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On the Convergence of Averages of 
Mixing Sequences 
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We construct an absolutely regular stationary random sequence which is an 
instantaneous bounded function of an aperiodic recurrent Markov chain with a 
countable state space, such that the large deviation principle fails for the 
arithmetic means of the sequence, while the exponential convergence holds. We 
also show that exponential convergence holds for the arithmetic means of a 
vector valued strictly stationary bounded 4-mixing sequence. 
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1. I N T R O D U C T I O N  

The main result of this note is the example of a recurrent aperiodic station- 
ary Markov chain Ark on a countable state space such that its empirical 
distributions do not satisfy the large deviation principle. Moreover, we 
show that the large deviation principle fails for the arithmetic means of a 
certain 3-valued instantaneous function f(Xk) of this chain. The additional 
property of the example is that the convergence of arithmetic means of 
f(Xk) is exponentially fast, clarifying the relation between exponential 
convergence and large deviations (c.f. Remark 5.1) and complementing 
the result of Schonmannr in Section 5 we also give a short proof of the 
vector version of Schonmann's result. An important condition, which is 
stronger than recurrence, is the Doeblin condition D, see Doob, ~7) 
page 197. As far as we know, the question, whether the arithmetic means 
of a stationary sequence obtained as an instantaneous bounded measurable 

i Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221-0025. e-mail: 
bryc@ucbeh.san.uc.edu. 

2 Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045-2142. 
e-mail: smolensk@kuhub.cc.ukans.edu. 

473 

0894-9840/93/0700-0473507.00/0 �9 1993 Plenum Publishing Corporation 



474 Bryc and Smolenski 

function f(Xk) of a Markov chain which satisfies the Doeblin condition 
(even in an over-simplified form of Eq. (2.3)) is open. Such sequences 
necessarily have exponential ~b-mixing rate (for definition, see Eq. (3.2)) 
and the speed of convergence in the law of large numbers is exponential. 
We also point out that if a Markov chain Xk satisfies condition in 
Eq. (2.1), which is stronger than the Doeblin condition D, and if f ( . )  is a 
bounded meas.urable function on the state space of the chain, then the 
arithmetic means of f(Xk) satisfy the large deviation principle. 

Let (E, I1"11) be a separable Banach space and let S,,  n~>l, be an 
E-valued random sequence. Recall that the sequence (I/n) S,,  n >~ 1, satisfies 
the large deviation principle, if there is a convex lower semicontinuous rate 
function I: E ~ [0, ~ ]  with compact level sets I 110, a] ,  a/> 0, such that 

lim sup n - l l~ P ( ! S" ~ A ) <<" - ~ ~ x ~ A I( x ) (1.1) 

for each closed set A c ~; 

l iminfn-l  l ~  S"~A)  >~ - .~A I(x) (1.2) 

for each open set A c E. 
We shall say that the sequence (I/n) S, ,  n/> 1, converges exponentially 

to m E E, if for every e > 0 there are 7 > 0 and C < o0 such that 

P (  ~ S , - m  >e)<~Ce -~" forall  n>~l (1.3) 

Clearly, if {(1/n)S,},>~l satisfies the large deviation principle with a 
strictly convex at m (hence strictly positive outside of any ball around m) 
rate function I(-) then the exponential convergence follows. 

2. MIXING CONDITIONS FOR MARKOV CHAINS 

Let Xk be a time homogeneous Markov chain on a state space (Z', 50), 
with the n-step transition function H,(x, A) and an invariant measure rc 
(i.e., ~Hl(x, A)g(dx)=rc(A) for all A ~Se). Given a measurable function 
f:  L ' ~  E, put ~k = f (Xk)  and let S , = Z ~ = I  ~k; in this context S, is some- 
times referred to as a "Markov additive functional." Consider the following 
condition. 

There are 6 > 0, N~> 1 such that 

HN(X,A)>~&z(A ) for all x~Z,  A~5~ (2.1) 
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Proposition 2.1. I f  Eq. (2.1) holds and f :  X ~ ~d is bounded, then the 
sequence ( l /n)Sn,  n >/1, satisfies the large deviation principle with a rate 
function I: ~2a~ [0, ~) .  

