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On Dominations between Measures of Dependence 

RICHARD C. BRAI~IIY * 

ANI) 

SVA% 1 I: JANSON 

Suppose c,ne has two mc;tbttres 01 dcpendencu hclwwn two or more familica 01 

random vctriablcs. One of the mt’asures IS said to “dominate” the other if the latter 

becomes arbitrarily small BS the former hecomc\ \ufliwntly amall. A description I\ 

gikcn of the entire pattern of dominatlon~ between arbitrary pairs of mwsurcs c,f 

dependence that art‘ hascd on the usual norms of the lxltnear form “covariance.” 

Also. for :I broader class of mt’ahurcs of dependcnce. wmc carlicr “dommatlon 

mequalities” zrc \how#n IO hc e\entially sharp 1 I’JK? \i.dCrnk I’K\\. 1111 

I. INTRODI;(TION 

Throughout this paper, if I <II < x then I” denotes the conjugate 
exponent of p. i.e., 1 <II’ < x and I //I + I .I,’ = I. 

Suppose (Q, I’/. P) is a probability space. For any o-field .P c. N 
let .U(.P) denote the set of (equivalence classes of) complex-valued 
.F-measurable simple functions. 
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Define the following measures of dependence between pairs of o-fields .% 
and !G c I //: For 0 6 I’, s 6 1, 

x,,(3, Y) := sup 
IP(AnB)-P(A)P(B)I 

IfT.4 ,I’ CfYWI ’ 
.dc.F, BE%. (1.1) 

For I bp, y< %, 

R,,,,,(.F, 9) := sup I Ef,4 - Ef’J% I 
II 1‘ II,’ II <Y II ,, ’ 

,f’E .I/ (.F), g t :I’(!!?). (1.2) 

Here and throughout this paper, O/O is interpreted to be 0. For I <p ,< 81, 
I/ f’ll,, denotes the usual p-norm with respect to the given probability 
measure P. In ( 1.2) the restriction to simple functions is obviously 
unnecessarily strong; it is for convenience only. Note that x,,,( ., . ) is a 
“restricted” version of R, )‘, , ,( ., ), the restriction being to indicator 
functions. 

If just real-valued functions are used in ( 1.2) then trivially the value of 
R,,.,,(.F, %) would decrease by at worst a factor of 4 (and by [ 18, 
Theorem I.1 ] and simple arithmetic the value of R,,,(.F, !q) would not 
change at all and is equal to the “maximal correlation” between .p and Y). 
However, some applications of interpolation theory are “cleaner” in the 
complex case than in the real case (see, e.g., [ 10. Lemma I; 3. Section 31. 
or Eq. (2.5) below), and therefore we shall use complex functions. 

The measures of dependence x ,,,,,, x ,.(,, r ,, , , and R,,, are respectively the 
bases for the “strong mixing,” “d-mixing.” “$-mixing,” and “,I-mixing” con- 
ditions for stochastic processes; see, e.g., Peligrad [ 121 for the definition of 
these mixing conditions. 

If ti, and tl, arc measures of dependence between pairs of a-fields, we say 
that (I, “dominates” (I, if tl,(.F, Cq) becomes arbitrarily small as tl,(.B. %) 
becomes sufficiently small that is, if there is a function @: [0, ~1 + 
[0, ‘X ] with Q(O)=0 and @ continuous at 0, such that the inequality 
rl, (.P. :C) < @((/,(.F, ‘.G)) holds for all pairs of a-fields .Y and :C, in all 
probability spaces. Two measures of dependence are said to be “equivalent” 
if each one dominates the other. 

For example, the measures cx, l., z and R,,? are equivalent, and hence 
2, :, , 2 is also a basis for the p-mixing condition. (See 12; 6; 3. 
Theorem 4.l(vi)].) 

Many of the “moment inequalities” commonly used in central limit 
theory for mixing random variables (including, e.g., [9. Theorems 17.21, 
17.22, and 17.2.31) can be expressed in terms of dominations between 
measures of dependence x,, , and R,,,. 

This note continues and complements 131. Extending [3, Remark 4.11. 
Section 2 below gives a complete picture of the dominations between pairs 
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of the measures of dependence J,,, and R,,,,, in ( 1.1) and ( 1.2). In [3]. in 
the endeavor to establish tight “domination inequalities” between various 
measures of dependence, the principal results were 13, Theorems 2.1. 2.2. 
3.6, and 4.1( vi)]. All of these results turn out to be within a constant factor 
of being sharp, for any choice of parameters meeting the given 
specifications. (Such a constant factor may depend on the parameters.) 
This will be shown with a construction in Section 3 below. Finally, in 
Section 4 below, a short proof of 13, Theorem 2.21 will be given. 

This note and [5] give disjoint pieces of 141. The paper [S] studies 
measures of dependence similar to those in (1.2) but involving random 
variables taking their values in Hilbert spaces or Banach spaces; it exposes 
a very simple connection between those measures of dependence and the 
one on which the “absolute regularity” (weak Bernoulli) condition [I 71 is 
based. and it also extends [3. Theorem 4.21. As a complement of [3, Sec- 
tion 4.41. in an unpublished section of L4]. the “extreme point” method is 
used to establish the sharpest possible general “domination inequality” 
between the measures of dependence x , ,, , ,, (.F. % ) and R, ,‘.( 3. Y) for any 
1’. 1 <[I < ‘Y . when one of the a-fields is purely atomic with exactly two 
atoms, each having probability 12. 

