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Abstract: The behavior of the conditional expectation E{X I Y) under a small perturbation Z of the conditioning random variable Y 

is analyzed. We show that if Y and Z are independent then E(XIY + EZ) converges to E{XIY) in mean as E --* 0 for all 

integrable X, provided the distribution of Y is absolutely continuous. We also show that the limit is E{X 1 Y, Z} rather than 

E(X 1 Y}, i.e., there is no stability, when Y is a discrete (i.e., countably valued) random variable. Finally, we show that in general 

E(X ( Y + EZ) might have no limit in distribution as E * 0. 
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1. Introduction 

In this note we investigate the stability of the conditional expectation E{X I Y) under a small additive 
perturbation by a random variable Z, i.e., we study the behavior of E{X I Y + FZ) as E + 0. In the case 
when Y and Z are independent real valued and the convergence is understood in probability it is 
possible to answer the stability problem completely. Namely, we show that E(X 1 Y + EZ} converges to 
E{X I Y} as E + 0, if Y is absolutely continuous, E{X I Y + EZ) converges to E{X I Y, Z} as E -+ 0, if Y is 
discrete, and there is no limit in general. The same question can be asked also when Y and Z are 
Rd-valued random variables or when Y and Z are replaced by stochastic processes {Yf); however, the 
information that we have in those cases is far less complete and is left out of this note. 

The following result gives a sufficient condition for the stability of the conditional expectation under 
independent perturbations. 

Theorem 1.1. If Y, Z are independent, the distribution of Y is absolutely continuous with respect to the 
Lebesgue measure on [w and E{ ( X I} < ~0, then 

E{XIY+EZ} -E{XIY} inL,{dP) as ~‘0. (1.1) 
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Remark 1. Suitable modifications in the proof of Theorem 1 show that the conclusion holds also for 

dependent random variables Y, 2, provided they have joint density. 

Remark 2. In general, to show that (1.1) holds for all integrable X, it is enough to consider all X of the 
form X= 4(Z), where 4 : R! - R is bounded and uniformly continuous. Indeed, by the standard 
approximation argument, the finite sums C4JZ)Vi(Y), where $i, W, are bounded and uniformly 
continuous, are dense in Li(a(Y, Z), dP). For a single term of the sum we have 

E{4(Z)T(Y) )Yf&Z} = V(Y+&Z)E{+(Z) 1Y-t EZ} +ee,, 

where 

e,=E($(Z)(V(Y)-W(Y+&Z))IY+&Z}+O inL,(dP)as&+O. 

Therefore E{+(Z)WY) I Y + EZ) + V(Y)E{$(Z) I Y}, provided (1.1) is established for X = 4(Z). 

Remark 3. The argument given above also shows that (1.1) holds for all a(Y)-measurable integrable X. 
As a consequence, one easily gets that if Y has a density, E{ I Z I”) < ~0 for some p > 1 and E(Z) = 0, 
then E(Y I Y + EZI = Y + EZ + o(s), where II O(E) II,/ I E I + 0 as E + 0. Indeed, 

E{YIY+.sZ} =Y+EZ-EEE{ZIY+EZ] and E{ZlY+&Z} *E(Z) 

by Theorem 1.1. Szablowski (1986, Corollary 1.2) shows that if one conditions Z rather than Y, then the 
representation 

E{ZlY+&Z} =E{Z} +&p(Y+&Z) +0(e) 

permits one to determine the distribution of Y, which then has to be absolutely continuous. 

The following result shows that there is no stability in the discrete case. No assumption of 
independence is needed. 

Theorem 1.2. If Y is discrete and E{ I X I) < cx then 

E(XIY+EZ} +E{XIY, Z} inL,(dP) us ~-0 forallZ. (1.2) 

Remark 4. If in addition either 
(i> Z is discrete, or 

(ii) Z is bounded and Y takes a finite number of values, 
then the convergence in (1.2) is also in the most sure sense. 

The following observation complements Theorems 1.1 and 1.2. 

