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There is an extensive literature on the large deviation principle under various 

dependence structures. However, in comparison to other limit theorems, few papers 

deal with strong mixing dependence conditions. In this note we prove the large 

deviation principle for 4-mixing stationary random sequences with fast enough 

convergence rate and for $-mixing stationary random sequences. Our d-mixing 

results were motivated by Schonmann [17], where a weaker conclusion is proved 

under a much weaker mixing assumption. The large deviation principle under 

$-mixing was motivated by Orey and Pelikan [15] and Bryc [7]. Chiyonobu and 

Kusuoka [8] consider large deviations under a mixing condition, different from 

those ususally considered in the strong mixing approach. Yakimavichyus [19] (cf. 

also references there) states large deviation theorems under the assumption of 

uniform strong mixing, but considers one dimensional case only and his conclusions 

have a different form which makes it difficult to compare his results with ours. 

Let {XJnF~ be a stationary sequence. Define u-fields $a,h = a(& : a s k s b) and 

let 

4(n)=sup{lP(BIA)-l’(B)11 AEE,,-.+,, BE~,,,,P(A)>O}. (1.1) 

We shall say that {X,,}nFZ is 4-mixing, if +(n)+O as n+a. 

In the Markov case the 4-mixing condition is related to the Diieblin condition, 

see Rosenblatt [16, p. 2091. It is known to hold (see Doob [13, p. 197]), if the 

following conditions on transition probabilities P,(x, A) are satisfied: 
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There exist 6 > 0, a probability measure Y, an integer 

such that 

(i) v(C) > 0; 

(ii) p,(x,y)a6 for each xeE,y~C, 

t and a measurable set C 

where p,(x, . ) = dP,(x, . )/dv( . ) is the v-density of the absolutely continuous com- 

ponent of P,(x, .). (Compare also Donsker and Varadhan [ll, Assumption A, 

p. 2801.) 

We shall need the following hyper-geometric rate of convergence: 

eK”+(n)+O as n+cc for each K 30. (1.2) 

For examples of non-trivial stationary sequences satisfying (1.2), see Bradley 

[4, Theorem 11. Note that (i) and (ii) above guarantee geometric 4-mixing rate 

rather than (1.2). We shall also use stronger coefficients of dependence. Define 

tit(n) = sup{P(A n B)I(P(A)P(B)): 

A E 9-,.-n+, , 13 E S,,m, P(A)f’(B) > 01, 

&(n)=inf{P(AnB)/(P(A)P(B)): 

(1.3) 

A E 9%-n+, , B E s,,.m, P(A)P(B) > O), (1.4) 

ICl(n) = $+(n)/@(n). (1.5) 

It is easily seen that +_(n)p, $+(n)\, so I/J(~) is a non-increasing function of n 

and in particular lim,,, 4(n) exists. It is actually known, see Bradley [5], that this 

limit can take for ergodic-mixing sequences one of the values 00 or 1 only. 

In the Markov case the condition $(l) <CO is equivalent to the condition 

used e.g. in Stroock [18, Assumption (6.1)]. The condition $(l) <CO can also be 

verified for Gibbs fields on Z’ with binary interactions @,(k, x, y) such that 

I;=‘=, k supx,y I%(k, x, y)I < ~0; this can be seen from Bowen [2, proof of Proposition 

1.141. 

Theorem 1. Suppose {Xn}niZ is a +mixing stationary Rd-valued sequence, such that 

11X, 11 s C < 00 and (1.2) holds. Then 2, = (X, +. . .+X,)/n, n 2 1, satisjes the large 

deviation principle, i.e. there is a convex lower semicontinuous rate function I :[Wd -+ 

[0, CO] with compact level sets I-‘[O, a], a 2 0, and such that 

lim sup n-’ log P(Z, E A)< - inf I(x) (1.6) 
n-s XiA 

for each closed set A c R“; 

lim inf n-’ log P(Z, E A) 2 - inf Z(x) 
n-cc XEA 

for each open set A c Rd. 

Moreover, limit 

(1.7) 

lim n-’ log E{exp(nh(Z,))} = [L(h) 
n-uc 

(1.8) 
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exists for each A E Rd and the rate function is given by 

I(x)=sup{A(x)-L(A): A ERd} 

(here A(x)=~ AiXi). 0 

(1.9) 

The following theorem uses a stronger measure of dependence rather than a 

mixing rate assumption. Under (1.13) below Theorem 2 extends to dependent case 

Donsker and Varadhan [12, Theorem 5.31. 

