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Suppose one has two measures of dependence between two or more families of
random variables. One of the measures is said to “dominate™ the other if the latter
becomes arbitrarily small as the former becomes sufficiently small. A description is
given of the entire pattern of dominations between arbitrary pairs of measures of
dependence that are based on the usual norms of the bilinear form “covariance.”
Also. for a broader class of measures of dependence, some carlicr “domination
inequalities™ arc shown to be essentially sharp. ¢ 1987 Acudemic Press. Ine

I. INTRODUCTION

Throughout this paper, if 1<p< » then p' denotes the conjugate
exponent of p. ie, 1<p'< > and l/p+1ip' =1

Suppose (£..#.P) is a probability space. For any o-field # <. 4
let (#) denote the set of (equivalence classes of) complex-valued
F -measurable simple functions.

Received June 20. 1986.
AMS 1980 subject classifications: Primary 60B05: Secondary 62H20.
Key words and phrases: Measures of dependence. domination. equivalence, interpolation.
* Partially supported by NSF Grant DMS 84-01021 and AFOSR Grant F49620 82 € 0009.
REW
0047-259X/87 $3.00

Copyright ¢ 1987 by Academic Press. Inc
Al rights of reproduction in any form reserved



MEASURES OF DEPENDENCE 313

Define the following measures of dependence between pairs of o-ficlds .7
and 4./ For 0<r, s<,

. |P(AnB)— P(4) P(B)| _ y
a4, (F, %) =sup (PAOT (PBT Ae 7 Be9. (l.1)

| Efg — Ef Eg |

- \ fe S (F)ges(94). (1.2)
Al hel,

Here and throughout this paper, 0/0 is interpreted to be 0. For 1 <p< =,
Il /i, denotes the usual p-norm with respect to the given probability
measure P. In (1.2) the restriction to simple functions is obviously
unnecessarily strong; it is for convenience only. Note that =, (-,-) is a
“restricted” version of R,, (-, -), the restriction being to indicator
functions.

If just real-valued functions are used in (1.2), then trivially the value of
R, (#.%) would decrease by at worst a factor of 4 (and by [18,
Theorem 1.17] and simple arithmetic the value of R, (-#,%) would not
change at all and is equal to the “maximal correlation™ between .# and %).
However, some applications of interpolation theory are “cleancr™ in the
complex case than in the real case (sce, e.g., [ 10, Lemma I; 3, Section 3],
or Eq. (2.5) below), and therefore we shall use complex functions.

The measures of dependence «,, ., %, 4. %, , and R, , are respectively the
bases for the “strong mixing.” “¢-mixing,” “y-mixing,” and “p-mixing” con-
ditions for stochastic processes; see, e.g., Peligrad [12] for the definition of
these mixing conditions.

If ¢, and d, are measures of dependence between pairs of o-fields, we say
that J, “dominates™ d, if d,(.#, ¥) becomes arbitrarily small as d,(.#.%)
becomes sufficiently small -that is, if there is a function @: [0, =] —
[0, ] with @(0)=0 and @ continuous at 0, such that the inequality
d\(F,6)<D(d,(#,%)) holds for all pairs of o-fields .# and 4, in all
probability spaces. Two measures of dependence are said to be “equivalent™
if each one dominates the other.

For example, the measures «,,,, and R, , are equivalent, and hence
Zyaq 0 1S also a basis for the p-mixing condition. (See [2; 6; 3,
Theorem 4.1(vi)].)

Many of the “moment inequalities” commonly used in central limit
theory for mixing random variables (including, c.g., [9. Theorems 17.2.1,

measures of dependence %, , and R, .
This note continues and complements [3]. Extending [3, Remark 4.1].
Section 2 below gives a complete picture of the dominations between pairs
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of the measures of dependence «, , and R, , in (L.1) and (1.2). In [3], in
the endeavor to establish tight “domination inequalities” between various
measures of dependence, the principal results were [3, Theorems 2.1, 2.2,
3.6, and 4.1(vi)]. All of these results turn out to be within a constant factor
of being sharp, for any choice of parameters mecting the given
specifications. (Such a constant factor may depend on the parameters.)
This will be shown with a construction in Section 3 below. Finally, in
Section 4 below, a short proof of {3, Theorem 2.27 will be given.

This note and [5] give disjoint pieces of [4]. The paper [5] studies
mecasures of dependence similar to those in (1.2) but involving random
variables taking their values in Hilbert spaces or Banach spaces; it exposes
a very simple conncction between those measures of dependence and the
one on which the “absolute regularity” (weak Bernoulli) condition [17] is
based. and it also extends [3, Theorem4.27]. As a complement of [3, Sec-
tion 4.47. in an unpublished section of [4]. the “extreme point™ method is
used to cstablish the sharpest possible general “domination inequality™
between the measures of dependence %, ,(.#.%)and R, ,(:#.%) for any
p. L<p< >, when one of the o-fields is purely atomic with exactly two
atoms, cach having probability 1/2.

