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Abstract

The talk will compare two families of probability measures:
exponential, and Cauchy-Stjelties families. The exponential
families have long and rich history, starting with Fisher in 1934.
The Cauchy-Stjelties families show similarities or parallels to
exponential families but have been studied much less.
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Kernel families

For real x , θ, suppose that k(x , θ) is integrable with respect to a
positive σ-finite measure µ(dx), and is positive for all θ ∈ Θ and
all x in the support of µ. Denote

L(θ) =

∫
k(x , θ)µ(dx).

Definition (Wesolowski (1999))

The kernel family is a family of probability measures on Borel
subsets of R defined as

K = K(µ, k) =
{

Pθ(dx) = 1
L(θ)k(x , θ)µ(dx) : θ ∈ Θ

}





Example (Natural exponential family)

Suppose
∫

eθxµ(dx) <∞ for some θ. Let k(x , θ) = eθx .
The natural exponential family (NEF) generated by µ is:

K(µ) =
{

Pθ(dx) = 1
L(θ)eθxµ(dx) : θ ∈ Θ

}
where L(θ) =

∫
eθxµ(dx).

I It is convenient to take open interval Θ = (θ−, θ+) even if the
Laplace transform L(θ) is defined at the end-points.

I K(µ) = K(Pθ0) so WLOG can assume that µ is a probability
measure.



(pre) History
(of more general exponential families)

From http://en.wikipedia.org/wiki/ and other internet sources

I Fisher, R. (1934) Two new properties of mathematical
likelihood, Proc. Roy. Soc.

I Pitman, E.; Wishart, J. (1936). Sufficient statistics and
intrinsic accuracy. Mathematical Proceedings of the
Cambridge Philosophical Society

I Darmois, G. (1935). Sur les lois de probabilites a estimation
exhaustive. C.R. Acad. Sci. Paris

I Koopman, B (1936). On distribution admitting a sufficient
statistic. Transactions of the American Mathematical Society



Good statistical properties
Under suitable assumptions on µ,

I Sample average is a sufficient statistics for θ

I Maximal likelihood estimator of θ is an “explicit” function of
the sample mean.

I Maximal likelihood estimator of θ is asymptotically normal.

I likelihood ratio test is approximately chi-square

I If θ is random, explicit “conjugate priors” have linear
regression of mean onto observation Diaconis-Ylvisaker (1979)

I If X has law from the Morris class and θ is random with a
“conjugate prior”, then the marginal law of X is known.

None of these questions are the topic of this talk. Morris class will
appear below.



Example (Cauchy-Stjelties Kernel family)

Consider kernel

k(x , θ) =
1

1− xθ

and a probability measure µ with support in (−∞,B).
The Cauchy-Stjelties kernel (CSK) family is

K =

{
Pθ(dx) =

1

L(θ)(1− θx)
µ(dx) : θ ∈ Θ

}
where L(θ) =

∫
(1− xθ)−1µ(dx).

I It is convenient to analyze one-sided CSK families with
θ ∈ Θ = (0, θ+),

I We take B = sup{b : µ(b,∞) > 0} and θ+ = 1/B if B > 0
(with θ+ =∞ if B ≤ 0).



NEF versus CSK families
The talk will switch between NEF and CSK families generated by µ

K(µ) = {Pθ(dx) : θ ∈ Θ}

I NEF :
Pθ(dx) ∝ eθxµ(dx)

I CSK:

Pθ(dx) ∝ 1

1− θx
µ(dx)



A specific example of NEF
Noncanonical parameterization

Let µ be a counting measure on {0, 1, . . . } given by µ({j}) = 1

I L(θ) =
∫

eθxµ(dx) =
∑∞

j=0 e jθ = 1/(1− eθ).

I θ ∈ Θ = (−∞, 0)

I

K(µ) =
{

Pθ(dx) : Pθ({j}) = (1− eθ)eθj , θ < 0
}

I More standard parametrization: p = eθ

K(µ) =
{

Qp(dx) : Qp({j}) = (1− p)pj , 0 < p < 1
}

I K(µ) is the family of (all) geometric probability laws.

I K(Q1/2) is the same family!

Skip second example



Another example of NEF
Again in noncanonical parametrization

Let µ be a discrete measure concentrated on {0, 1, . . . } given by

µ({j}) = 1/j!

I Then L(θ) =
∫

eθxµ(dx) =
∑∞

j=0 e jθ/j! = exp(eθ).

I K(µ) =
{

Pθ(dx) : Pθ({j}) = exp(−eθ)eθj/j!, θ ∈ (−∞,∞)
}

I More standard parametrization: λ = eθ > 0

I K(µ) = {Qλ(dx) : Qλ({j}) = e−λλj/j!, λ > 0}
I Poisson family parametrized by λ > 0.