Rcrm~rl\ 1.1, In Sections 3 and 4 we shall make use of the Lorentr 
spaces YP, (, = Y;, ,,(B, N, P). I < 11, L/ < x . For details about Lorentz spaces 
and interpolation theory on them. the reader is referred to [I. 8, 191. 
However. it will be worthwhile to briefly review a few of the most pertinent 
facts about them here. There is a very nice connection between the 
measures of dependence x,, \ and Lorentz spaces. For I dp 6 x the Lorentz 
space Y;,. , can be defined as the closure of the simple functions under the 
norm 1, f’ Jo,, , := inf[~,~/~,I.~‘r(r‘l,):~:,u,I(..l,)=,f’~. (Thus Y,,,=Y,, 
d II f ‘1 , , is within a fixed constant factor of iI ,I’~/ , Of course I(. ) 
denotes the indicator function.) The following equations hold: For 
I < 1’. q < x . 

whcrc the constant C’ depends only on p and cl. Equations ( 1.3) and ( 1.4) 
are easy to verify. To verify ( 1.5) it suffices to consider real nonnegative 
1~ .‘I’(. N). The argument is well known: Construct a (nonnegative) r.v. / * 
on the probability space [0, I ] (with Lebesgue measure) such that f*(t) is 
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nonincreasing as t increases on [0, 1 ] and ,f‘* has the same distribution as 
f: Then 

I “:f’*( t ,] dt 6 11 t ’ ” II L, [Il. 11 II f’* 11 Y ,,I”. I I’ (1.6) 

To see the first inequality, it will be helpful to represent ,f by C,“= , N,Z( .4,) 
with A, I .4 z 3 . EI .4 h and u, 3 0 and to represent ,f’* similarly. <If the two 
norms in the r.h.s. of the second inequality, the first is finite (assuming 
p < (I) and depends only on p and ~1, and the second is jl j’ll,,. Thus (1.5) 
holds. 

II. THE PATTER& OF DOMINATIONS 

In the rest of this paper, a subscript or exponent of the form 11,~ will often 
be written u(h) for typographical convenience. 

Rosenblatt [ 13: 14. p. 211, Theorem I] used the RiesL interpolation 
theorem to establish the equivalence of the measures of dependence R,,.,, . 
1 </I < ~1. From this result. the ones in 131, and the ones here i;; Sec- 
tion 2. it turns out that all of the nontrivial dominations be’Lvecn the 
measures r r. ( and R,, ‘, in ( 1 .I ) and ( 1.2) are essentially consequences of 
interpolation theorems. In essence, interpolation theory determines 
precisely what dominations occur between these measures of dependence 
I,., j and R,,. ‘, 

For each (Y. .v) such that 0 < Y. .Y < 1 and r + .s > I, let Q(r. .s) denote the 
closed (convex) quadrilateral region with vertices (0. 0), (1, O), (r, s), and 
(0, 1 ). The main result of this section is as follows: 
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(i) ‘2 I,o,. ,,o, rrtd R, ,.,(,,. , ,((,, racll dminatr~ t(, , and R,,,, 1 ., for all 

(r..c)cQ(r.,,..s,,)- ICl,O). (r ,,,. s,,). (0, 1)j.‘ 

(ii) R , I ,,,,. , ,,,,, ri0ttlitinlc.s x,.,(,,, ,Io,. hit ~2,,,,~, ,,,,, rloc~.s riot dottlit7utc 

R I ,,(I, I \,I,,’ 
(iii) IVtJirhcr x,. ,,,,, ,Iol tw R, ).,,), , ,,,,, ri0rtiitlutr.s utlj’ c$ tk tmwswcs 

of’ rlqwtdcwc~ ;( , (, . R , , . ‘All. I1 R , , or x, , or R I I.1 \ for 

(I’. .s) 4 Q(r,,, .s,,). 

(f) If’ 0 < r,, < I tulrl .s,, = 1, thtw .stirtrtmwf.s (i )- (iii ) iti (63) till hid. 

t’.uwpf fhtrr x ,,,,,, , rrtd R, ,1o1. , LYIC~ dott~it~utc~ xc,, , td R I. 1, 
(g ) If’ r,, = I utiil 0 < s,) < I, r/wti .stutrttirtit.s (i ) (iii ) iti (c ) u/l ho/(/, 

t’.v’c?pt thrrt x ,, \ ,,,, utd R ,, , ~ ,,,, cwc,h dottlitlu~c IX ,, ,, utd R ,, , 

( h ) Tlw ttwumrcs of’ tkpetd~wr x ,. , mu! R , , urc ryuiwletzr (iti ,fkf, 

irltvitictrl), utiti 1lwJ~ rlottiitiutr ull of’ rlit~ otlicr twu.siwc.s of’d~prtirkticc~ x,, / utitl 

R , ,, , ). (Em/ c!f’ Propmitioti 2. I, ) 

The well-known measure of dependence associated with the “absolute 
regularity” [ 171 condition dominates only the measures Ye \ and R,,. ,, in 
(a). and is dominated only by the ones x,. , . x,, , (0 <r < 1 ) and R ,.,,. R,,, , 
(I <p < x ), xc [S, Section 31. 