Remark 1.1, In Sections 2 and 4 we shail make use of the Lorentz
spaces ¥4, ,= ¢, Q.. 4, P). 1<p,g<». For details about Lorentz spaces
and interpolation theory on them. the reader is referred to [1,8, 19].
However. it will be worthwhile to briefly review a few of the most pertinent
facts about them here. There i1s a very nice connection between the
measures of dependence %, , and Lorentz spaces. For | <p < » the Lorentz
space ¥, can be defined as the closure of the simple functions under the
norm [ /', i=inf {3 Ja; |- PP(A): Y 0 NA)=f]. (Thus &, =%, ,
and | ], , ts within a fixed constant factor of || f' ||, . Of course /(-)
denotes the indicator function.) The following equations hold: For
1<pog< .

Efe— EfEg|
11/\“,(*¢ﬁ9)i§11p¢___-_’__&_

s , . feSF ) ge S (). (1.3)
I, gl

Ve S L S =00 (1.4)

Forl<p<g<~ and fe (. 4), i<l s, (1.5)

where the constant ¢ depends only on p and ¢. Equations (1.3) and (1.4)
are casy to verify. To verify (1.5) it suffices to consider real nonnegative

fe ' (.#). The argument is well known: Construct a (nonnegative) r.v. /*
on the probability space [0, 1] (with Lebesgue measure) such that /*(r) is



MEASURES OF DEPENDENCE 315

nonincreasing as 7 increases on [0, 1] and /* has the same distribution as
/- Then

! s . .
W< T s atde<he o 1/ oo (16)

0

To see the first inequality, it will be helpful to represent /by > %, a,1(4))
with 4, 2 4,5 --- > 4, and ¢, >0 and to represent /* similarly. Of the two
norms in the r.hs. of the second inequality, the first is finite {assuming
p <¢) and depends only on p and ¢, and the second is || f||,. Thus (1.5)
holds.

[I. THE PATTERN OF DOMINATIONS

In the rest of this paper, a subscript or exponent of the form «, will often
be written «(h) for typographical convenience.

Rosenblatt [13: 14, p. 211, Theorem 1] used the Riesz interpolation
theorem to establish the equivalence of the measures of dependence R, ..
1 <p <. From this result, the ones in [3]. and the ones here i Sec-
tion 2. it turns out that all of the nontrivial dominations berween the
measures ¥, and R, in (1.1) and (1.2) are essentially conseguences of
interpolation theorems. In essence, interpolation theory determines
precisely what dominations occur between these measures of dependence
a,,and R, .

For each (r, s) such that 0 <r,s<1 and r+s> 1, let Q(r. s) denote the
closed (convex) quadrilateral region with vertices (0, 0), (1,0), {r, s), and
(0. 1). The main result of this section is as follows:

ros

PROPOSITION 2.1.  Statements (a)- (h) below give a complete list of all of
the dominations hetween  pairs of the measures of dependence  «, .
O<ros<l,and R, ,. 1<p.g<>.

{a) The measures of dependence «, . r+s<l, and R, .
l/p+ lig<l. are equivalent. They do not dominate uny of the other

measures of dependence 2, . R, .

(b) The measures of dependence a,; ., O<r<l1, and R
l<p< x. are equivalent. They dominate the measures o
specified in (a) but do not dominate any of the others.

mpe
and R, ,

rowN

(c) The measures of dependence %, o und R, , are equivalent. They
dominate the measures w, , und R, specified in (a) and (b) but do not
dominate any of the others.
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(d)  The measures of dependence ay, | and R., | are equivalent. They

dominate the measures o, . and R .y Specified in (a) and (b) but do not

r. vy
dominate any of the others.

(e} [10<ry. so<l,undr,+sy>1, then the following three stutements
hold:

(1) %0, woy aid Ry .0, 1y0, €ach dominate o, , and R,, .., for all
i ' ( . !
(r.s)e Q(ry. 5y) — ‘1(1,0}, (Fo. s0). (0, 1)}
(11) Ry 001 w0y dominates 2., qo,. butt o0, 40, does not dominate
Rl HOL T a6

(1) Nelther o, 0, 708 Ry a1 o0, domtinates any of the measures
of dependence oy . Ry, . 24w R, or 2, or R, . for
(ro8) € Q(rg. 8y).
(O If 0<ro<l and s,=1, then stutements (i)-(iii) in (e) all hold.
except that %, and Ry ., each dominare %, , und R, .
(gy I ro=1 and 0<s,<l1. then statements (1) (i) in (¢) all hold,
except that o, ., and Ry | o, cach dominate x, , and R, _, .
(h)  The measures of dependence x, | und R, | are equivalent (in fuct,
identical), and they dominate all of the other measures of dependence x,  and
Ry, .. (End of Proposition 2.1.)