Theorem 2. Let (V, (( . 11) b e a separable Banach space. Suppose {X,},,, is a stationary 

sequence of W-valued random variables such that 

lim (cI_( n) > 0. (1.10) 
n-ar, 

If in addition one of the following conditions holds: 

X, is compact valued; (1.11) 

$+(n) < ~0 for some n 2 1 and [IX, I] is bounded; (1.12) 

1,4(1)<00 and E{exp(O(jX,\l)}<oo for each BELQ; (1.13) 

then {(X,+. * *+X,)/n},,, satisfies the large deviation principle, i.e. (1.6) and (1.7) 

hold with a rate function I(. ), which is given by (1.9) with A EV/" and has compact 

level sets I-’ [0, a], a 3 0. 

The following result deals with the empirical measures rather than the sample 

means. In the statement 9(tE) denotes a Polish space of all (countably additive) 

probability measures on (E, Bore1 sets) with the weak convergence topology; C,(E) 

denotes the bounded continuous functions; if p E P(lE) and FE C,(E), p(F) stands 

for j F(x) dp(x). 

Theorem 3. Suppose (IE, d) is a compact space and {Xn}nEL is a &mixing stationary 

E-valued sequence such that (1.2) holds. Then the sequence of empirical measures 

FL, =(6x,+. . . + S,J/ n satisfies the large deviation principle, i.e. there is a convex 

lower semicontinuousfunction I : P?(E) + [0, CO] with compact level sets I-‘[O, a], a 2 0, 

and such that 

lim sup no’ log P(p,, E A) s - inf I(p) 
n-cc PEA 

for each closed set A c P?(E); 

lim inf no’ log P(p,, E A) 2 - inf I(p) 
n-m PEA 

for each open set A c P(E). 

Moreover, limit 

lim no’ log E{exp(npL,(F))] = [L(F) 
n-oo 

exists for all FE C,(E) and 

L(p)=sup{p(F)-L(F): FE C,(Q). 0 
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Remarks. 1. Similarly to Bryc [7, Theorem T.2.21, our proof of Theorem 3 extends 

to the empirical process level large deviation principle. However considering 

empirical measures only has an advantage of having both Theorem 1 and Theorem 

3 proved simultaneously, see Theorem 4 below. 

2. The large deviation principle for an instantaneous function of a Markov chain 

under minimal hypotheses and with a rate function identified as the entropy can 

be found in de Acosta [lo]. Berbee and Bradley [l] show that there are stationary 

processes, which cannot be represented as an instantaneous function of an irreducible 

stationary Markov chain and such that (1.12) holds and the d-mixing rate is 

geometric. However the question whether either of the conditions (1.2) or (1.10) 

implies already the Markov representation seems to be left open. 

2. Proof of +-mixing results 

Recall that a topology 7, is called stronger (i.e. non-weaker) than a topology r2, if 

the identity mapping (X, T,) -+ (X, r2) is continuous. Theorems 1 and 3 are special 

cases of the following result. 

Theorem 4. Suppose W is a Hausdorff locally convex topological vector space, XC V 

is convex, (X, d) is metric and compact in the relative topology of W. Let 11 . (1 : W + R 

be a measurable norm generating a stronger topology on W. Let {Xn}niB be a stationary 

+-mixing X-valued random sequence such that (IX, 11 G C <OO and (1.2) holds. Then 

2,=(x,+. . . + Xn)/n, n 2 1, satisfies the large deviation principle, i.e. there is a 

convex lower semicontinuous function Z : X + [0, CO] with compact level sets and such 

that (1.6) and (1.7) hold (in the (Yy, d)-topology). Moreover, limit (1.8) exists for all 

h E W" and formula (1.9) with the supremum taken over all A E W* identtjies the rate 

function. 

Indeed, Theorem 1 is easily seen to be a special case of Theorem 4, with V = Rd 

and X being a large enough cube. Theorem 3 follows from Theorem 4 applied to 

the compact and convex subset X = P(E) of the locally convex Hausdorff topological 

vector space W of all signed measures on E. V is considered with the topology of 

weak convergence and linear functionals A E W* are identified with bounded con- 

tinuous functions F = C,(E) by A(p) = p(F) =] F(x) dp(x), see e.g. Dunford and 

Schwartz [14, V.3.91. The norm )I . 11 is the variation of a measure. 

Proof of Theorem 4. Since X is a compact set and a/* separates points of W, the 

theorem follows from Bryc [6, C.2.11 and the following two claims, see also Bryc 

[7, Section 31 for a similar argument. 

