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Based on an idea of Rosenblatt, the methods of interpolation theory are used to 
establish moment inequalities and equivalence relations for measures of dependence 
between two or more families of random variables. A couple of “interpolation” 
theorems proved here appear to be new. 0 1985 Academic Press. Inc. 

I. INTRODUCTION 

In his studies of mixing conditions on Markov chains, Rosenblatt [32; 
33, Chap. 71 used the Riesz convexity (interpolation) theorem to compare 
different measures of dependence between two given families of random 
variables on a probability space. Rosenblatt [34] also suggested that by 
using other results in operator theory, one might be able to obtain more 
information about the relationships between various measures of depen- 
dence. In this article we shall follow up this suggestion and, in essence, see 
what more information can be obtained from the Riesz-Thorin and Mar- 
cinkiewicz interpolation theorems and from a key idea of Stein and Weiss 
c371. 

The nature of this paper is partly expository, pointing out relevant 
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applications of some theorems that are either elementary or well known to 
functional analysts. This first section is a brief introduction, to serve as 
motivation. Sections 2 and 3 give a discussion of the relevant results in 
interpolation theory on spaces of functions; Theorems 2.1 and 3.6 there 
appear to be new and may be of independent interest in interpolation 
theory. In Section 4 we return to the context of measures of dependence on 
a probability space, and apply the results in Sections 2-3 to that context. 

This paper developed from the authors’ work in the following way. 
Theorem 4.3 and Example 4.4 came (essentially verbatim) from an earlier, 
unpublished manuscript of R.C.B. After seeing that work, [33, Chap. 71, 
and preprints of [3] and [28], W.B. spotted potential broad applicability 
of interpolation theory to measures of dependence and proved Theorem 2.1 
for the case n = 2 (including Theorem 2.2), Theorem 3.6 for the case n = 2, 
and Theorem 1.1, and (for expository purposes) worked out Theorem 4.2 
in Section 4.3. Then the present (multidimensional) versions of Theorems 
2.1 and 3.6, along with other odds and ends, were worked out jointly. 

Let (52, .H, P) be a probability space. Two sub-o-fields 9 and 9 c JZ 
are said to be “independent” if P(A n B) = P(A) P(B), V A E F, B E Y. This 
definition is the starting point for the following class of measures of depen- 
dence between a-fields: For 0 < r < 1, 0 < s < 1, and any two a-fields 9 and 
9 (c A) define 

ct,,,(F, 9) := sup 
IP(A n 4 -P(A) P(B)1 

CW)I’CP(B)I” ’ 
AEF, BE%, P(A)>O, P(B)>O. (1.1) 

For certain ordered pairs (r, s) these measures of dependence are already 
known, by the following notations: 

The quantities a(., e), 4(., a), and +(., .) are the measures of dependence used 
respectively in the “strong mixing,” “b-mixing,” and “+-mixing” conditions 
for sequences of random variables. For the definitions of these conditions, 
see, e.g. [21] or [22]. The use of these mixing conditions in central limit 
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theory started with Rosenblatt’s [31 J use of a(*, .) (in the “strong mixing” 
condition). 

Throughout this article, the random variables will be complex-valued. 
For 1 < p < co, let )IXll, denote the usual p-norm of any given r.v. X (i.e., 
([X1( p = ELIP 1x1 p if 1 < p < co, and 1(X(I o. = P-ess sup 1X1), and for any such 
p and any o-field S (C A) let ZJg) denote the class of (complex-valued) 
F-measurable r.v.‘s X satisfying llXl\ p < co. 

The following theorem is given here in order to help focus our dis- 
cussion: 

THEOREM 1.1. Supposel<p,q<coandp-‘+q-‘<l.Suppose9uand 
Y are a-fields, XE 5$,(F), and YE L$(9). Then the following two statements 
holdz 

(i) Defining t, l<tdco, so thatp-‘+q-‘+t-‘=l, one has 

IEJ’Y- EXEYI < 27~. [a(%, %)I’/‘. [cJ~(F, S)] VP 

. C#(Y, ml”“. I/wl; IIYII,. 

