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1. Introduction 

Let IYk}k E N be i.i.d. N(0, 1) r.v. and consider X, defined by the recurrence: X0 = 0, 

X k+l=aXk+yk+l- (1.1) 

In this note we prove the large deviation principle for the quadratic functional S, = (l/,)C~=iX~ and 
we give the explicit rate function. Benitz and Bucklew (1990) present the large deviation principle that 
covers quadratic functionals of a large class of stationary Gaussian sequences, provided the spectral 
density satisfies a certain technical condition (which is satisfied for a stationary solution of (1.1)). 
However, they point out that in general the rate function equation is transcendental. Their proof is based 
on the Grenander-Szego theory, and it might be of some benefit to have an elementary proof for the 
situation as simple as (1.1). 

Our original motivation for studying S, came from a discrete optimal control problem, where S, 
represents the optimal empirical quadratic cost in a non-adaptive setup, see e.g. Hall and Heyde (1980). 
Quadratic functional S, occurs also as auxiliary objects in estimation problems, see Duflo, Senoussi and 
Touati (1991) and Weiss (19901, in electrical engineering, see Bucklew (1990, pp. 103-105) and in some 
problems of statistical physics, see Ellis (1985, Section 111.4). 
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2 X 4 
Fig. 1. Graph of O(x) for a = f. 

Recall that S,, n > 1, satisfies the large deviation principle, if there is a convex lower semicontinuous 
rate function 0 : I&! + [0, m] with compact level sets 0-l [O, al, a > 0, such that 

limsupllog P(S,EA)G - inf O(x) foreachclosedset AC@ 
n-+m n XEA 

liminfilog P(S,EA)> - inf O(x) foreachopenset AcR. 
n-m n XEA 

The main result of this note is the following large deviation principle with the explicit rate function. (See 
Figure 1.) 

Theorem 1. if - 1 < a < 1 then (S,} satisfies the large deviation principle with the rate function given by 

1 ’ 
2x 

O(x) = 
-+ In 

1+&GX 1 +~[a’+1]x-~&iZFi forx<O, 

03 forx<O. 

(1.2) 

2. Proof 

The following direct and rather 
Laplace transform criterion for 
Theorem 2.3.6). 

Lemma A. Suppose 

elementary proof is based on a suitable variant of the well known 
the large deviation principle, see e.g. Dembo and Zeitouni (1993, 

R(Y) = ,Ilm i log ~{exp(W,)} (2.1) 

exists as an extended number. Assume there is 6 > 0 such that L(y) is finite and differentiable for 
-CO <y <S, and 

as y + S-. (2.2) 
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Then S, satisfies the large deviation principle with the rate function 

O(x) = suP(V - L(Y)}. 0 (2.3) 

Proof of Theorem 1. We shall verify that Lemma A can be applied with S = i(l - 1 a 1)2. Clearly, for 
-1<a<lwehave6>0. 

Elementary integration of the normal density shows that for A < $, 

i 

1+ 2A 
E{exp(AXi+r IyO,...,yk} = (1 -2A)-“2 exp A2a2EX2h a 

i 

Therefore 

E{exp(nyS,)} = jj(L - 2Ak)-1’2, (2.4) 

where the sequence (A,),,o solves the recurrence 

a2 
A n+1= A- 

“l-2A, +’ 

with the initial condition A, =y < i, provided that all the resulting numbers A,, are strictly less than $; 
otherwise E{exp(nyS,)} = w. 

We shall consider separately three cases: y < 6, y > 6 and y = 6. 
Case I: y < 6. In this case we shall show that the limit (2.1) exsits, is finite, differentiable and (2.2) 

holds. To this end, we use linear algebra to write the explicit expression for A,. Notice that A,, is given by 
the n-fold composition f “(A,) of the Mobius function f(x) associated with the matrix 

M= [ aZ_;y YJ 

in the (well known) correspondence 

1 1 
ax+b a b -- 

c d cx+d’ 

A calculation shows that for --cc) < y < 6 := i<l - I a 1)2, M has two distinct positive eigenvalues, 
A += ;(a” + 1 - 2y f ((a2 + 1 - 2~)~ - 4a2)l/*). 