The well-known measure of dependence associated with the “absolute
regularity” [17] condition dominates only the measures %, ., and R, in
(a). and is dominated only by the ones «, ,. %, , (0<r<l1)and R, ,. R, ,
(1<p< x), see [5, Section 37.

The rest of this section is devoted to the proof of Proposition 2.1. Let us
start by listing a few simple uscful inequalities:

0 (F GV<R,, | (F.G) (2.1)
x, (F.%4)and R, , | (F,%)areeach (22)
nondecreasing as r and/or s increases, -
2, o F <1, R, (F.G) <2, a3
Ay ((FLG)< L. R, ((7.4)<2. o

FO<r,riosg. 5, <L 0<O< 1, r=(1—=0)r,+0r, and v =
{1 —6)s,+ts,. then

%, (F GV [0 anl#.9)] " [on, o F, 4) ], (2.4)
Ry, (FL <SR vor 1w F 9] "R F9)]% (25)

Equation (2.4) has a trivial one-line proof (used, e.g., in [3, Theorems 3.1
and 3.27]). Equation (2.5) is an application of Thorin’s multilinear version
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of the Riesz-Thorin interpolation theorem (sec, c¢.g., [1, p. 18, Exercise
137). Note the analogous “structure™ of (2.4) and (2.5).

The four equivalence classes of measures x, , and R, . r+s<]1,
specified in (a)-(d) of Proposition 2.1, are discussed in [3, Remark 4.1].
The pattern of dominations between them (as stated in (a)-(d)) is simply
the well-known pattern of dominations between %, o, Rs 5, %, o, and 2, ;.
To complete the proof of (a)-(d) it just needs to be shown that none of
those measures dominates any «, , or R, |, forr+s>1.If r,+5,> 1 then
for ¢ > 0 sufficiently small, (r,, s,) would not be an element of either Q(l, ¢)
or Qe 1). From (f) and (g), Egs. (2.1) and (2.2), and the fact that
“domination™ is transitive, it would follow that none of the measures
specified in (a)-(d) could dominate «,., yo, OF Ry 0.1 .0~ Lhus. once
(e) (g) arc proved, the proof of {a) (d) would be complete. Also, (h) is
well  known and elementary. Thus, to complete the proof of
Proposition 2.1, all that remains is to prove (¢) (g). Propositions 2.2-2.6
below are devoted to this purpose.

PROPOSITION 2.2, Suppose that 0<ry, o, k1 sy <1, ko #ry, so# 8, and
0<O< 1. Define r and s by r:=(1—0)r,+0r, uml si=(1—0)s,+0s,.
Suppose that r+ s> 1. Then there exists a constant C=Clry. 1. So. 5., 0)
such that for cvery puir of a-fields # and 4,

Rl rod ,\'('i~ !{/)g (‘ ) [arill)‘ \'I(H('j/T~ /4))]] " [‘X,.[ Thoatl )(‘F‘ ’,4))]”_

Proof. This proposition can be obtained by applying Zafran [19,
p. 119, Theorem 2.9] to the bilinear form B( /), /) := Cov(f,. f>). To fit the
hypothesis of that theorem, think of this bilinear form as a bilinear
operator onto .%,(8,,. . 4,, P,), where ¢ is arbitrary, Q,, is trivial, consisting
of a single point, and P, (Q,)=1. First, a preliminary observation is
needed. For 1 <p < and real nonnegative fe ¥ (.#), by (1.6) one has
I/ 0, </ where || £, , is as in Remark 1.1 and || f [, is as in
[19. p. 108]. For I <p<oc and any fe (. /), | /], ,<4-| /\ ', thus
holds trivially. From this and (1.3) and an application of [19,
Theorem 2.97. Proposition 2.2 follows. |

Remark.  Proposition 2.2 also follows for r + 5 =1 as well as for r + 5> 1
by duality from the version of the Marcinkiewicz interpolation theorem
given in Hunt [8, p.264], applied to the linear operator T(f):=
E(f|%)— Ef. But we shall use only the case r + s> 1.