The rest of this section is devoted to the proof of Proposition 2.1. Let us 
start by listing a few simple useful inequalities: 

Y,, ,(-F. :C) < R, ,. , ,(.F. ‘G), (2.1) 

x,. ,(F, 3) and R , , , ,(.F, !G) are each 

nondecreasing as r andjor .s increases, 
(2.2) 

rr,,,,(.%,!G)< I, R,, , (.F. %)<2, 
x ,,., (T,:C)< I. R,,,(.F.!G)<?. 

( 2.3 ) 

If 0 < F,,. r,. .s,). .s, < I, 0 < 0 < I. r = (1 ~ 0) r,, + Or,, and .s = 
( I - 0 ) .s(, + OS, . then 

;I,, ,(.F. CC)< [a, ,(,, / (0, (F,!g)]’ ‘I I%,- (I)( ,,,,(Y, :4’)]“. (3.4) 

R, ,. , \(.F 3 ‘/;I< IR, r,,),. , ,go,(.P> !q)l’ ” CR,. r,,,. , ,,,,(,F, 9)l”. (2.5) 

Equation (2.4) has a trivial one-line proof (used. e.g.. in [3, Theorems 3.1 
and 3.21). Equation (7.5) is an application of Thorin’s multilinear version 
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of the Riesz-Thorin interpolation theorem (see, e.g., [ 1, p. 18, Exercise 
131). Note the analogous “structure” of (2.4) and (2.5). 

The four equivalence classes of measures rr,, and R, ,, , ~, I’ + .Y < 1, 
specified in (a))(d) of Proposition 2.1, are discussed in 13, Remark 4.11. 
The pattern of dominations between them (as stated in (a))(d)) is simply 
the well-known pattern of dominations between T~,,,~, R,,2, CC,,~, and rO,, 
To complete the proof of (a))(d) it just needs to be shown that none of 
those measures dominates any a,., , or R, l., , for r + s > 1. If I’,, + .s,) > 1 then 
for c > 0 sufficiently small, (r,) , .s,,) would not be an element of either Q( I, 1:) 
or Q( 6, I ). From (f) and (g), Eqs. (2.1 ) and (3.2), and the fact that 
“domination” is transitive, it would follow that none of the measures 
specified in (a))(d) could dominate Y,.,~,,. ,(,,, or R, ,,(),. , \,,,). Thus, once 
(e) (g) arc proved, the proof of (a) (d ) would be complete. Also, (h) is 
well known and elementary. Thus, to complete the proof of 
Proposition 2.1, all that remains is to prove (e) (g). Propositions 2.2L2.6 
below are devoted to this purpose. 

Ptwof This proposition can be obtained by applying Zafran [ 19. 
p. 119, Theorem 2.91 to the bilinear form B( /‘, ,,/>) := Cov(,/‘, ,,#i). To fit the 
hypothesis of that theorem, think of this bilinear form as a bilinear 
operator onto .Y:,(n,,, , //;,, P,,), where y is arbitrary, a,, is trivial, consisting 
of a single point, and L’,,(n,,) = I. First, a preliminary observation is 
needed. For I <p < 8~ and real nonnegative ,f’~ .Y’(. I(/), by ( 1.6) one has 
11 f’ I,,, , < I/ ./‘IlF , , where I/ .f’Il,,. , is as in Remark 1.1 and // .f‘IIX, is as in 
[ 19. p. IOS]. For 1 </I< ‘X and any ,/‘E.‘/‘(.//), 11 ,f’lI,,. , ~4. I/ f’li,T, thus 
holds trivially. From this and (1.3) and an application of [ 19, 
Theorem 7.91. Proposition 2.2 follows. 1 

Rrttturh-. Proposition 2.2 also follows for r + .s = I as well as for r + s > I 

by duality from the version of the Marcinkiewicz interpolation theorem 
given in Hunt [X, p. 2641, applied to the linear operator T(,/‘) := 
E( f’ 1%) ~ E/I But we shall use only the case r + s > 1. 

(r, .s) E Qtr,,, .so)- (( 1. 0). (r,,, Jam). (0, 1 )). 
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(ii ) If 0 < r,, < 1 tlzetl a, ,,,,. , dominates R, r, , , ,for cwr~ 

(r, .s) E Qfr,,, l)- j(l,O), (ro, 1):. 

(iii ) If 0 < ,Y,) < 1 tlrm x ,, l,o, ciotnirutrs R, ,, , , ,fiw rwr>, 

(r,.r)EQ(l,S,,)- ;(l,.s,,), (0. 1);. 