The remainder from the division of the polynomial xn by the characteristic polynomial of M is 

A+A”-A-A”, A”+-A” 
+ 

A,-A- A+-A- 
x; 

this is easily checked by evaluating the polynomials at x = A It’ Therefore by the Cayley-Hamilton 
Theorem 

Mn= 
A,A”_-A-A”, 

z+ 
A”, - A”_ 

A+-A- 
M. 

A+-A- 

Since the composition of Mobius functions is a Mobius function associated with the product of the 
corresponding matrices, therefore after some arithmetic, 

A,, = 
(I- @)qA_+ a2(1 -4”) + qfl - 2q”y + 2y - 1 

(I-q”)qA_+q”-2qny+2y-1 ” 
(2.6) 
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where 0 < q = A _/A + < 1. This shows that A,, converges as n + m to the limit 

g(y) = 
qA_+a2+2y-1 

qh_+2y-1 y. 

This simplifies to 

g(y) = +[ 1 - a2 + 2y - &z” - 2a2 + 4y2 - 4a2y - 4y + 11. (2.7) 

Hence, by (2.41, the limit (2.1) exists for --cc < y < 6 and is given by R(y) = - 3 log0 - 2g(y)); in 
particular, k(y) is finite and differentiable in the interval --CQ < y < 6. Furthermore, the expression 
a4 - 2u2 + 4y2 - 4u2y - 4y + 1 vanishes at y = i<l f a) 2; hence (d/dy)L(y) =g’/(l - 2g) satisfies 
(2.2) with 6 = i<l - I a 1j2. 

Case 2: y > S. In this case we shall show that the expression under the limit in (2.1) becomes infinite 
starting from some n z 1. If y 2 3, then already the first term n = 1 in (2.4) is infinite. If y < i, write 
again the recurrence (2.5) in the form A,,+i =f(A,). Clearly, for x < i we have f(x) ax and by calculus 
f(x) -x attains the minimum value y - 6 at x = i<l - 1 u I>. Therefore for y > 6 we have A,, > y + n(y - 
S) exceeds 3 eventually. 

Case 3: y = 6. Direct computation shows that A, = 2-l I a I(1 - I a 112(2 - I a I>-’ > i<l - I a I). There- 
fore for A, <x < i we have f’(x) = u2(1 - 2~)~~ 2 q > 1 and hence f(x) > y + qx. Thus from (2.5) we 

get A,+i >yy(l+q+ *** +q”) exceeds 3 eventually. 
Rate function identification. Formula (1.2) now follows by calculus from (2.3) and (2.7). The details are 

+- J(y) = 0, O(x) = ~0. Let now x > 0 be as follows. For x < 0, I(x) = lim,, _Jxy - L(y)). Since lim, 
fixed. Clearly, O(x) =xy - IL(y), where y solves 

$qy) =x. (2.8) 

After some calculation, (2.8) gives 

2y-z-u2-l=xz(2y-z-u2-l), 

where 

z= 4y2 -4y+u4-4yu2-2u2+1, 

(2.9) 

(2.10) 

Since 2y -2 -u2 - 1 = -.a - (z2 + u2)l12 < 0, (2.9) implies z = l/x. Since y < 30 - I a 112, from (2.10) 

y = 3(u” + 1 - ( 2 z + 4~~)“~). Using z = l/x, we now get y = +(a2 + 1 - &Z&X/x). After some 
calculation (1.2) now follows. q 

Note’ added in proof 

Theorem 1 has been extended by the first named author and A. Dembo in “Large deviations for 
quadratic functionals of Gaussian processes” (in preparation). 
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