PROPOSITION 2.3. (i) If O<r,, so<1 and ry+s,>1, then o, o,
dominates R, |, for every

(r, $)€ Q(rg, 50)— {(1.0), (rg, $o). (0, 1)1
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(i) 11 0<r,<l1 then oy, | dominates R, for every

(r.5)€ Qrg, 1) — {1, 0) {r. 1),

(iity I 0<sy<1 then %, 4o, dominates R, ., ., for every

(r. S)EQ(L SU)V :“, SH)’ (O. 1):

Proof. We shall prove (i) first. Let S, denote the line segment with
endpoints (r,.s,) and (1,0), and let S. denote the line segment with
endpoints (r,.s,) and (0,1). By (2.3) and Proposition 2.2, %, o,
dominates R,, ,. for every (r.s)e[S,uS,]1—{(re. s0). (1.0) (0. 1)}
Also, by (2.2), 2,4, o dominates «, , and hence also R, .. r+s<l
(which are equivalent to =, , as noted in [3. Remark 4.1]). Finally, the
remaining points (r,s) in the interior of Q(r,. s,) each lie on some line
segment with onc endpoint on [S, U S,]— {(ry.5y). (1.0), (0. 1)} and the
other in {(r,s):r+s<1}, and hence by {2.5). %, .., dominates R, .
for every such point (r, s). This completes the proof of (i).

To prove (ii), first note that «,,,, , dominates R, , | for all r. 0<r<r,.
by (1.3), (1.4). and (1.5). The rest of the proof of (ii) is like that of (i).
Finally, (iii) follows from (ii} by symmetry. [

Proposition 2.3 and Eq. (2.1) together give ail of the dominations listed
in parts (c¢) (g) of Proposition 2.1. Now we are ready for the construction
of counterexamples to prove the remaining. “negative” assertions in
{e)-{g). A couple more trivial facts are worth keeping in mind. The quan-
tity | P(4 n B)— P(A) P(B)| remains unchanged if 4 is replaced by A, or
B by B‘; consequently, one always has

| P(A~ B)— P(A) P(B)] fAe F. PLAI< L
[P(4)] [P(B)]° ~  |Be%. PB)<!

A, ([F.%)=sup

Also, if % and ¢ are finite o-fields, each having exactly two atoms, then
R,, , (7.6 <4a, (F.%) by a trivial argument.

ProposITION 24. () If 1 <p< o then R, | does not dominate o, .

(ii) If 1 <q< o then R, , does not dominate o, ;.

Proof.  We shall first prove (i). For each & 0<e<i. there exists a
probability space and a pair of finite o-fields # = [Q, 4. A", ¢ and
4=1{Q. B B.¢!| such that P(4 " B)=P(A)=¢ and P(B)=1; and by a
direct calculation, R, (F,%¥)<4a,, (F.9)=4'" and %, ((F,9)=1
Statement (i) follows. Statement (ii) follows from (i) by symmetry. [
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As a consequence of Proposition 2.4 (and Eq. (2.1)), if r,< 1, s, < 1, and
Fo+ 50> 1, then Ry, 4, 1.v0, fails to dominate either o, o, R, ,, %, ,. or
R, . (If. for example, R, (0, 1,40, Were to dominate «, . then by (2.2} and
“transitivity,” Ry, ; would dominate a, ,, contradicting Proposition 2.4.)
By (2.1), in order to complete the proof of (e)-(g) in Proposition 2.1 we
only need to show that for (ry,s,) as in (¢)-{g). Ry, 1qe does not
dominate a, ; for any (r,s)¢ Q(ry, 5¢) and o, 0, does not dominate
R0, 1.0 These two facts will be shown respectively in Propositions 2.5
and 2.6 below.

PROPOSITION 2.5. Suppose 0<ry,so, ros <1, ro+s,>1, r+s>1, and
(r.)e O(ry. so). Then Ry, 140 does not dominate «, .

Proof.  Let ax -+ by =c¢ be an equation of a line containing (r,. s,) and
one of the points (1, 0) or (0, 1), such that the points (0, 0) and (r, ) are in
opposite haif-planes determined by that line. By the assumptions in
Proposition 2.5, we can (and do) take a, h, and ¢ all positive. Thus
ar + hs > ¢. Also (since r, + 5, > 1) we have that ¢ =max{a, b} Define £>0
by the equation ar+ bs=c +¢.

For each » sufficiently large there exists a probability space and a pair of
finite o-fields .7 = {Q. A4, A, ¢} and ¥ = {8, B, B', ¢} such that P(4)=
n <l P(B)=n "<! and P(AnB)=n “ "+n * . For such an n it
can easily be checked that R o, . ol-#.9)<du, 0, o(F.9)=4n " and
that o, (#.%)=1. Proposition 2.5 follows. |

PROPOSITION 2.6.  Suppose that O <r, s <1, r+ s> 1. and either r <1 or
s<1. Then a, . does not dominate R, , ..

Proof. By symmetry, without loss of generality we can (and do) assume
that » < 1. (So we allow the possibility s=1.)