(ii) Zfp-’ +qP1 = 1, then 

IEXY-EXEYI <3OOO.(A(@, $9). [l -logA(F, ~)])min(2’p~2’q) 

. IIJII, . II YII,. 

Here and in what follows, log always denotes the natural logarithm. 
Throughout this paper, when log a appears for some positive number a, it 
will turn out to be the case that a $1 and hence 1 -log a > 1. Theorem 1.1 
will be proved at the end of Section 4.1. In Section 4.3 it will be extended 
(with minor adjustments) to r.v.‘s X and Y taking their values in a Hilbert 
space, following an idea in CS]. In Example 4.4 in Section 4.4 it will be 
shown that the log term in (ii) cannot be entirely avoided. Throughout this 
paper, except in Sections 2.2 and 4.4, “large” multiplicative constants will 
be permitted for the sake of keeping the proofs simple. 

Part (i) of Theorem 1.1 was motivated partly by a preprint of Peligrad 
[2X], in which part (i) was proved for the case p-l + q-’ = 1. !n both [9] 
and [28] there are limit theorems involving &mixing in both directions of 
time simultaneously. Except for a constant factor, (i) gives a unified treat- 
ment of two different families of moment inequalities (one involving a(., .) 
and the other involving #(-, .)) that have been discussed in [5-7, 10, 12, 17, 
18, 20, 21, 28, 38j. 
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Part (ii) sharpens and generalizes an equivalence relation proved in [3] 
between A(s, 3) and the well known “maximal correlation” [13, 163: 

IWII 2 ’ 0, II Yll 2 ’ 0 
= sup (Corr(X, Y)(, XE Y*(F), YE 92(Y), X, Y real. (1.3) 

(The latter equality is well known (see [39, 17. 512, Theorem 1.11); keep in 
mind the trivial fact that 11 WI/ 2 > I( W- EWll 2 for WE ~~(A).) Let us men- 
tion one application of (ii) to stochastic processes. Suppose (X,, 
k = . . . . - LO, l,...) is a strictly stationary sequence of real-valued T.v.5 with 
EX, = 0 and EXZ, < co. For each n = 1,2 ,... define A(n) := 1(5? m, F;), 
where 95 denotes the a-field of events generated by (X,, J< k < L). Then 
by (ii) the following statement is an immediate corollary of a theorem in a 
paper by Ibragimov [19]: 

COROLLARY 1.2 (of [19, Theorem 2.21). If (A’,) satisfies A(n)= 
O((log n)-(‘+&)) as n -+ 00 for some E > 0, then (X,) has a continuous spec- 
tral density f(A), and if in addition f (0) # 0 then (X, + . . . + X,)/ 
[27rn. f (0)] “* + N(0, 1) in distribution as n + 00. 

Remark 1.1. The log term that occurs in Theorem l.l(ii) may turn out 
to be quite prevalent in moment inequalities. Consider the following result 
of Zuev [40]: If X is real and F-measurable, Y is real and g-measurable, 
Eexp(aIXI)<C and Eexp(aIYI)<C, where a>0 and C>O are con- 
stants, then IEXY- EXEYJ G 8a-*C. #(p”, 3) * [ 1 - log &9,9)]; and 
this inequality is sharp up to a multiplicative factor that depends only on 
C. Thus, in the absence of further information, the log term is in essence 
unavoidable. Zurbenko and Zuev [42] obtained earlier a very similar 
inequality, [EXY - EXEYI < 72a-*C. a(s, 9). [log ~((9, S)12, under the 
same conditions on X and Y. 

In Section 4 our discussion on measures of dependence will be continued. 
In Section 4.2, measures of dependence between three or more a-fields will 
be examined. 