Indeed, one can easily see that Eq. (2.1) implies i p _ ( N ) = 6 > 0 ,  c.f. 
Eq. (3.1). Hence the stationary sequence ~k satisfies I-Ref. 4, conditions 
(1.10) and (1.11)] and the result follows from [-Ref. 4, Theorem 2]. 

Remark 2.1. Proposition 2.1 holds true under the following slightly 
less restrictive conditions (which allows to handle periodic chains): 

N 

36>0,  N>~I ~ H~(x,A)>~fx(A)VA~Se, x ~ S  (2.2) 
k = l  

This can be obtained from Ref. 5, Theorem 2.1 by the contraction 
principle, c.f. also Ref. 5, Corollary 2.1. Also, it can be shown that the rate 
function in Proposition 2.1 is convex. 

The following condition is related to Doeblin's condition D. The main 
difference is that we use the invariant measure 7r rather than an arbitrary 
sigma-finite nonnegative measure ~ (part of the theory is then to establish 
existence and uniqueness of the invariant measure 7z). 

There are 6 > 0, N>/1 such that for A ~ 5 e 

rc(A)<~6~HN(x,A)<~I-~ for all x ~ S  (2.3) 

We believe that the question whether assumption of Eq. (2.1) in Proposi- 
tion 2.1 can be replaced by Eq. (2.3) is open. 

Harris ~8) introduced the following recurrence condition, which is 
weaker than Doeblin's D condition. 

There is a sigma-finite nonnegative measure/~ on (Z', 5 ~) such that for 
A 6 5  e 

# ( A ) > 0 ~ P  {XkeA} Xo=x =1 forall xeZ" (2.4) 
k 1 

I n  Section 4 we shall construct an aperiodic Markov chain with a 
countable state space 22, satisfying condition in Eq. (2.4) with the counting 
measure # and such that the large deviation principle fails for an additive 
functional of this chain. It might be of interest to point out that in Eq. (2.4) 
implies the following minorization condition, c.f. Ney and Nummelin, (~~ 
Eq. (2.1). 

There are N~> 1, a sigma finite measure # on (L', 5e) and a measurable 
function h: Z" --. [0, ~ )  such that ~ h(x) #(dx) > 0 and 

IIu(x,A)>/h(x)~(A ) for all x~X,  AE5 ~ (2.5) 
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We write this last minorization condition explicitly, to point out that 
besides Eq. (2.5) some additional assumptions on stationary Markov 
chains are needed in order to prove the large deviation principle for the 
arithmetic means of Markov additive processes, c.f. Ney and Nummelin, ~1~ 
and de Acosta.(6! 

3. MIXING CONDITIONS FOR STATIONARY SEQUENCES 

Assumptions made in this note correspond to various "strong mixing 
conditions" considered for stationary sequences. 

Let (E, I[" II) be a separable Banach space and let {~k}k~z be a strictly 
stationary bounded E-valued random sequence. In the sequel we denote 
Sn-"~-Z~=l ~k, # = E { ~ I } .  

For n>~0 let ~ . . . .  be the a-field generated by {r and let 
~.oo be the a-field generated by {~:  k>~n}. 

The following condition, related to Eq. (2.1), was employed in Ref. 4 
(see also references there); suitable generalizations to random fields are 
given in Ref. 5. 

For n ~> 1, let 

_(n) = inf{P(A c~ B)/(P(A) P(B)): 

A ~,~_~,_n+l, B ~ , ~ ,  P(A) P(B) > 0} (3.1) 

Condition supn r  0 is the same as Ref. 4, Eq. (1.10); for Markov 
chains ~b_(N)> 0 and Eq. (2.1) are equivalent. 