Proc$ We shall prove (i) first. Let S, denote the line segment with 
endpoints (r,,. .s(,) and (1, 0). and let S, denote the line segment with 
endpoints (r(,. ,, Y ) and (0. 1 ). By (2.1) and Proposition 2.2. YIP,,,). ,,,,, 
dominates R, , , j for every (v..Y)E[S,~JS~]-- ((r ,,., so). (1.0). (0. 1);. 
Also. by (2.2). rrtC,, i,,j, dominates x,,, (I and hence also R, ,, , \. r + .s -c 1 
(which are equivalent to ‘x,, (I as noted in [3. Remark 4.1 1). Finally, the 
remaining points (r. s) in the interior of Q(r,,, s,,) each lie on some line 
segment with one endpoint on [S, u S’?] ~ i (ro, so). (1, 0), (0. 1 ) I and the 
other in [(r, \):r t .s< 11, and hence by (1.5) cz,(,,),,,,,, dominates R, l., I 
for every such point (r, x). This completes the proof of (i ). 

To prove (ii), first note that u~,(,, , dominates R, ,, , for all r. 0 <r < r,,. 
by (1.3). (1.4). and (15). The rest of the proof of (ii) is like that of (i). 
Finally. (iii) follows from (ii) by symmetry. 1 

Proposition 2.3 and Ey. (3.1 ) together give all of the dominations listed 
in parts (c) (g) of Proposition 2.1. Now we are ready for the construction 
of counterexamples to prove the remaining. “negative” assertions in 
(e) (g). A couple more trivial facts are worth keeping in mind. The quan- 
tity / P(A n B) ~ P(A ) P( B)l remains unchanged if A is replaced by A’, or 
B by B’; consequently, one always has 

Also, if 3 and CC are finite o-fields, each having exactly two atoms, then 
R , , , ,(Y. CC) ,< 4a, ,(.F. 3) by a trivial argument. 

PROPOSITION 3.3. (i) I#’ 1 </I < x1 t/w R,,, , L~OC.S rlot thmincIte x ,_ (,. 

(ii) !f' 1 < C/ < ‘~8 thm RI, L, doe3 uot cloniinut~~ cIo. , 

/‘rot!/: We shall first prove (i ). For each E, 0 < i: < {. there exists a 
probability space and a pair of finite a-fields .B = ( R, .4, A’, (6 ) and 
!G= i.0. B, B’.~!J; such that P(AnB)=P(A)=c and P(B)=+; and by a 
direct calculation, R,,. ,(9, ‘6) < 43~~ ,,, ,(,F, !g) = 4~““’ and x,, (,(.F, 3) = i. 
Statement (i) follows. Statement (ii) follows from (i) by symmetry. 1 
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As a consequence of Proposition 2.4 (and Eq. (2.1 )), if I’,, < 1, s,, < 1. and 

I’[) + .G > 1, then Rl,,tu,. l,~,lol fails to dominate either x,,,~, R,. , , slo ,. or 
R , , (If. for example, R, r,O), ,,,(,,, were to dominate a,, Cl, then by (2.2) and 
“transitivity,” R,,rcc,,, , would dominate cx,. ,!, contradicting Proposition 2.4. ) 
By (2.1), in order to complete the proof of (e)-~( g) in Proposition 2.1 we 
only need to show that for (Y,, s,,) as in (c)~(g), R, ,,,, ), , \,o, does not 
dominate x,, , for any (v, s) $ Q( Y,), so) and ur ,,,,, ,(,,, does not dominate 
R , ,,(,,. , ,,,,,. These two facts will be shown respectively in Propositions 2.5 
and 2.6 below. 

Pr.oc!/: Let U.Y + /I>% = c be an equation of a line containing (r,,, s,,) and 
one of the points (1. 0) or (0, 1 ). such that the points (0.0) and (v, .s) are in 
opposite half-planes determined by that line. By the assumptions in 
Proposition 2.5. we can (and do) take LI, h, and c all positive. Thus 
w + h.c > C. Also (since T(, + .s,, > 1 ) we have that c = max ( LI, h ) Define 8: > 0 
by the equation (III’ + hs = c + 8:. 

For each tz sufficiently large there exists a probability space and a pair of 
finite a-fields :F = (C?. .4. A’. C#J 1 and !$ = (fi, B, B’. 4: such that P(A) = 
I1 <’ < ;, P(B) = I1 “~4. and P(AnB)=w <’ “+tt ’ I. For such an ~1 it 
can easily be checked ihat R, r,o,, , ,(,,,(.a, !C) <4r,.,,,,, ~ ,,,, (-F, 9) =4t: ’ and 
that r, ,(Y. %) = 1. Proposition 3.5 follows. 1 

PROPOSITION 2.6. Sqp~t~ tllut 0 < I’, .S < I. I’ + .S > 1. utd c’itlwr. I’ < 1 ot 
.\ < 1. Tlwtt cx,, , thrs not dtttlittuft~ R, ,. , , 

Proc$ By symmetry, without loss of generality we can (and do) assume 
that I’ < 1. (So we allow the possibility s = 1.) 