In what follows, when a term like ab is to be a subscript or exponent, it 
will usually be written as a(b) for typographical convenience. Vectors will 
be denoted with bold-face type: thus p denotes a vector and p a scalar. For 
any positive integer J, Cl, co]” will denote the set of ail vectors p= 
(P 1 Ye.., pJ) such that 1 ,< pi< 03 V j= l,..., J. 
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II. MULTILINEAR OPERATORS 

This section is devoted mainly to Theorem 2.1 below, which is closely 
related to, and is based heavily on the ideas in, the Marcinkiewicz inter- 
polation theorem. Theorem 2.1 is (ultimately) the basis for the proof of 
Theorem l.l(ii), and (as we shall note in Section 4.2 later on) can 
(ultimately) be used in the study of measures of dependence between more 
than two families of random variables. In Section 2.2 below, a special case 
of Theorem 2.1 is slightly refined. 

2.1. Background and Theorem 2.1 

Suppose n > 2 is a positive integer and for each k = 1, 2,..., n, 
(Sz,, &, Pk) is an arbitrary probability space. Throughout Section 2, this n 
and these probability spaces will be fixed. 

For each k = l,..., n let Y(&) denote the set of all complex-valued 
gk-measurable simple functions on 52,. If 1 < k d n, then whenever a com- 
plex-valued function f is specified to be Fk-measurable, it is understood 
that f is defined on SJk, and that for f the usual p-norms, 1 < p 6 co, are 
defined with respect to the measure P,: I( f (Jp = [jock) 1 f (J' dPk]liP if 
lgP<co,and (Ifl(,=P,-esssupJfl.Ofcourse \lfll,<Ilfll,if l<p< 
q < 03 by Holder’s inequality, since Pk is a probability measure. Yp($k) will 
denote the set of all complex-valued &-measurable functions f on 52, such 
that llf HP< a. 

Suppose T: Y(Fl) x ... x Y(S$- 1) -+ LYi($$) is a multilinear operator 
(or “(n - 1)-linear” operator). Here “multilinear” or “(n - 1)-linear” means 
that for each fixed j, 1 < j < n - 1, and each choice of fk E .Y(&), k # j, the 
mapping T(fi ,..., fi- 1, ., J;+ 1 ,..., f,- 1) is a linear operator (into LZr(FJ). If 
n = 2 then of course T is simply a linear operator. 

We shall always make the usual assumption that T(f,,..., fn- I) = 
Tk, ,..., g,- 1) a.e.-P, if fk = g, a.e.-P, V k = l,..., n - 1, consistent with the 
usual practice of regarding Tp(&) as a space of “equivalence classes” of 
functions. 

For each p=(pl,..., P~-~)E [l, cc]+l and each qE [l, co], define the 
following (possibly infinite) norm of T: 

II TII p~4 := sup IIT(fL.d-,)I, 
IIfillp(l)~ ... . Ilfn--lllp+l)’ 

fkeY(Fk), 1 <k<n- 1. 

In this definition, interpret O/O = 0. 
It is well known that if (I TIl p ~ 4 < cc for given p and q, then T can be 

extended uniquely to a bounded multilinear operator from L$(~)(~~) x ... 
x Y& lJ(Y”- i) into Yq(gn), and in this extension the value of the (p -+ q)- 
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norm remains unchanged. But for our purposes it suffices to consider T on 
just 9(%)x ... xY(%~-~,). 

T is called a “product operator” if (1 TIJ (oo,oo _,, m) _ m < 1 and 
I(TJI,, ,..., m,l,m ,_,,, ao).+l < 1 for each vector (cc ,..., co, 1, co;..:, co) (there are 
n - 1 of them). This definition is taken from O’Neil [26] and is well known 
to be motivated partly by the following remark: 