For n ~> 1, the ~b-mixing coefficients are defined by 

q)(n)=sup{]P(A ] B)-P(A)]: B~_~,o, A6~oo, P ( B ) > 0 }  (3.2) 

We say that {r is ~b-mixing, if ~b(n) ~ 0  as n ~ ~ .  
For an aperiodic Markov Chain Doeblin's condition D implies 

~b-mixing with geometric rate (c.f., Rosenblatt, (12) p. 209); large deviation 
principle for bounded stationary ~b-mixing random sequences was estab- 
lished in Ref. 4, Theorem 1, but the result is not applicable to the 
arithmetic means of an additive functional of a Markov chain satisfying 
Doeblin's condition, since Ref. 4, Theorem 1 assumes hypergeometric 
~b-mixing rate. 

It is known (Bradley tl)) that if s u p n r  then r  as 
n ~ oo and ~b(n)~ 0 as n--* ~ ;  this correspond to a trivial in the Markov 
case, implication Eqs. (2.1)=~ (2.3). 

If Xk is an aperiodic Markov chain satisfying Eq. (2.4) (and is taken 
with invariant initial distribution) and f:  L ' ~  E is measurable, then 
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~k=f(Xk)  satisfies the following weaker strong mixing condition, c.f. 
Bradley (3) and the references therein. 

A strictly stationary sequence (4,) is called absolutely regular, if 
fl(n) --. 0 as n --* oe, where 

fl(n) := �89 sup ~ IP(Ai~ Bj) - P(Ai) P(Bj)I (3.3) 
i , j  

the supremum in Eq. (3.3) is taken over all finite ~o~,o-measurable 
(disjoint) partitions (A;} and over all finite ~,oo-measurable partitions 
{Bj} of probability space 12. 

4. EXAMPLE (Adapted form Bradley, (2) and Orey and Pelikan, (l~) 
Example 4.1 ) 

We first introduce a number of parameters. For k >/1, let n(k) = 12 k 
and let no = 1/2. For k >/0, let pk = C exp(--n(k)/2), where C =  
(~k~~ exp( -n(k)/2))-I is the normalizing constant. 

A Markov chain to be constructed below has pairs (k, j )  as states. For 
k>~ 1, the state space Z is such that j runs through all integers in 
(-n(k),  n(k)]; clearly, there are 2n(k) states corresponding to each k ~> 1. 
We also choose a single value j = 1/2 for k = 0. For k ~> 0, let the one step 
transition probabilities be defined by 

P ( X ( n + l ) = ( k , j - 1 ) l X ( n ) = ( k , j ) ) = l  if j>~2-n(k) 

P(X(n+l)=(m,n(m))]X(n)=(k , l -n (k ) ) )=pm,  m>~O 

Notice that X(n) is an aperiodic recurrent Markov chain. Indeed, 
the chain evolves independently after visiting the "renewal" set R =  
{(k, -n (k )+ 1): k~> I} and the hitting time for R is finite; aperiodicity is 
ensured by the fact that (0, 1/2) has a nonzero probability of returning in 
one unit of time. 

By a simple calculation, X(n) is strictly stationary when started from 
the initial distribution 

P(X(0)= (k,j))=Cpk (4.1) 

where C=(Y'.~=o2n(k) pk) -1 is a normalizing constant. In Eq. (4.1) the 
range of j is - n ( k )  < j <~ n(k) when k ~> 1 and j = 1/2 when k = 0. 

A stationary sequence that we are looking for has a form ~, = f(X(n)). 
To define a suitable function f :  S ~ { - 1, 0, 1 }, consider auxiliary func- 
tions k(.)  and j(-), defined for x =  (m, r )eX by k ( x ) = m ,  j ( x ) = r ;  j(-)  is 
needed in the definition of Eq. (4.2), k(.)  will be needed for the proof. 



478 Bryc and Smolenski 

Let 

~, = sign(j(X(n) - 1/2)) (4.2) 

with the convention that sign(0)= 0; the last convention applies only to a 
single state (0, 1/2). 

Proposition 4.1. Let (~n) be defined by Eq. (4.2). Then 

(i) (~,) is absolutely regular strictly stationary and bounded; 

(fi) the large deviation principle fails for {(l/n) S,,}. 