Define the probability space (£2../4, P) as follows: Q:=[0,1]x {0, 1,
(the union of two disjoint intervals); ./ is the o-field of Borel subsets of 2,
and P is defined by

PAx{0)):= ’ D(x)dx
Ja

and (2.6)

P(A4x ‘ll}v)::~

(1 —@D(x)) dx
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for every Borel subset 4 < [0, 1], where

. . PN L
Blx) = {k%—w(.\) if xe[0, 4]

K—2- |\ (u) du il xe(4 1]

where 0 < <1 and

Jix) {z:.\‘" ! il u<xy<bh
X)i=
0 otherwisc.
where
— K‘
~(log I/k)"
u.:(%)}\_.\(] r}
hi=(3)xtt N

Note that by our assumption r+ s> | and simple arithmetic, we have that
0<u<h<i Also, for w sufficiently small, one has that 2|1 ¢(x) dx <w
and Y(x)<{ for all xe [0, {], and hence 0 < P(x) <1 for all xe[0,1].
Consequently, for w sufficiently small, Eq.(2.6) does indeed define a
probability measure. (We restrict x to such small values.)

Define the “marginal™ o-fields .# and ¥4 by

Fo=14x10,1}:4< [0, 1] Borel set |,
0. 1] % B: B= 10,1}, 10} {1}, 1.

N
il

Define the event B,:=[0,1]x [0}. Note that the marginal of P on
[0, 1] is Lebesgue measure and that P(B,)=nr <41

We shall first get an upper bound on 2, (.#,%). First a preliminary
calculation will be handy. The function ex” ' is non-increasing in (0, = ).
Also, @(x)—x is nonnegative for 0 <x<{ and negative for {<x<1.
Hence, letting n1 denote Lebesgue measure, we have that for every Borel set
A<[0, 1],

.‘ [D(x)—r]dx< J W(x) dx < | sx” Py
Jy J

Ao 2] e [001 2]

At A foc L 27
,

< ' ex’ Uy
<0

=(&/ry-[mAn[0, 12])] < (e/r)- [m(A}]"
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and

j” [(D(.\‘)—K]dXZ—m(Ar\(%,1])-2-(] Wix) dx

12
2—/;1(Am(‘5,1])~2~J ex” ldx
1]

=—(e/r)-mAn (L 1])-(4) !
= —(efr)-mAn G 1] - [mAn 3 1]D] !
= —(gfr)-[m(4)]"

and hence ||, [@(x)—r]dx|<(e/r)-[m(A4)]".
Consequently, it is easy to see that
| P(Ay Bo)— P(A,) P(B,)]

2, (F.9)=s : o A
%, (F,F)=sup [P(Ay)] - [P(B)] '~

”»t D(x)dx—[m(A)] k|
- { < [0. 17 Borel
P [m(A)] -k : A< [0, 1] Borel set
Ssup [m(A)] &
v
Cre(log 1K) T

A< [0, 1] Borel set

Note that a, (#,%) becomes arbitrarily small as » becomes sufficiently
small. (We are using our assumption r <1 here.)

Now we only need to show that R, ,.(F. %) fails to become small with
k. By a well-known, elementary result in functional analysis, we have for
p:=1/rand ¢ :=1/s (so that 1/p'=1—r),

el

S IEU(BY)| 7)) — EI(By)|
g H1(B)I,
_ Lo [Px) = x| ™ dx]'™
= =
_ () ax] '

K

R, (F.%)=sup

Py

geS(Y)

|p'

- [ (e-x" "y dv]' "
pE
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e [Py Tdx]!
o
_ 1
~ (log 1/x)!

o (les sy
~(log 1/k)" 7 ( F 1~r)( Ogh)]

s =\ r Py 1y
= — = —— > ().
(lfr r ) <r(l—r)) )

Hence R, ,(#. %) fails to converge to 0 as k — 0. This completes the proof
of Proposition 2.6 (and of Proposition 2.1). |

— (log b/a)’

I1I. SHARPNESS OF A DOMINATION RESULT

This section deals with measures of dependence between an arbitrary
finite number of o-fields. Let us first recall some terminology from [3].
Suppose (£2,./#, P) is a probability space, n>2, and .#...,.#, are
o-fields =. #. Suppose B: ¥ (.#) x --- X F(.#,)— C is an n-linear form, ie.,

for each i=1...n, B(f,....[,) varies linearly with f, (and B(f,,..,[,}=0
if f;=0 as.). Definc the notation [I, x]":={(py, ..p,):1<p, <2
VYk=1,..n}. Suppose p:={(p,,..p,)e[l.«]" Asin [3] define

|B(1(Al)3 seey I(An))l

d (B):=su , A, e FNk=1, .. n
P PTICAD o— THAD o, S
|B(fy. o f)] S
| B, :=su — = . (e FIVk=1, ., n
T I I R “

The quantity || B|, is the p-norm of the n-linear form B, and d,(B) is the
corresponding “restricted” norm, the restriction being to indicator
functions. In the special case where n =2 and B(/f},f;) :=Cov(f,.[f>), we
have dy(B) =21, 1.pio)(Fis F2) and | Bl[,= R, )\p(?.)(j’j' 7).