Proposition 1.3. Suppose Y, Z are independent and identically distributed. If (1.1) holds for all integrable 
X, then either Y is continuous (i.e., atomless), or Y is deterministic. 

Proposition 1.3 gives a necessary condition for (1.1). The following example shows that there are i.i.d. 
continuous (but not absolutely continuous) Y, Z such that E{X 1 Y + EZ} has no limit in distribution as 
& + 0. 

Example. Let tk, 7k be independent {O, I}-valued random variables. Suppose 

P(5,, = I> =P(qzk = I) =pl and P(C2k+l = 1) =P(w+~ = 1) =PZ for all k, 
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where 0 <p, <pz < 1 are fixed. Let 

k=l k=l 

Clearly, Y and Z are independent and identically distributed. Moreover, from the uniqueness of the 
ternary expansion in this case we see that 

Therefore 

0 if 77n+l + 51= 0, 

E ,,+;Z 
i 

=E(&,Iqn+, + t,> = Pdl - 4) 
P,+t--P,q 

if 77,+1 +51= 1, 

1 if 77,+1 + !51= 2, 

where q =pl if IZ is even and q =pz if y1 is odd. In particular, E{X 1 Y + (1/3”)Z) has no limit in 

distribution as n + ~0. 

2. Proofs 

Proof of Theorem 1.1. As it was pointed out in Remark 2, it is enough to establish (1.1) for X =f(Z>, 
where f( .) is a bounded continuous function. Furthermore, since the family of conditional expectations 
of a fixed random variable X with respect to different a-fields is uniformly integrable, we need only to 

show convergence in probability. 
Let g(y) be the density of Y. By F,, F,, F, we denote the cumulative distribution functions of X, Y, 

Z; A(. > denotes the Lebesgue measure and p 8 F is the product of measures Al. and d F. Clearly, 

E{X I Y) = ~fW’z(dz) 
and 

/ 
f(z)g(Y+EZ-ez)Fz(dz) 

E{XIY-t&Z} = 

/ 
g(Y+EZ-&z)Fz(dz) 

Since f is bounded, we have 

<IIf llm/Ig(Y++~z) -g(Y)IFz(dz). 

Therefore, to show that E{X I Y + EZ} + EIX I Y) in probability, it is enough to show that 

/I ( 
g Y+EZ-EZ) -g(Y)IFz(dz) +O in probability. (2.1) 
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To this end, for each S > 0 let h(.) = h,(.) be a uniformly continuous probability density function such 
that 

/k(y) -h(y)1 dy<S’. 

For real E let 

A,= (Y, 2): /Ig(y + 
i 

EZ-EEU) -h,(y+&z-EU)IF~(~U) >S . 
) 

By Chebyshev’s inequality, 

(A @ Fz)(A,) <f///l ( g yt~z-EFU) -h(y+~z-EEU)[ dyF,(du)F,(dz) <S. 

Let p > 0 be arbitrary. Since F,@ F, is absolutely continuous with respect to A @F,, therefore 

P((K Z) =A) <P (2.2) 

for all E and for all S small enough, say for all S < S,(p). Let 

B=B(&, 6) = (y, z): /Ig(y+~z-EU) -g(Y)IF,(du) >4S , 
( 1 

C=C(.x, S) = (y, z): /Ih(y+ez-EU) -h(y)(F,(du) >2S . 
1 1 

To prove (2.1) it is enough to show that P((Y, 2) EB) < 3p as E + 0. Clearly 

P((Y, z) EB) =d’((Y, Z) ~4,) +P((Y, Z) ~4) +FY@Fz(C). 

To end the proof it is enough to show that for every fixed S > 0, 

F,@ F,(C) -+ 0 as ~‘0. (2.3) 

Notice that since h( .) is uniformly continuous, there is an 77 = n(S) such that 1 h(y + EZ - 8~) - h(y) I< 

Sexceptwheneither lzI>n/IEIor lul>~/l~I. In particular, if (y, z)eC then either l.zl>q/I~I 
or 

Ih(y+~z-EEU) -h(y)lF,(du) >S 

Therefore, 

FY@Fz(C) <P( IzI>q/l~t) +FY@Fz(D). 