Remark 4.1. In particular, Ark is an irreducible recurrent Markov 
chain such that its empirical distributions do not satisfy the large deviation 
principle in the weak topology on the set of probability measures. Indeed, 
since f is bounded and continuous, ( i /n)Sn obtains as a continuous 
function of the empirical measure #n = 1/n Z ~ k=l 6xk and the contraction 
principle, see e.g. Varadhan ~14) [page 5] asserts that the large deviation 
principle is preserved by the continuous mapping. 

Proof of  (i). It is known (see Bradley r that every real aperiodic 
Harris chain {X,} is absolutely regular. In particular, for a measurable 
function f:  S ~ •, ~ =f(X(n) )  is strictly stationary and absolutely regular. 

Proof of (ii). To prove that the large deviation principle fails, it is 
enough to show that the sequence (1/n)logE{exp S,} ,  n>~ 1, does not 
have limit as n -+ o% see Varadhan, ~14) Theorem 2.2. 

Obviously, for k/> 1, E{exp Sn~k)} t> en~k)P(X(O) = (k, n(k)))= Ce n~k)/2. 
This shows that 

lim sup l l o g  E{exp S,} ~> 1/2 (4.3) 
n ~ o ~ 3  n 

We shall show that lim inf, ~ o~ (I/n) log E{exp S,} ~< 1/4. To this end, 
fix k ~> 1 and let n = 8n(k). 

The following two cases are possible: 

(A) there is O<~t<~n such that k(X(t))>~k+ t; 

(B) k(X(t)) <~ k for all t. 

Denoting the corresponding events by A, B we have 

E{exp S~} = f A es~ dP + f~ e s" dP (4.4) 

We shall analyze separately each term on the right-hand side of 
Eq. (4.4). 
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If the event A = [.)~'=o A(t) occurs, then using trivial bounds Sn<~n , 
P(A)<.ZP(A(t)) and Eq. (4.1) we get 

fA es"dp<~(n+l)Ce n ~ n(j)pj 
j = k + l  

<~ Cln(k) e 8"(k) n(k+ 1)/2 4 C1/7(k  ) e2n(k) (4 .5 )  

If event B occurs, then the longest block of consecutive l's has length n(k) 
and, due to the cancellations, we have Sn <<. n(k). Therefore 

f e s~ dP <~ e n~k) (4.6) 

Inequalities of Eqs. (4.4)-(4.6) together imply 

lim inf I log E{exp S. } ~< lira inf 1/(8n(k))log E{exp S~.(k)} 
n~oo  /7 k ~ c o  

< lim [ C +  2n(k) + log n(k)]/(8n(k)) = 1/4 

By Eq. (4.3) this ends the proof. 

Remark 4.2. To see directly that Xk satisfies Eq. (2.5), let p be  the 
invariant measure Eq. (4.1) and take h ( x ) = 0  for x r  h ( x ) = l / C  for 
x e R ,  

5. EXPONENTIAL C O N V E R G E N C E  

Proposition 5.1. If {~,} is the sequence defined by Eq. (4.2) then 
exponential convergence Eq. (1.3) holds for (I/n) S,,  n/> 1 (with m = 0). 

Proof Clearly E{S,,}=O. Given n>~i and e > 0 ,  let k be such that 
n(k) <~ ne < n(k + 1 ), i.e., k = t + [tog~2 he]. If k(X,) <<. k for all t ~< n, then 
IS,,I <~n(k)<~ne. Therefore the event {l(1/n)Snl >e}  implies k(X,)>~k+ 1 
for some t ~< n. Therefore 

j = k + l  

-%< Ct n e x p ( -  12k/4) -%< C2(e) e - ~  

The following result extends Schonmann (13~ to vector valued r.v. Our 
proof uses Chebyshev's inequality rather than combinatorial argument, but 
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we believe Schonmann's proof can be adapted to handle the vector case, 
too. 

Theorem 5.1. If {~,} is ~b-mixing and bounded, then exponential 
convergence Eq. (1.3) holds for (I/n) S,,  n ~> 1. 

Corollary 5.1. If 4k is C-mixing real valued and bounded then for any 
~ > 0  there are 7 > 0  and C <  oo such that P(Sn>n(m+e))<~Ce -7~. 

