) 7→ V (m) + m2 is a bijection of V onto V∞.

It turns our this is an old familiar Berkovici-Pata bijection which can be
described by a composition of free-boolean and free-additive convolution
powers: ν 7→ (ν�2)]1/2. The later is �-infinitely divisible by a result of
Belinschi-Nica (2008), or because (ν�2)]1/2=limα→∞(ν]1/α)�α.

From formulas in a recent manuscript Raouf Fakfhfakh (2019) it follows
that V(ν�2)]1/2(m) = Vν(m) + m2.

Theorem

Consider cubic function V (m) = 1 + am + bm2 + cm3.

If (b + 1)3 ≥ 27c2 then V (m) ∈ V.

V (m) ∈ V∞ if and only if b3 ≥ 27c2.
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Generalized orthogonality I

There is a substantial literature on generalized orthogonality and
finite-step recursions for polynomials. We introduce the following
generalized orthogonality condition.

Definition

Fix d ∈ N and a non-degenerate probability measure ν with moments of
all orders. We say that polynomials {pn} are (ν; d)-orthogonal if

1
∫
pn(x)ν(dx) = 0 for all n ≥ 1;

2
∫
pn(x)pk(x)ν(dx) = 0 for all n ≥ 2 + (k − 1)d , k = 1, 2 . . . .

Example (d = 1 is the usual orthogonality when ν has ∞ support)

First condition: p0 ⊥ p1, p2, . . . .
Second condition: pn ⊥ pk for n ≥ 2 + (k − 1)d = k + 1, so
pk ⊥ pk+1, pk+2, . . . for k = 1, 2, . . . .
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Generalized orthogonality II

Example (d = 2)

For d = 2, the conditions are
∫
pn(x)p0(x)ν(dx) = 0 for n ≥ 1 and∫

pn(x)pk(x)ν(dx) = 0 for all n ≥ 2 + (k − 1)d = 2k . So p0 ⊥ p1, p2, . . .
and p1 ⊥ p2, p3, . . . . But p2 ⊥ p4, p5, . . . so there is no restriction on
p2, p3. Similarly, p3 ⊥ p6, p7, . . . but there are no restrictions on p3, p4 and
p3, p5.

Somewhat surprisingly, in the setting of Cauchy-Stieltjes kernel families, all
the d-orthogonality conditions are implied by just two conditions

1
∫
Pn(x)P0(x)ν(dx) = 0 for n ≥ 1,

2
∫
Pn(x)P2(x)ν(dx) = 0 for n ≥ 2 + d ,
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Generalized orthogonality III

Question

Does (ν; d)-orthogonality imply a (d + 2)-step recursion?

The answer to the converse question seems to be quite complicated. Case
d = 2 with a perturbation of a constant recursion will be mentioned below.
The literature on d + 1-step recursions (Maroni(1989), Iseghem(1987))
assumes non-degeneracy condition that is not satisfied on our case, and
the conclusion is the existence of a d-tuple of functionals that need not to
be positive.
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Generalized orthogonality IV

Theorem

Suppose that V ∈ V corresponds to a probability measure ν. Consider

V (m)

V (m) +m(m − x)
=
∞∑
n=0

pn(x)m
n. (2)

Then the following statements are equivalent:

1 V (m) is a polynomial of degree at most d + 1;

2 Polynomials {pn} satisfy (d + 2)-step recursion

xpn(x) = pn+1(x) +
d+1∑
k=1

bkpn+1−k(x), n ≥ 1 (3)

with initial conditions p0(x) = 1, p1(x) = x, and pk ≡ 0 for k < 0.

3 Polynomials {pn(x)} are (ν; d)-orthogonal.

4 Polynomials {pn} satisfy conditions in definition of
(ν; d)-orthogonality for k = 1, 2 only.
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Theorem

Consider polynomials {pn(x)} given by the (eventually constant) 4-step
recursion:

xp1(x) = p2(x) + ap1(x) + p0(x),

xp2(x) = p3(x) + ap2(x) + bp1(x),

xpn(x) = pn+1(x) + apn(x) + bpn−1(x) + cpn−2(x), n ≥ 3,

with p0(x) = 1, p1(x) = x. Then the following conditions are equivalent.

1 b3 ≥ 27c2.

2 Polynomial {pn} are (ν; 2)-orthogonal for some probability measure ν
(which then necessarily has mean 0, variance 1, and compact
support).
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Relation to d-orthogonality Maroni(1989), Iseghem(1987)
d + 1-step recursions and d-orthogonal polynomials

Define Γ1(p) =
∫
R p(x)ν(dx) and Γ2(p) =

∫
R xp(x)ν(dx).

If polynomials pn(x) are (ν; d)-orthogonal with d = 2. Then Γα(pnpk) = 0
if n ≥ 2k + α for α = 1, . . . , d ; however the non-singularity part of the
requirement of d = 2-orthogonality that Γα(pnpk) 6= 0 if n = 2k + α− 1
fails.

Similarly, for arbitrary d , define Γj(p) =
∫
x j−1p(x)ν(dx). Then

Γα(pnpk) = 0 if n ≥ dk + α, but (ν; d)-orthogonality yields more zeros
than what is allowed under d-orthogonality.
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The End

Thank you!

W. Bryc Cauchy-Stielties families 23 / 27



Weso lowski, J.
Kernel families.
Unpublished manuscript, 1999.

W. Bryc Cauchy-Stielties families 24 / 27



Belinschi, S. T. and Nica, A. (2008).
On a remarkable semigroup of homomorphisms with respect to free
multiplicative convolution.
Indiana Univ. Math. J., 57(4):1679–1713.

Bryc, W., and Ismail, M.
Approximation operators, exponential, and q-exponential families.
arxiv.org/abs/math.ST/0512224, 2005.

Bryc, W.
Free exponential families as kernel families.
Demonstratio Mathematica XLII, 3 (2009), 657–672.

Bryc, W., and Hassairi, A.
One-sided Cauchy-Stieltjes kernel families.
Journal of Theoretical Probability 24, 2 (2011), 577–594.

Bryc, W., Fakhfakh, R., and Hassairi, A.
On Cauchy-Stieltjes kernel families.
Journal of Mutlivariate Analysis 124 (2014), 296–312.

W. Bryc Cauchy-Stielties families 25 / 27



Bryc, W., Fakhfakh, R., and M lotkowski, W.
Cauchy-Stieltjes families with polynomial variance functions and
generalized orthogonality.
Probability and Mathematical Statistics (Wroclaw) (to appear).

Fakhfakh, R.
Characterization of quadratic CauchyStieltjes kernel families based on
the orthogonality of polynomials
Journal of Mathematical Analysis and Applications 459 (2018),
577–589.

Fakhfakh, R.
Variance function of boolean additive convolution.
umpublished manuscript, 2019.

Hassairi, A., Zarai, M., et al.
Characterization of the cubic exponential families by orthogonality of
polynomials.
The Annals of Probability 32, 3B (2004), 2463–2476.

W. Bryc Cauchy-Stielties families 26 / 27



Letac, G.
Lectures on natural exponential families and their variance functions,
vol. 50 of Monograf́ıas de Matemática [Mathematical Monographs].
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