For each k=1,..,n define the following vector e[l,oc]": i,:=
(%, ..., %. 1, 7. ... =), where the 1 is the kth coordinate. The n-linear form
B is said to be a “product form™ if ||Bll;,;, <! Vk=1,..,n. By an
application of Thorin’s multilinear interpolation theorem (see, e.g., [3,
p. 349, Theorem 3.3]), if B is a product form and p=(p,. .., p,)e[1l, ©]"
is such that >y | 1/p, <1, then | B]|, <.

A key tool for the study of measures of dependence in [3] was the
following theorem.
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THEOREM A [3, Theorem 3.6]. Suppose n=2.  Suppose p:.=
(Prsap)ell, o] is such that 3} _ | 1/p, < 1. Define the number ¢ = c(p)
=2 tkpky< oy 1Pk Then there exists a constant A= A(p) which is «
Sfunction only of p, such that the following statement holds: If (2, .#, P) is a
probability space, #, .., F, are o-fields < .#, and B: S (F)x - -x
INF,)—>C is an n-linear product  form, then |[B|,<A-dy(B)-
[1~logd,(B)].

Here ¢ :=01if p= (., .., x ). The main result of this section is as follows:

THEOREM 3.1. Suppose n=22, and p:=(p,, ...p, e [1, = ]". Define the
number ¢ =c(p) =3 . <. 1/pi. Then there exists a positive constant
a=alp) such that the following statement holds:

For each 1, 0<1<2 ", there exists a probability space (R, .4, P) and
o-fields #,....#,c./ and an n-linear product form B: Y (F)x---x
S(F)— C (defined by B(fys.mf,):=E(f-f,)—T1i_, Efi), such that
d(B)=tand | B||,Zza-1(1 —logt).

Remark 3.2, Several comments will be made:

(a) The assumption > 7 _, I/p, <1 in Theorem A is not required in
Theorem 3.1.

(b) The constant ¢=¢(p) in Theorem 3.1 is exactly the same as in
Theorem A. Consequently, Theorem 3.1 shows that Theorem A is within a
constant factor of being sharp, for any choice of parameters meeting the
specifications in Theorem A. (This “constant factor” may depend on the
parameters.) Consequently [3, Theorem 4.1(vi)] is sharp in the same sense.
by Theorem 3.1 for n=2. Theorem 3.1 also shows indirectly that
[3, Theorems 2.1 and 2.27 are sharp in the same sense; for if this were not
so, then (see the proof of Theorem A} an improvement in [3, Theorems 2.1
and 2.2] (beyond just a better constant factor) would lead to a similar
improvement in Theorem A, contradicting Theorem 3.1.

(c) The a-linear form B in Theorem 3.1 was chosen partly for its sim-
plicity. Because of the extensive role played by cumulants in the study of
dependence between more than two random variables, it is natural to con-
sider measures of dependence based on norms of cumulants. For example,
Mase [11] studied the measure of dependence d,, , , ,,(Cum) between
four o-fields, where Cum denotes the 4th-order cumulant. Theorem 3.1
holds with B defined by B(f,....f,)=Cum(f,....f,) (the nth-order
cumulant). Because of our proof, this will be a trivial corollary of
Theorem 3.1 itself; in our proof the construction will be such that any »n — |

o83 23 2]
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of the o-fields .#, ....#, are independent, and hence (after massive can-
cellation) one will have

Cum(fy .. f)=E(fy- - f0— 1] E for fie(A) k=1

k=1

For limit theory under mixing conditions involving other measurcs of
dependence between three or more o-fields, see e.g., Zurbenko [20],
Statulevicius [ 15, 16], and Dmitrovskii er al. [7].

(d) One more eclementary comment: Suppose that no restriction is
imposed on the particular type of n-linear product form B. Then
Theorem 3.1 can be extended trivially to the values r, 2 "<r<1, by taking
Fr=-=F=1Q.¢! and Blf,...f,):=tf,- - -/, (a constant) for
fre S (#). and one can also cxtend Theorcm 3.1 to the case n=1 (for
0 <7< 1) Theorem A also holds for #=1. One can prove both theorems
for n=1 by a short direct argument or, alternatively, by converting the
case n=1, 1 <p, < %, to the case n=2, p=(p,, ») in a trivial way. Of
course the case n=1 is not of much interest for the study of measures of
dependence.