Remark 5.1. In the construction of Section 4, if one chooses n(k) = k, 
p(k)=C/n(k) 4, then the reasoning that leads to Eq. (4.3) shows that 
exponential convergence fails and the large deviation principle holds with 
the (trivial) rate function I(. ) =  0. Thus, aside the trivial implication when 
the rate function is strictly convex, exponential convergence and the large 
deviation principle can occur independently. Also, the modified construc- 
tion shows that Theorem 5.1 cannot be extended to stationary absolutely 
regular sequences. 

The following lemma is well known and is proved for completeness 
only. 

Lemma 5.1. If ~: is a separable Banach space and {~k} is strictly 
stationary regular (i.e., ('l,<o o~oo,~ is a trivial a-field) and E{ 1141 II } < o% 
then S,/n ---, m = E{ r 1 } in probability. 

Proof. By separability, for e > 0 there is f,: E ~ IF such that f~(41) has 
a finite range and 

E{ [[ f e ( ~ l  ) - -  411[} <~ ~ (5.1) 

Let 0k = f,(r Clearly, { Ok } is strictly stationary, regular, and takes values 
in a finite dimensional subspace of E Therefore, by the ergodic theorem, 
(l/n) Y'~= 10k---~m~=E{01} a.s., and Ilm~-ml[ ~<e. 

Also, II0k--4kll is strictly stationary, regular, and hence by ergodic 
theorem and (ii) (l/n) ET,= 1 II0k -- 4~11 --' E{ 1101 - r } < ~. Therefore, 

nk=l 

k = l  
--*0 as n --* oo 

Proof of Theorem 5.1. 
may assume m = 0. 

By centering, without loss of generality we 
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Given e > 0 choose ~ < �89 ' / 2 -  1). Let M be such that II~ll ~< M. Fix 
N ~> 1 to have 

~(N) e M < ~ (5.2) 

Since by Lemma 5.1 II(1/n)S.II ~ 0  as n ~  ~ ,  and random variables 
Ii(1/n)S.II are uniformly bounded we have E { e x p ( ( 1 / n ) I l S . I I ) } ~ l  as 
n ~ ~ .  Therefore we can choose L such that 

E {exp ( 1  ,ISLII)} < 1 + c5 (5.3) 

Following Schonmann, (13) we use now blocking argument with 
parameters L, N chosen as previously. For q, j, k >~ 1 let 

Y)q) =L ~i-+=NL(j--I)-+(q--1)L 
i = 1  

< 1 L 
Z q) - -  2. Y/q> k - - k .  

j = l  

(We shall drop superscript q when q = 1.) 
The function (i, q, j )  ~ i + L(q  - l ) + N L ( j -  1 ) is a bijection from 

{ 1,..., L} x {1,..., N} x {1 ..... k} onto {1, 2 ..... N L k } .  Therefore for k>~ 1 

1 1 u 
SNLk = X q~= l Z{kq) 

and hence by stationarity 

1 
> d2)  N P (  d2) (5.4) (~L--~ IISNL~II ~< IIZ~ll > P 

By Chebyshev's inequality 
k 

By qi-mixing (c.f. Ref. 9), Eqs. (5.3) and (5.2) 

E{exp(ll gj+l If) I YI ..... Yj} ~< E{exp(ll Y~ II)} + ~ ( N )  e M < 1 + 2c~ 

Therefore from Eqs. (5.4) and (5.5) we get 

P 1 > e/2) ~<N//1 + 2~'~ k - ~  [ISuL~ll \ ~ ]  , k = 1, 2 .... (5.6) 

860/6/3-5 
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N o w  let n>~2LNM/e be a n  in teger  a n d  pu t  k =  En/(LN)], so tha t  

NLk ~ n. 
Since 

we have 

1__~ S 
1_ S , -  NLk  NLk n 

<~ ! I[S,~-- SLNkII + ( 1 - - N L k )  I N ~  SNLk 

<~ s/2 + N ~  SNIck 

This  ends  the p ro o f  of the t h e o rem with  Y = 7 ( e ) : ~ / 2 - 1 0 g ( 1  + 2 6 ) ;  

clearly 7 > 0 by  ou r  choice of 6. 
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