Define the probability space (.C2. ,N, P) as follows: CI:= [0, II] x (0. 1 i 
(the union of two disjoint intervals); . N is the o-field of Bore1 subsets of fi: 
and P is defined by 

an d 

Pt.4 x (O] ) := i_ Gqs) (1.X 
” I 

(2.6) 
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for every Bore1 subset .4 c [0, I], where 

Q(x) := 
i 

K$Ic/(.Y) if .YE [O. i] 

ti-2~~,~2~(z~)flz~ if .YE($ l] 

where 0 < K < 4 and 

’ $(-y, := 
i 

if II < .\- < h 

otherwise. 

(3.7) 

where 

k.) 
I; := (log ,!/.)I I’ 

(,:=(;)fi’l ‘1. 

j := ($) k-1’ ‘I’. 

Note that by our assumption I’ + .s > I and simple arithmetic, we have that 
0 < (I < h d $ Also, for ti sufficiently small, one has that 2 i,‘, ’ $(.\-) L/.X < h- 
and $(.Y) 6 4 for all .YE [0, i], and hence 0 < @(.Y) < 1 for all I E [0, I]. 
Consequently. for ti sufficiently small, Eq. (2.6) does indeed define a 
probability measure. (We restrict h- to such small values.) 

Define the “marginal” o-fields .F and % by 

.r/- := I.4 x 10. I ): .4 c [0, I] Bore1 set], 

~~:=([O,l]xB:B=~O,1),~O],(lj,~~. 

Define the event B,, := [O. I] x (0 1. Note that the marginal of P on 
[0, l] is Lebesgue measure and that P( B,,) = K < i. 

We shall first get an upper bound on TV. ,(.P, 3). First a preliminary 
calculation will be handy. The function I:.Y’ ’ is non-increasing in (0, x ). 
Also, G(s) ~ K is nonnegative for 0 < .Y < i and negative for $ < x d 1. 
Hence, letting 111 denote Lebesgue measure. we have that for every Bore1 set 
A c [O, I], 



MEASURES OF DEPENDENCE 321 

= -(c/r).m(An($ l]).(;,’ ’ 

> -(e/r).nz(.4n($, l]).[n~(~4n($, I])]” ’ 

> -(i:/r). [rn(,4)]’ 

and hence Il.,r [~(.~)~ti]~l.~l~(~I~).[~~~(.4)]~. 
Consequently, it is easy to see that 

‘cl,, ,(3, Y) = sup lP(A,,nB,)-P(A,,)P(B,,)l 
IP(.4,,)1’. IP(&)I‘ ’ 

A,, E .F 

= sup I j , @(.u) tlu - [l?l(‘4 ,] K / 
[m(A)]‘. K’ ’ 

A c [O. 1 ] Bore1 set 

6 sup (dr). IMA ,I’ 
[nz(A)]‘.~’ ’ 

,4 c [0, I] Bore1 set 

1 
=r(log l/K)’ ).’ 

Note that rr, ,(T, ‘5) becomes arbitrarily small as ti becomes sufficiently 
small. (We are using our assumption r < 1 here.) 

Now we only need to show that R, 1,, ,(9, ~9) fails to become small with 
K. By a well-known, elementary result in functional analysis, we have for 
p := l/r and y := l/s (so that I;%‘= 1 --1.), 
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Hence R,,, ‘,(,F. ~9) fails to converge to 0 as ti + 0. This completes the proof 
of Proposition 2.6 (and of Proposition 2.1 ). 1 

II I. SHARPNESS OF A DOMINATION RESULT 

This section deals with measures of dependence between an arbitrary 
finite number of n-fields. Let us first recall some terminology from [3]. 
Suppose (Q, _ N, P) is a probability space. II 2 2, and .e, . . . . :e, are 
a-fields c . N. Suppose B: :I’(:6 ) x x .U’( ,T,) 4 @ is an rr-linear form, i.e., 
for each i = I. . . . . H, B(.f’, . . . . . /;,) varies linearly with /; (and B( f‘, , . . . . /,) = 0 

if ,f; = 0 as.). Define the notation [ 1. x]” := ((p,, . . . . I,,,): 1 6~~ < x 
V’k=l,..., II). Supposep:=(p ,,..., p,,)E[l. JI]“. Asin [3] define 

I B(OA, 1, . ..T Oil,,))1 
tlp(B) := sup II I(A, Ill ,‘,,, ... II K4,,)llp(,,)’ 

24, E,&Vh-== 1, . ..) n; 

II BII, := sup 
14.f;. . . . ..~..)I 

II I, II,‘, I , I/ r;, II ,w ,’ 
.f; E ,‘1c(.%) v/i- = 1, . . . . n. 

The quantity 11 Blip is the p-norm of the n-linear form B, and d,(B) is the 
corresponding “restricted” norm, the restriction being to indicator 
functions. In the special case where II = 2 and B(J’, ,f?) := Cov(,/; ,f>), we 
have ci,(B)=x, ,,,, ),, ,,,, ,,(,%,%) and llBIl,=R,,,,,,,~,~~~.-~). 