Parametrization by the mean

K(µ) =
{

Pθ(dx) = eθx−κ(θ)µ(dx) : θ ∈ Θ
}

κ(θ) = log L(θ) = log

∫
eθxµ(dx)

I The mean is m(θ) =
∫

xPθ(dx) = κ′(θ) = L′/L

I The variance (of Pθ) is κ′′(θ) > 0 for non-degenerate µ.



Parametrization by the mean

m(θ) =

∫
xPθ(dx) = κ′(θ)

I For non-degenerate measure µ, function θ 7→ m(θ) is strictly
increasing and has inverse inverse θ = ψ(m).

I κ′ maps (θ−, θ+) onto (m−,m+), ”the domain of means”.

I Parameterization by the mean:

K(µ) = {Qm(dx) : m ∈ (m−,m+)}

where Qm(dx) = Pψ(m)(dx), i.e. Qm(θ)(dx) = Pθ(dx), i.e.
Qκ′(θ)(dx) = Pθ(dx).

Remark
θ 7→

∫
x

L(θ)(1−θx)µ(dx) is also strictly increasing. So CSK families
can also be parametrized by the mean.



Variance function of a NEF
Morris (1982)

V (m) =

∫
(x −m)2Qm(dx)

I Variance function V (m) (together with the domain of means
m ∈ (m−,m+)) determines NEF uniquely. So K(µ) = K(V ).

I No simple formula for Qm(dx) in terms of V (m). However,
Ismail-May (1978) give

∂

∂m
Qm(dx) =

x −m

V (m)
Qm(dx)

I Which functions V (m) are variance functions of some NEF?
Jörgensen’s criterion.

I Continuity Mora (1987): limk→∞ Vk(m) = V (m) uniformly
on a closure of some open interval, then V is the variance

function and Q
(k)
m ∈ K(Vk) converge weakly to Qm ∈ K(V )

as k →∞.



Morris class

Theorem (Morris (1982), Ismail-May (1978))

Suppose b ≥ −1. The NEF with the variance function
V (m) = 1 + am + bm2 consists of

1. the Gaussian laws of variance 1 if a = b = 0;

2. the Poisson type laws if b = 0 and a 6= 0;

3. the Pascal (negative binomial) type laws if b > 0 and a2 > 4b;

4. the Gamma type law if b > 0 and a2 = 4b;

5. the hyperbolic secant type laws if b > 0 and a2 < 4b;

6. the binomial type laws if b = −1/n for some n ∈ N;

I This covers all possible quadratic variance functions
normalized to V (0) = 1.

I Q0(dx) is standardized to have mean zero variance 1

I Letac-Mora (1990): cubic V (m)

I Various other classes Kokonendji, Letac, ...



Variance function of a CSK family
m0 =

∫
xµ(dx) ∈ [−∞,B).

K(µ) =
{

µ(dx)
L(θ)(1−θx) : θ ∈ Θ

}
= {Qm(dx) : m ∈ (m0,m+)}

m = m(θ) =
L(θ)− 1

θL(θ)
= D0(L)/L

If µ has the first moment then V (m) =
∫

(x −m)2Qm(dx) is well
defined.

I Variance function V (m) (together with m0 ∈ R) determines µ
and hence the CSK family. So K(µ) = K(V ).

I Explicitly, Qm(dx) = V (m)
V (m)+(m−m0)(m−x)µ(dx)

I Which functions V (m) are variance functions of some CSK?

I Continuity W.B. (2009): yes, at least for compactly supported
measures. (The statement is more technical with fixed
m0 =

∫
xµk(dx).)



Theorem (Theorem 4.2, WB.-Ismail (2005))

Suppose b ≥ −1, m0 = 0. The CSK family with the variance
function V (m) = 1 + am + bm2 has generating measure µ:

1. the Wigner’s semicircle (free Gaussian) law if a = b = 0; see
[Voiculescu, 2000, Section 2.5];

2. the Marchenko-Pastur (free Poisson) type law if b = 0 and
a 6= 0; see [Voiculescu, 2000, Section 2.7];

3. the free Pascal (negative binomial) type law if b > 0 and
a2 > 4b; see [Saitoh and Yoshida, 2001, Example 3.6];

4. the free Gamma type law if b > 0 and a2 = 4b; see
[Bożejko and Bryc, 2006, Proposition 3.6];

5. the free analog of hyperbolic type law if b > 0 and a2 < 4b;
see [Anshelevich, 2003, Theorem 4];

6. the free binomial type law (Kesten law, McKay law) if
−1 ≤ b < 0; see [Saitoh and Yoshida, 2001, Example 3.4].