Let 

y: y(~)=,~,i~~{A,(~)+c;},d~l,Cj~~,hj~W* 
<s 1 

.___^_ _... _I_---. -. ._~_-_. ~__ _-cI^II. .-- 
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Claim 1. Under the assumptions of Theorem 4, limit 

lim K’ log E{exp(ny(Z,))) = k(y) (2.1) 
n-nr 

exists for all y E 9. 

Claim 2. Under the assumptions of Theorem 4, J : V + [0, co], defined by 

J(x) = sup{y(x) -k(y): YE 31 (2.2) 

is a convex function. 

Proof of Claim 1. Let Y(X) = min,,j=d {Ai + c,}, where d 2 1, c, E R, hj E V” are 

fixed. Notice that there is K < ~0 such that 

sup,, (y(Z,,)l~ K as. (2.3) 

Indeed, (2.3) follows from the fact that )jX,j] G C and the 1). II-continuity of linear 

functionals A E a/*. 

Define L,, = L,(y) = log E{exp(ny(Z,))}. We need to show that 

lim inf n-‘L, 2 lim sup n-IL,. (2.4) 
n-u n-z 

Moreover, since y,(x) = min,,,,, {A,(x) + cj + const} = y + const, we have L,( y + 

const) = n const + L,(y) = L,( yc) and hence by (2.3) without loosing generality we 

may assume that 

y(Z,)<O for all n 2 1. 

It is well known that for each non-negative bounded X-measurable 5, 

]E{51~+ E{SI(~ 4(Ju, X)I1511~ > 

(2.5) 

where 4(.A, X) is defined by the right-hand side of (1.1) with the supremum taken 

over A E Ju, B E JV. Therefore by (2.5), for each N 2 1 we have 

E{exp(ny(Z,)) I ~-,,-,I 

aE{exp(ny(Z,))}-cb(N+l) for all nz-1. (2.6) 

Fix N, A4 3 1 to be chosen later. To prove (2.4), we shall use a standard ‘blocking 

argument’. For nal write n=k(M+N)+r, OG~GM+N i.e. put k=k(n)= 

[n/(M + N)], r = n - k(M + N). Since y( . ) is concave and Z,, can be represented 

as convex combination 

z =k(M+N)Z 
n 

n 
w+NI+; 

inequalities (2.3) and r s A4 + N give 

E{exp(ny(Z,))] 2 e-K’M+N’E{exp(k(M+ N)Y(Z~,,+N,))]. (2.7) 
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Using again the concavity of y( . ), the convex combination representation 

z “‘“+“,=&& ;,: ($j ,;, &+-,+J 

+’ k & :<I (i ig, $CN+A4j+M+i> 

and the fact that by (2.3), 

I( y $ i X,(N+M,+M+i s K, Osjsk-1, 
I I 

we get 

We need 

E{exp(k(M+ N)Y(&(M+N,))} 

now to estimate 

(2.8) 

Sinceexp(My((l/M) 12, X,~-,~~N+M~+i)) is ~~~_,~~N+M~+,,U)-measurable,station- 

arity and (2.6) give 

This implies recurrently 

E{exP(;i; My($ ,t, X,cN+-,+i))} 

~E{exp(My(Z,))}-~(N))h. (2.9) 

Inequalities (2.7), (2.8) and (2.9) put together give 

n-IL,,>-K(M+N)/n-KNk/n+k/nlog(exp(l,)-4(N)). (2.10) 

Passing in (2.10) to the limit as n + 00 we get 

M 
lim inf n-IL, z=p 

KN LLM__ 
n-oo M+N M M+N 

+(M+ N)-’ log(l-4(N) exp(-L,)). 

.,__~__,_ .._ ^. .-l.^l-.l . . . 
,._-._--. 

._,- ^.___.. -. 
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To end the proof of (2.4) it remains to pick N, M + CQ such that 

+lim sup n-IL,, 
n+‘x 

NfM+O, 
(2.11) 

4(N) ew(-L)+O. 

Note that such a choice of N, M is possible; (2.11) can be satisfied by (1.2), because 

(2.3) gives exp(-L,) s eKM for each M. 