For each li = 1, . . . . II define the following vector l [l, KJ]“: i, := 
(‘I-/_, . . . . x,. 1, x, ___. IC ), where the 1 is the kth coordinate. The n-linear form 
B is said to be a “product form” if // Bllilkj < I V’k = 1, . . . . n. By an 
application of Thorin’s multilinear interpolation theorem (see, e.g., [3, 
p. 349. Theorem 3.31). if B is a product form and p = (p, , . . . . p,) E Cl, rci]” 
is such that C; , I/p,< 1. then II Bll,d 1. 

A key tool for the study of measures of dependence in [3] was the 
following theorem. 
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THEOREM A [3, Theorem 3.61. Szcppose n 3 2. Szrppaw p := 
(p, , . . . . P,~ ) E [ I, co]” is mch rhut x:; = , l/p/, d 1. Defi’tze the nzctnher c = c(p) 
:=c;i(./G,< I ; l/p;. Then there r.C.vt.v u constunt A = A(p) which is u 
,firnction onl~~ qf’ p, such thut the ,ftillm~ing statermnt holds: [f’ (a, ~ N, P) is u 
ptwhuhilit~~ spuce. CF, , . . . . .3$, ure ajklds c N, and B: .V’(.e ) x x 
Yf’( &) 4 @ ix un n-linear prodwt ,form, then IjBII,<A-d,(B). 
[ 1 - log dp( B)]‘. 

Here L’ := 0 if p = ( 1, ___, I ). The main result of this section is as follows: 

THEOREM 3. I. S~ppo.w II 3 2. and p := (p, , . . . . p,, ) E [ 1, x 1”. &fine thr 
mr~ihrr C’ = c( p ) : = 1 I A I,(‘: , i , I 1/p; Then there cJ.x-ist.c u positiw conxtunt 
u = u( p ) mch thut the ,f~~Non~ing stuttwcnt holds: 

For twh t, 0 < t < 2 ‘I, thrre csists u prohuhilit~~ .~puw (Q, il. P) urid 
o~fk1tl.v .F, . .._, .“i;n c il urld un n-lirwur prodwt ,fiwnl B: .(I’(.6 ) x x 
.“‘(.ep) --, @ (tlt;fi’m~d by B(,f’, , . . .._ f;,) := E(,f, ..,f;,, ~ n; = , f?f; ), such thut 
d,(B) = t und 11 B /I p 3 u t( 1 ~ log t )‘. 

Rrtmrrk 3.2. Several comments will be made: 

(a) The assumption x; =, l/p, < 1 in Theorem A is not required in 
Theorem 3.1. 

(b) The constant c= c,(p) in Theorem 3.1 is exactly the same as in 
Theorem A. Consequently. Theorem 3.1 shows that Theorem A is within a 
constant factor of being sharp, for any choice of parameters meeting the 
specifications in Theorem A. (This “constant factor” may depend on the 
parameters.) Consequently [3, Theorem 4.1 (vi )] is sharp in the same sense, 
by Theorem 3.1 for n = 2. Theorem 3.1 also shows indirectly that 
[3. Theorems 2.1 and 2.21 are sharp in the same sense; for if this were not 
so, then (see the proof of Theorem A ) an improvement in [ 3, Theorems 2.1 
and 2.21 (beyond just a better constant factor) would lead to a similar 
improvement in Theorem A, contradicting Theorem 3.1. 

(c) The n-linear form B in Theorem 3.1 was chosen partly for its sim- 
plicity. Because of the extensive role played by cumulants in the study of 
dependence between more than two random variables, it is natural to con- 
sider measures of dependence based on norms of cumulants. For example, 
Mase [It] studied the measure of dependence ti, , , , , ,(Cum) between 
four a-fields, where Cum denotes the 4th-order cumulant. Theorem 3.1 
holds with B defined by B(,f’, ~ . ..., f;,) = Cum(,f’, , . . . . f;,) (the 17th~order 
cumulant). Because of our proof, this will be a trivial corollary of 
Theorem 3.1 itself; in our proof the construction will be such that any n - I 
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of the o-fields .9;, . . . . ~yTj are independent, and hence (after massive can- 
cellation) one will have 

Cum( I‘, . . . . . /;,) = E(,f’, f;,) - fi E/i for ,f; E Y( & ). h- = I. . . . . II. 
A-I 

For limit theory under mixing conditions involving other measures of 
dependence between three or more a-fields, see e.g., Zurbenko [20]. 
Statulevicius [ 15. 161, and Dmitrovskii ct ul. [7 J. 

(d) One more elementary comment: Suppose that no restriction is 
imposed on the particular type of If-linear product form B. Then 
Theorem 3.1 can be extended trivially to the values t, 2 ” < t 6 1, by taking 
,6 = = .qj = IQ, d i and B(,j‘, , . ..., f;,) := !f’, .,/;, (a constant) for 
./, E :I’( -Fk ); and one can also extend Theorem 3.1 to the cast II = 1 (for 
0 < t < I ). Theorem A also holds for II = I. One can prove both theorems 
for II = I by a short direct argument or, alternatively, by converting the 
case II= I, I <p,6 x8, to the case n=7, p=(P,, ~8) in a trivial way. Of 
course the case II = I is not of much interest for the study of measures of 
dependence. 