(Standardized to have mean zero variance 1) End now



Reproductive property for NEF

Theorem (Jörgensen (1997))

If ν is a probability measure in NEF with variance function V (m),
then for n ∈ N the law of the sample mean,
νn(U) := (ν ∗ ν ∗ · · · ∗ ν)(nU), is in NEF with variance function

Vn(m) =
V (m)

n
.



Reproductive property for CSK families

For r ≥ 1, let µ�r denote the r -fold free additive convolution of µ
with itself.

Theorem (WB-Ismail (2005))

If a function V (m) analytic at m0 is a variance function of a CSK
family generated by a compactly supported probability measure ν
with m0 =

∫
xν(dx), then for each r ≥ 1 there exists a

neighborhood of m0 such that V (m)/r is the variance function of
the CKS family generated by

νr (U) := ν�r (rU).

In contrast to NEF, the neighborhood of m0 where m 7→ V (m)/r
is a variance function may vary with r .

Approximation operators q-exponential families



Summary
Kernels eθx and 1/(1− θx) generate NEF and CSK families

Similarities

I parameterization by the mean

I Quadratic variance functions determine interesting laws

I For NEF, convolution affects variance function in a similar
way as additive free convolution for CSK

Differences

I The generating measure of a NEF is not unique.

I A CSK family in parameterization by the mean may be well
defined beyond the “domain of means”

I For CSK family, the variance function may be undefined.
Instead of the variance function [Bryc and Hassairi, 2011] look
at the ”pseudo-variance” function m 7→ mV (m)/(m −m0)
which is well defined for more measures µ.



Thank you
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Approximation operators and exponential families

lim
λ→∞

Sλ(f )(m) = f (m)

C. P. May (1976) and Ismail and May(1978) consider exponential
type operators as positive operator

Sλ(f )(m) =

∫
R

Wλ(m, x) f (x)dx ,

where Wλ is a generalized function satisfying

∂Wλ(m, x)

∂m
= λ

x −m

V (m)
Wλ(m, x), λ > 0, (1)

∫
R

Wλ(m, x) dx = 1. (2)

End now



Since∫
R

Wλ(m, x) x dx = m,

∫
R

Wλ(m, x) (x −m)2dx =
V (m)

λ

so m and V (m)/λ are the mean and variance of Wλ(m, x),
respectively.

Measures in a NEF with variance function V (m)/λ satisfy the
differential equation and give rise to approximation operators of
exponential type.

End now



q-exponential families
Recall that for −1 < q < 1 the q-differentiation operator is

(Dq,mf )(m) :=
f (m)− f (qm)

m − qm
for m 6= 0.

Suppose w(m, u) satisfies

Dq,mw(m, x) = w(m, x)
x −m

V (m)
.

This equivalent to

w(m, x) =
w(mq, x)

1 + m(1− q)(m − x)/V (m)
. (3)

which has the solution

w(m, x) =
∞∏

n=0

V (qnm)

V (qnm) + qnm(1− q)(qnm − x)
, (4)

provided that the infinite products converge.



Definition
A family of probability measures

F(V ) = {w(m, x)µ(dx) : m ∈ (A,B)}

is a q-exponential family with the variance function V if

1. µ is compactly supported,

2. 0 ∈ (A,B) and limt→0 w(t, x) = w(0, x) ≡ 1 for all
x ∈ supp(µ),

3. V > 0 on (A,B), V (0) = 1, and

Dq,mw(m, x) = w(m, x)
u −m

V (m)

for all m 6= 0.

One can check that∫
xw(m, x)µ(dx) = m,

∫
(x −m)2w(m, x)µ(dx) = V (m).



Quadratic variance functions determine q-exponential families
uniquely.

Theorem ([Bryc and Ismail, 2005])

If F(V ) is a q-exponential family with the variance function

V (m) = 1 + am + bm2

and b > −1 + max{q, 0} then

w(m, x) =
∞∏

k=0

1 + amqk + bm2q2k

1 + (a− (1− q)x)mqk + (b + 1− q)m2q2k
(5)

and µ(dx) is a uniquely determined probability measure with the
absolutely continuous part supported on the interval

a
1−q −

2
√

b+1−q
1−q < x < a

1−q + 2
√

b+1−q
1−q and no discrete part if

a2 < 4b

For b ≥ 0 the above µ appears in [Bryc and Weso lowski, 2005] in
connection to a quadratic regression problem.

End now
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