Proof of Claim 2. Since (2.2) defines a lower semicontinuous function, to verify 

convexity it is enough to show that J(i(x + y)) G i(J(x) + J(y)) for all x, y E X. To 

this end fix x0, yO. By (2.2) it is enough to show that for each y E ‘9, there are 

y, , y2 E 37 such that 

Y(~(xJfYd) =4Y,bo)+4Yz(Yo), (2.12) 

UY)3%(Y,)S-C*). (2.13) 

Indeed, (2.12) and (2.13) imply that ~(~(x~+y~))-[L(y)~t(y,(x,)-[L(y,)) 

+$(y2(y,,) -[I(y,))~~(J(x,)+J(y,J). This proves convexity of J( .), as y E 9 is 

arbitrary. To construct y, , yz, write y(.)=min,,j~,{A,(.)+ci} and put y,(.)= 

min{A,(.)+c,+d,}, y2(.)=min{Ai(.)+ci-d,}, where di=$Ai(y,-x0), 1~ i=r. 

Without loss of generality we may assume that y>(Z,,) G 0 for all n 2 1. Indeed, as 

in the proof of claim 1, we may replace y by yc for a suitable constant c. 

Then (2.12) is trivially satisfied. To prove (2.13) observe that for all x, y we have 

y(~(x+y))=min{~(A,(x)+ci+di)+~(Aj(y)+c,-d,)}~~y,(x)+~y,(y). 

Since 

z,,=+ ( 1 i x,+l i xi+, , 
n i=( n I=, > 

the last inequality implies 

Since y,( . ) is concave, 

E{ exp(ny,(~ i, X) +nyz(i i, nX+n))} 
aeeKNE{exp( (n - Nh(& “z X) + y2(i i, Xi+,,))} 

=e~KNE{exp((n-N)yl(~~~X1)) 

XE{eXP(nYz(~~,xi+n)) is-m,n-N}}, 
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where K is a constant given by (2.3) with y replaced by y, . Since yz satisfies (2.5), 

taking (2.6) into account we obtain therefore 

where C = SUP,,,~, sup,,,,,,,, x, {Ih,(x)l+l~~l<~~. After choosing N= N(n) such 

that N(n)/n+O and ~(N(n))E{exp(-nrz((l/n)C:=, X,))}+O as n+a, see (1.2), 

the last inequality implies (2.13). 0 

3. Proof of Theorem 2. 

The large deviation principle follows from Bryc [6, C.2.11 after the two claims below 

are established. (Notice that since the convex hull of a compact set is compact, the 

exponential tightness condition is trivially satisfied for compact valued X, and Claim 

B is not needed in this case. Hypotheses of Claim B follow from either (1.12) or 

(1.13).) 

The proof of the fact that the rate function is convex, which in turn implies (1.9) 

by Bryc [6, C. 2.11, uses (2.12) and (2.13) again and the details are omitted. 

Claim A. Zf {Xk}kiZ is a stationary sequence of W-valued random variables such that 

either $(l) < ~0 or 11X, 11 is b ounded and (1.10) holds, then limit (2.1) dejking the 

asymptotic value R(min,{h, + c,}) exists and is jinite for each r 3 1, A,, . . . , A, E W”, 

Cl,. . ., c, E R. 

Proof. It is easy to verify that for an integrable non-negative X-measurable .& 

W5l.W a cL-(JK W-J%5], (3.1) 

where $_(A, JV) is defined by the right-hand side of (1.4) with the supremum taken 

over A E 4, Z3 E JV. Similarly 

W51.W~ ++(J& WE{51, (3.2) 

._ ,_ ..__-.. _- 
_..---- __-, “. 
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where $+(A, K) is defined by the right-hand side of (1.3) with the supremum taken 

over A E Ju, B E X (both the inequalities are trivial for finite a-fields Jll, X). Fix 

rzl, A,,. . ., h,~n/*, c ,,.. . , c,ER. Define 

M, = ess inf E”-=JI exp min { nci + hi(X, +. . . +X,,)} 
1 I 

. 
,s,sr 

Note that 0 < M, < co for each n 2 1. Indeed, this is trivial if either (1.11) or (1.12) 

holds; if (1.13) holds, then for C =max,{(c,l v ]lAn]l} we have 

M, 2 t+-( 1) e-“c‘ 
E{exp(-C/l!,X#1 

3 (k(l) e-‘E{exp(-C((X,J()})” 
by (3.1) and 

(3.3) 

4 (e’~+(l)E{exp(CIIX,II)))” (3.4) 

by (3.2). By stationarity log M, is a super-additive function of n. Indeed, the 

super-additivity of log M, follows from 

M W-ttTl =ess inf E.“--‘J exp min {(m+n)c,+Ai(X,+. . .+X,,,+,, 
i )}I 

aess inf E-%-m 
1 

exp min { nci + Ai(X’ +. 1 . +X,,)} 
I 

x ess inf E *~~,~~ 
i 

expmin{m~,+A~(X,,+,+~ . .+X,,+, 
41 

= M,,,M,. 
I 

Hence lim,,, n-’ log M, exists, see e.g. Dunford, Schwartz [14, VIII.1.4] and the 

limit is easily seen to be finite, see (3.3) and (3.4). 