Pm/ 01’ 771mYv,1 3.1. The case where pL E 1 1, x I VX- = I. . . . . II is very 
simple.. To satisfy the requirements of both Theorem 3.1 an d 
Remark 3.2(c), simply let R = ( -- I. I I ‘I, let .N be the o-field of all subsets 
ofR,anddefinePbyP:=(I~r)P,+ZP2whereO<adlandP,andP2 
are the probability measures on (52, . N) satisfying P,( (z ) ) = 2 n V’,- E Q 
and P?( (-))=7 I i ‘I+’ V’I:=(:, ,._., ~,,)EQ such that :,.....:,,=I. Let 
,q, . . . . $, denote the coordinate o-fields (each purely atomic with two 
atoms). Note that any /I- I of them arc independent. Consequently, in 
evaluating cjp( B), only utotm .4, E & need to be considered. For the correct 
choice of s( (depending on t), the n-linear form B defined in Theorem 3.1 
will satisfy all requirements there (with CI= u(p) := I ). The details are 
elementary and are left to the reader. 

To consider the remaining cases, henceforth we assume that I <pn < XI 
for at least one k E { I, . . . . II ) 

First some preliminary calculations are needed. For each p, I <p < ;c, 
and each I’, 0 < 1’ < A. define the function G,, ,,: [0, I ] + [0, I ] as follows: 

Note that G is concave and increasing on [O. f] and hence G is concave on 
[O. 1 I. 
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For l<p<~_~ and O<r<$define thefunctiong,,,:[O,l]-+-l,l] 
by ,q,, ,JY ) := (cl/&) G,., r(.~ ). That is. 

1 if O<s<r,” ~ 

I’ ( 1 /p ) .v ’ “’ if 
s,.,,b) := 

I.“’ < .Y < 4 

-r.(l/~).(l-.Y) ‘I’ if +<.v<l-rr” (3.1 ) 

-1 if 1 -L.“‘<.Y< 1 

( K~,,, is not defined at .v = 0, L”“. 4, 1 - I.“. 1.) Then s,,,> is nonincreasing, 
j:, g, .p 1 (1-Y = 0, and 1 K ,,,, (.\‘)I < 1 for all .\- at which Sy,.,,(.~) is defined. 

IfO~~~~~andp=lorr_,de~nethefunction~!,~,,:[O.l]~[--l,l]by 

,Y,.,,(-\-) := ~) i 
if 0C.v<A 
if 4 < .\- < 1 

(3.2) 

In this case too, ,Y,.,, is nonincreasing, I:, x,.,,(.v) (1-v = 0, and I g,.,)(.\-)I < 1. 
The following integral will be used later on. If I </I < Y- and 0 c I’ < i 

then 

-I 2 

j,, C<Y,.,,LK)l” rl.v=r”[l +(1/p)” (Iog;--p’log~)]. (3.3) 

Now let us get to the main part of the argument. Henceforth let t)r 
denote Lebesgue measure on [0, I]. Let t be arbitrary but fixed such that 
o<t<2 ” (as in Theorem 3.1 ). Define 1’. 0 < 116 4, by 

(pd~h pIhI- I I ~l’i.lrd~k IY,‘lhl. I ~ =t, (3.4) 

Define the probability space (a, ./i. P) as follows: R:= [O. I]” := 
[0, I] x [0, I] x x [0, I]. N is the a-field of Bore1 subsets of R. P is 
defined by 

P(‘4, x ‘.’ x A,,) = ii m(A,) + 1”1 J~,i,FL.,~,&) dt- 
h-l h-l 

(3.5) 

for all Bore1 subsets A,, . . . . A,, c [0, 11. (Recall the inequality I g,,,(s)I d 1 
mentioned above.) 

Note that since j,‘, ,q,,, ,(.Y) = 0, each of the marginal distributions of P is 
uniform on [0, 11. 

For each X- = 1, . . . . II let ,YA be the a-field generated by the X- th coordinate 
in .Q. (Note that any II - I of the a-fields .fl, . . . . .5$, are independent, as 
needed for Remark 3.2(c).) Define the n-linear form B: .V(.+y ) x x 
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:/‘(&) + C as in Theorem 3.1: B(,f,, . . .._ f;,) := E(j‘, .,f;,) - ni= , &fk. As 
a consequence of (3.5) one has that for .fL E ,CY(,Pk ), k = 1, . . . . II. 

B( I’,. . . . . I;,,= (1 i_’ f,,.\-,‘Y, .,,( h,,.Y) ti.v (3.6) 
h , "'1 

(where &( .Y , . . . . . I/. , . .x. .\- i. . , . . . . . .Y,,) is written fi(.~)) and, since 
1 ,g ,,,,, L,(.~)I 6 1. it follows that B is a product form. 