Proof of Theorem 3.1. The case where p,e |1, » } Vk=1,...n is very
simple. To satisfy the requirements of both Theorem 3.1  and
Remark 3.2(c¢), simply let Q= { —1,1}", let .# be the o-field of all subsets

of Q, and define P by P:=(1 —«) P, + 2P, where 0<a <1 and P, and P,
are the probability measures on (Q,.#) satisfying P({z})=2"" VzeQ
and P, ({:})—7 "HUYzi=(zy, .. 2,)€Q such that z,---- -z, =1. Let
Fl s denote the coordinate o-fields (each purely atomic with two
atoms). Note that any n—1 of them are independent. Consequently, in
evaluating d,(B), only atoms 4, € #, need to be considered. For the correct
choice of « (depending on ¢}, the n-linear form B defined in Theorem 3.1
will satisfy all requirements there (with a=ua(p):=1). The details are
elementary and are left to the reader.

To consider the remaining cases, henceforth we assume that [ <p, <
for at least onc ke {1, .., n}.

First some preliminary calculations are needed. For each p, | <p< «,

and each v, 0 <v <34, define the function G, ,: [0. 1] — [0, 1] as follows:
G, (x):=min{x, ox'"} for 0<x<d
G, (X)) =G (1 —x) for {<x<l.

Note that G is concave and increasing on [0, 3] and hence G is concave on

[o. 17.
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For 1 <p< oo and 0 <v <4 define the function g, ,: [0, 1]—-[—1,1]
by g, (x):=(d/dx) G, ,(x). That is,

1 if O<x<e?’
e (lpy-x ' if " <x<i

8rpl¥) = —v-(I/p)-(L—x) "7 if f<x<l—0" (3.1)
—1 il 11— <x<l

(g, , is not defined at x=0, e L 1 —¢7. 1) Then g, » Is nonincreasing,
fhg. (x)dv=0, and | g, ,(x)| <1 for all x at which g, ,(x) is defined.
If0<ev<{and p=1 or x, define the function g, ,: [0.1]>[~1,1] by

. 1 if 0<x<! (3.2)
& pl¥) = —1 if l<y<l! .

In this case too. g, , is nonincreasing, |} g, (v} dy=0, and | g, (X} <
The following integral will be used later on. If | <p< % and O<v
then

| g (017 de=0" 1+ (1/p)” (log 4= p'log v)]. (3.3)
Y0

Now let us get to the main part of the argument. Henceforth let m
denote Lebesgue measure on [0, 1]. Let ¢ be arbitrary but fixed such that
0<t<2 " (as in Theorem 3.1). Define v, 0 <v <1, by

(1)c:||'df}\"pi/\):— v eurd A b e pthy e s
5

-1 b= I (3-4)

Define the probability space (Q,.#.P) as follows: Q:=[0.1]":=
[0, 1}x[0,1]x---x[0,1]. .4 1s the o-field of Borel subsets of Q2. P is
defined by

n H

Py x - x A =TT mAg+ [] | g0 elv)de (3.5)
A

A1 ~ VAR

for all Borel subsets 4, ..., 4, [0, 1 ]. (Recall the inequality | g, ,(x)| <1
mentioned above.)

Note that since [} g, ,(x) =0, each of the marginal distributions of P is
uniform on [0, 1].

For each A =1, .., n let .%_ be the o-field generated by the kth coordinate
in Q. (Note that any n— 1 of the o-fields .%,. ..., .#, are independent, as
needed for Remark 3.2(c).) Define the a-linear form B: #(#)x ---x
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S(#,) - Casin Theorem 3.1: B(f\, ..[) :=E(f,- - - f,)—=11i.  Ef. As
a consequence of (3.5) one has that for f, e ¥ (#). k=1,..n,
" a1
BUf i) =11 | fel¥) g, paif ) dx (3.6)
k1 ()

(where f{x,....Xp |+ X, Xi.;....X,) 18 written f(x)) and, since
| g0 () < 1L it follows that B is a product form.

Proof that d,(B)=1. Suppose that D, e 7., k=1, ..n with P(D,)#0.
For each A, represent D, by D, :=[0, [ ]x - x [0, 1 ]x B, x [0, 1]x---x
[0. 1] (where the Ath coordinate set B, is a Borel subset of [0, 17]). Then

|BUD,). ... (D))

"

T[] e
Btk

Ao 7B i

" ci( )
S IREr
1 N -

o

:L 1 G,»_,.(MU?HBUD]
T3 .

A B )
x l_[ ‘ & pik ;( X)dx
Vkoptk)=lor o L0

S[ 11 l'-(m(BA))""“J
kil

< pthy-: s

el [
Thipthy L otk o

H

_ g hyeardfAipthy 2 card A e plhy < . i
7(3“ oy .lL \ n ‘ . l_l I‘I(D/\v)“mk;

=1 [ 1D o (3.7)
A1

by Egs. (3.1). (3.2). and (3.4) and the fact that for each 0 <v <4, 1<p <,
the function g, , is nonincreasing (as noted earlier), odd-symmetric about
x=14 and <1. (In (3.7) of course [], (anything), the “empty product,” is
interpreted to be 1.) Thus ¢ (B)<i. To show that in fact d,(B)=1t, note
that in (3.7), equality is achieved in the case where B, =[0,4] Vk=1, ... n.