Using +--mixing, we shall show now that nP’ log M,, has the same limit as the 

sequence defining the asymptotic value L(min,{A,+ c,}). The lower bound for 

L(min,{A, + c,}) is trivial as 

M,,sE expmin{nq+A,(X,+...+X,,)} 
( 1 

for all n 2 1. (3.5) 

To obtain a suitable upper bound, take the smallest N 2 1 such that &(N)>O. 

Clearly N = 1, if +(l) < ~0. For each n 2 N we have 

E.+--o 
1 

exp min {nc, + A,(X,+. . .+X,,)} 
I 1 

3 CNE B-=,,, expmin{(n-N+l)ci+A,(X,+X,+,+~~~+X,,)} 
, 
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where CN = exp(-(N - 1) max,,, SU~,,,,~~ x, {I&(x)( + 1~~1)); under our hypotheses 

CN < ~0 either because A,(X,) is bounded, 1 G i s r, or because N = 1. Therefore by 

(3.1), 

expmin{(n-N+l)c,+hi(X~+X~+r+...+X,)] 
, 

SI,_(N)E expmin{(n-N+l)c,+hi(XN+XN+l+*~~+X,,)} 
1 I I 

zC,&(N)E expmin{n~~+A,(X,+X,+. . .+X,,)} . 
1 , I 

This and (3.6) show that M,, 3 CL+!-(N) E{exp mini{nci+Ai(X,+XI+. . .-t-X,,)>> 

and hence lL(min,{A, + c,}) = lim,,, n-’ log M,, exists and is finite. q 

Claim B. If {Xk}ktL is a stationary sequence of W-valued random variables such that 

$+(n)<~forsomen~l andE{exp(BjIX,jI)} < oo for each 0 E R, then the distributions 

1=%(X, +. . . +X,)/n)},,,, are exponentially tight, i.e. for each E > 0 there is a compact 

setKcXsuchthatP((X,+...+X,)/n~K)~e”foreachn~l. 

Proof. It is well known, see e.g. Stroock [18, Corollary 3.271, that exponential 

tightness follows if 

sup (E{exp(cq,(X, +. . .+X,))})“” < 00 
” 

(3.7) 

for some E > 0 and some semi-norm q0 such that q;‘[O, l] is compact.By Theorem 

3.1 of de Acosta [9], there exist a semi-norm q such that qml[O, l] is compact and 

E{exp q(X,)} < 00. Let N 2 1 be such that I+++(N) < 00. We shall show that (3.7) 

holds with E = l/N and q0 = q. Indeed, for n s N by the Holder inequality we have 

E{exp(q(X, +. . .+X,,)lN)l~ E{exp(q(X,)lN+. . .+dX)IN)l 

~E{exp(dX,)nlN)l 

-S E{exp q(X,)} < 00. 

For n 2 N write k = [n/N] (integer part). Since 

q(X,)+. . . .+q(x) =G i li dX+,,), 
,=, ,=o 

therefore 

E{exp(q(X,. . .+x,)lN)}~E{exp(q(X,)lN+. . ~+sGK)IN)l 

GE exp i i q(X,+,,) 
( ( 

N . 

i=l .j=O / 11 

By the Holder inequality and stationarity 

(3.8) 
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Inequality (3.2) applied to the right-hand side of (3.8) k-times gives 

E{ ew(if cd%))} c (G+(N))k(E{exp dXl)l)k+‘. 

Hence 

(E{exp(q(X,+. . ~+X,,)/N)})““~(I_J+(N))~‘“(E{~~~ q(Xl)))(kt’)‘n. 

Since k/n G l/N G 1, (3.7) and the claim are proved. 0 

Note added in proof 

R.C. Bradley (to appear in Stochastic Process. Appl.) gave an example of a strictly 

stationary sequence which satisfies (1.2) and cannot be represented as an instan- 

taneous function of a strictly stationary real Harris recurrent Markov chain. This 

answers the +mixing part of the question in Remark 2 above. 
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