P~c!f’ rhcrr [I,,(B) = t. Suppose that D, E &, k = I, . . . . II with P( D, ) # 0. 
For each k, represent D, by D, := [O. I]x .. x [0, 11x B, x [0, l]x . ..x 
[O. I ] (where the kth coordinate set BI is a Bore1 subset of [0, I ] ). Then 

I B(hD,). . I,D,,))l 

(3.7) 

by Eqs. (3.1 ), (3.7). and (3.4) and the fact that for each O<r<f, I dp6 X, 
the function g,, ,, is nonincreasing (as noted earlier ), odd-symmetric about 
.\- = +, and < 1. (In (3.7) of course n, (anything ), the “empty product,” is 
interpreted to be I. ) Thus d,(B) < I. To show that in fact d&B) = t, note 
that in (3.7). equality is achieved in the case where B, = [0, f] Vk = I. . . . . n. 

Ploc!f’ tlrtrt 11 B il p 3 (I t( 1 - log 1)‘. Define the r.v.‘s ,f’, , . ..J., as follows: 
fh(.y,. . . . . . u,,) :=g, ,,,, r,(.~h) if I>~= I or % and ,fh (x, , . . . . x,, ) := 
[si~n,!r:,,,~(h)(-uh)l ‘1 gt.r21hI(-Yi.)/ i’i “A if 1 <pn < x. To shorten the notation 
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below, we write ,f;(s) instead of,f,(.x,, . . . . .Y~ , , 9, s/, +, , . . . . s,,). Note that 
for each k, fA E LY’, (.&). (The fact that these r.v.‘s are not all simple, is no 
problem. The n-linear form B extends uniquely to -9, ($ ) x . x Y’, (,3!) 
without changing any norms.) 

We shall use Eq. (3.6). For each li such that /‘A = I or ‘x, 

,.,,,/,,(.Y) ds= 1 and II .t; II , = II ,ti Ii , = 1 

For each k such that 1 < p1 c X, 

and 

Hence 

By (3.3) and (3.4) for each k such that I <pl, < ‘YJ. 

where uk is a positive constant that depends only on p. 
Hence by (3.4), B(,f,, . ..., f;,) > a. f( 1 -log t)’ n;=, /I ,fk jlplkj, where c is 

as in Theorem 3.1 and u := n Ik. 1 C,,,kj ~ , I U: pi (which is positive and 
depends only on p). Thus 11 B/I p 2 a. t( 1 - log t)“. This completes the proof 
of Theorem 3.1. 1 

IV. APPLICATION OF THE REITERATION PROCEDURE 

Except for a specific value for the constant factor, [3, Theorem 2.21 is as 
follows: 

THEOREM B. Suppose (l2, cN, P) is a probability space, .9 atld fe me o- 
fields c,.H, 1 <p< z, utzdO<E< 1. Suppose T:.U(.F)-+lu,(9) isalitwat 
operutor such thut 



328 BRADLEY, BRY(‘, AND JANSON 

/I Tll y’ ,-/,<I, (4.1) 

II T il 1/, . y’ d 1, (4.2) 

II TII y /, . ‘, /, , < i:. (4.3) 

Thrn 

In the case T(,f’) := E(,f’/!$)- ,!?f; one has the well-known connection 
R,.,(.9, %I= II Tll y/ . r/,,; and in [3. Theorem 4.11, Theorem B was 
applied to ;T for this T. The same type of connection in higher dimensions 
was a key tool in [3]. Of course. Theorem B can be generalized in several 
ways (for example. using infinite positive measures instead of probability 
measures ). 

The purpose of this section is to give a very short proof of Theorem B, 
using more interpolation theory than the proof in [3]. The proof here 
seems harder to generalize to the multidimensional case as in 13. 
Theorem 2.11; to do this, one might use Zafran’s [ 19, Theorem 2.91 mul- 
tilinear Marcinkiewicz interpolation theorem (which we used in the proof 
of Proposition 2.2 above), but one first needs some bounds on the mul- 
tiplicative constant in that theorem. 

P~oc?f’of T/wotw~~ B. Throughout this proof, the constant C may vary 
from one appearance to the next, but it always depends only on p. Without 
loss of generality, we assume 0 < I: d CJ ‘. The remaining cases either follow 
from this case or are trivial. 

Let 6 = ~ I /( log K). Then 0 < (S 6 t. Define p,, and p, by l/p0 = 
(l-Cr)j~1+6(1 and l;%,=(l-S)/I,+S/~~~;. Then l<pO<p<p,<cxl. Now 
we apply the Marcinkiewicz interpolation theorem twice, each time with an 
explicit upper bound on the constant in that theorem; see, e.g., 121. 
Chap. 12, Theorem (4.6) and Eq. (4.2.1 )]. In that way, by (4.1 ) and (4.3 ) 
we obtain II Tli y’ ,,,,,,- Yp ,,,, < ~‘~(1/6)‘“““r: <‘, and by (4.2) and (4.3) we 
obtain /i TllYp,,, .-,,,,,~c’.(li6)“““i:’ I’. Let H= 1 - I,%. Then O<N< 1 
and 1;~ = ( 1 - fl)/p, + Cl/p, By applying the Riesz Thorin interpolation 
theorem (see il.p.91) we have )/Tily,, .L,~,,<C-(1/6)‘rc’ ‘j= 
C(-logi:)‘:‘.i:.i: ‘) < C( -log E)’ “I: (since c ” = e). This completes the 
proof. 1 
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