Clearly, P( 1 Z I > n/ 1 E I) -+ 0 as E + 0. The second term tepds to zero, too. Indeed, F, 8 F, is 
absolutely continuous with respect to A 8 F, and by Chebyshev’s inequality, 

A@F,(D)<ljj/ 
6 R R lul>TJ/lal 

[ h( Y + EZ - EU) + h(y)] F,(du)h(dy)Fz(dz) 

as e-0. 

This establishes (2.3) and ends the proof of Theorem 1.1. 0 
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Lemma 2.1. Suppose <FF c 9 are a-fields. Assume for euery 6 > 0 there is an s,,(6) > 0 and an A E .9 with 
P(A) > 1 - 6 such that for all 0 < 1 E 1 < Ebb, 

{S:S=B~A,BE~)X{S:S=C~A,CEF}. (2.4) 

Then E(X I F?.} --f X in L, as F + 0 for each integrable X. 

Remark. Obviously, (2.4) implies the equality of sets. 

Proof of Lemma 2.1. By the standard approximation argument it is enough to consider X = I,, the 

indicator function of an event C E F. Clearly, 

E{~E(Z,I.~.)-~,~)~E{~E{~,,.~.~.}-~,..~}+2~(AC). 

By (2.4) we have E{Z, n A I FF) - I, ,, A = ZB{E(ZA I FF) - I,), for some B E cFF. Therefore 

E(IE{&nA 15) -&“/I 1) <2E{IZ,-P(A)I)=4P(A)P(A’)<46. 

This shows that II ElZ, I FF) -I, 111 < 66 for all 1 E 1 < ~~~(8). 0 

Proof of Theorem 1.2. Given 6 > 0 pick a measurable set A c R with P(A) > 1 - 6 and such that the 

following two conditions are satisfied: 
(i) YZA has finitely many values; 

(ii) ZZ, is bounded. 
Put FF = a(Y + FZ). Clearly, for all E # 0 such that I E I is small enough we have 

a(YZ/j -t&ZZA) =(T(YIA, ZZ,). (2.5) 

This shows that condition (2.4) holds with .FF given above and .F= a(Y, Z>. Indeed, let C E 9, i.e., 
C = {w: (Y, Z> E 77) for some Bore1 set FQz R2. Then 

CnA ={oJ:(YZ,,ZZ~)E~/} nA. (2.6) 
However, {w: CYZA, ZZ,) E 71 = {w: YZA + &ZZA E zF) for some Bore1 set FFE c [w, provided F # 0 and I E I 
is small enough so that (2.5) holds. Therefore by (2.61, 

CnA=An{~:YZ~+~ZZ,~~F}=An{~:Y+~Z~%F}=AnB 

for some B E $. By Lemma 2.1 the proof is complete. 0 

Proof of Proposition 1.3. Suppose a E R is such that P(Y = a) > 0. Let C = {w: Y = a, Z = a}, A, = (w: Y 
+ EZ = (1 + &>a}. Clearly, P(C) > 0 and A, = C almost surely except for at most a countable number of 

E’S. In particular, P(A,) = P(C) > 0. 
Let X = 4(Z) for some 4. By assumption E{qMZ) I Y + EZ)} --) E{+(Z)) in probability. On AF we 

have 

1 
E{+(Z) [Y-t&Z} = - 

/ P(AF) A, 
4(Z)dP= &JjNZ)dP=O(a). 

Therefore E{4(Z) 1 Y + eZ> = 4( ) a on a set of probability P(C) > 0. Since for each 6 > 0 we have 

P{IE{~(Z)IY+&ZJ -JW(Z))I>~} <P(C) 

for all E # 0 with I E 1 small enough, therefore 4(a) = E{+(Z)]. The last equality, however, cannot be true 
for all functions 4 unless Z = a with probability one. This shows that if Y is not continuous, then it is 
deterministic and ends the proof. q 
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