Proof thut | Bi|,=za-1(1 —log ). Define the r.v.s f,, ... f, as follows:
filX e X)) =g 0y if’ pr=1 or o and fx,, .. x,) =
[sign g, (X)) 11 8 ik x)7 if 1 <py <. To shorten the notation
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below, we write f,(x) instead of [ (x|, ... X |, X, Xgy s X,). Note that
for each k. f, € #,(%). (The fact that these r.v.'s are not all simple, is no
problem. The n-linear form B extends uniquely to 7, () x --- X &, (%)
without changing any norms.)

We shall use Eq. (3.6). For each & such that p, =1 or «,

ot

]

For each & such that 1 <p, < x.

[l g pufx)dx=1and | /il =1/l =L

4]

a1

ot 2 .
‘ A/‘I\'(-\')gp,p(l\)(-\‘)dx:z'J [grx/yl/\')(»\-)]m d.\'
“0

0
and

. ] T a2 ) L ptk
H .f/\’ ‘p!/\’)zzlrml\,.[f [gl‘,p(/\’)(-\-)]/y;\ (['Y] .

v

Hence

B(_/’lw._._f;’)z[ n 91 Lptky
VAol <

plhy< o)

12 , L Lpthy ] n
xﬂ [g (1)1 de ] Tl

YO

By (3.3) and (3.4), for each & such that 1 <p, < 0,

ati2

J ) [g,.pm(-v)]”i dx 2z a, 'Um(l —log 1),
0

where a, is a positive constant that depends only on p.

Hence by (3.4), B(f\.../)=a-t(1 =log ) -T1i_, || fu l jk» Where ¢ is
as in Theorem 3.1 and a: =11/t pe)< .y al’i (which is positive and
depends only on p). Thus || Bll,=a-1(1 —log t)‘. This completes the proof
of Theorem 3.1. |}

IV. APPLICATION OF THE REITERATION PROCEDURE

Except for a specific value for the constant factor, [3, Theorem 2.2 ] is as
follows:

THEOREM B. Suppose (Q,.#, P) is a probability space, # and 4 are o-
fields = .H#, 1 <p< o, and 0 <e< 1. Suppose T: S(F ) - L, (%) is a linear
operator such that
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1Tl . <T (4.1)
[T, . <L (4.2)
Iri,, . . . <e (4.3)
Then
170y, 0, < Ce(l —loge)r, (4.4)

where C is u constant that depends only on p.

In the case 7(f):=E(f|%)— Ef. one has the well-known connection
R, (F.9)=|Tl|,, ., and in [3, Theorem 4.1], Theorem B was
applied to 17 for this T. The same type of connection in higher dimensions
was a key tool in [3]. Of course, Theorem B can be generalized in several
ways (for example, using infinite positive measures instead of probability
measures ).

The purpose of this section is to give a very short proof of Theorem B,
using more interpolation theory than the proof in [3]. The proof here
secems harder to generalize to the multidimensional case as in [3,
Theorem 2.17; to do this, one might use Zafran’s [ 19, Theorem 2.9 ] mul-
tilinear Marcinkiewicz interpolation theorem (which we used in the proof
of Proposition 2.2 above), but one first needs some bounds on the mul-
tiplicative constant in that theorem.

Proof of Theorem B. Throughout this proof, the constant ' may vary
from one appearance to the next, but it always depends only on p. Without
loss of generality, we assume 0 <¢<e °. The remaining cases either follow
from this case or are trivial.

Let 0= —1/(loge). Then 0<d<4 Define p, and p, by l/p,=
(1—=90)p+0/1 and 1/p,=(1—0)/p+9d/x. Then | <p,<p<p, <. Now
we apply the Marcinkiewicz interpolation theorem twice, each time with an
explicit upper bound on the constant in that theorem: see, e.g. [21,
Chap. 12, Theorem (4.6) and Eq. (4.2.1}]. In that way, by (4.1) and (4.3)
we obtain | T|, . ,.Mg("~(1/(5)‘””‘“’4;1 °, and by (4.2) and (4.3) we
obtain [ T, .., <C-(1/8)" e < Let 6=1—1/p. Then 0 <l <1
and 1/p=(1-8)p,+0/p,. By applying the Riesz Thorin interpolation
theorem (see [1.p.9]) we have |[T|,, .., <C-(1/8)'"e" °=
C(—loge)' " 6.6 "< C(—loge)'”e (since ¢ °=e). This completes the
proof. |
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