Remark 2.1. Let us temporarily abuse notation and denote, for p = 

(P 1 ,..., P~-~)E [l, CO-J-‘, the vector p-l := (p;‘,..., pi?,). The mul- 
tidimensional Riesz-Thorin interpolation theorem (see [l, p. 18, Exer- 
cise 131) says that if po, pl, and p each E [l, co]“-‘; qo, qt, and q each 
E CL aI; 06861; -‘=(14)p,,‘+6p;‘; and 
(1 -Wqo’+@;‘; then IlTllfl-,G ClITIIp~O~-.q~0J~8~ CIITII ,,l)_,(l)~~l~ 
repeated applications, one has 1) TII p _ 4 6 n,“= 1 [ 11 T/I p(mJ ~ ,ttmJ’(m) if 6,,,> 0 
Vm,~,M~1em=1,p-1=~~~I~mp~~,q-1=~~~,e,q~~,pmE~1,CO]“-1 
V m, and qm E [ 1, co] V m. In the special case when T is a product 
operator, this tells us that 11 TIIP _ 4 < 1 whenever p = (pl ,..., pn- 1) E 
[l, colnP1, qE[l, co], and C;l:p;l=q-’ (and even when 
C;: t pi 1 <q-l, using the fact that P, is a probability measure). 

If we were working with just real-valued functions, then an extra con- 
stant factor would have to be incorporated into the above-mentioned inter- 
polation theorem. By working exclusively with complex-valued functions 
we avoid this extra complication. (See the paragraph following the 
statement of Theorem 1.3.1 in [l, p. 91.) 

One more piece of notation is needed: If 1 d k < n, then whenever a set A 
is specified to be an element of %k, I(A) will denote the indicator function 
of A, defined on 0,. 

THEOREM 2.1, Suppose p = (p I ,..., p,-l)~[l,~]“-l andl<q<co are 
such that O<C;!i pi1 64-l. Then there exists a constant C= C(p; q) 
which is a function only of p and q, such that the following statement holds: 

Suppose T Y(FI ) x . . . x 9’(3$+ 1) + L&(FQ is an (n - l)-linear product 
operator; suppose that ‘d k, 1 <k <n - 1, either 4 := Y(Fk) or 4 := (Z(A): 
AE&}; suppose that O<&dl and that Vt>O, V(fl,...,fn-1)e91x ... x 

R-1 one has P,(IT(fI,...,fn-l)l >t)< C(d).II;r! Ilf~llp& then 
V(fi,...,f,-l)Ecq x .*. xq-1 one has IIT(fI,...,fn-I)ll,~ CC.&. 
(1 -lwwv-I;;: IIfklIp(k). 

It is emphasized that C does not depend at all on the particular 
probability spaces (Q,, %k, Pk) being used; we shall sometimes write it as 
C(p, ,..., pn- 1 ; q) when we wish to mention the components of p explicitly. 
When 4 = ,4”(%k) V k, the last inequality simply says 11 TI(, ~~ < C. E. 
(1 -log e)ljq. The use of 4 at all (i.e., allowing the option 4 = {Z(A), 
A E %k> for some or all k’s) is only a slight extra complication, and will 
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facilitate the use of Theorem 2.1 later on. Of course I- log E > 1 since E < 1. 
When A. Torchinsky first saw the statement of Theorem 4.3 in Section 4.4 
(which had been proved earlier), he conjectured that there was a connec- 
tion between such results and the work on BMO functions in harmonic 
analysis. Indeed, the proof of Theorem 2.1 will make use of techniques well 
known in the study of BMO functions. Similar results with q = 1 or cc will 
not be considered here. In the special case where n = 2 and pi = q = 2, 
Theorem 2.1 is sharp up to a constant factor; see Remark 4.5 in Section 4.4. 

Remark 2.2. In Theorem 2.1, if E = 1 then the last inequality obviously 
becomes trivial with C replaced by 1, since T is a product operator. 

Proof of Theorem 2.1. Assume p and q are as in the statement of 
Theorem 2.1. We shall break the argument into three cases: 

Case I: O<C;;:p;‘=q-’ andp,<og Vk. 

Case II: O<G;:i p;l =q-’ and pk= og for some k. 

Case III: oaC”k!: p;l<qQ. 

Case I is the critical one. Let us take it for granted for a moment and 
quickly get Cases II and III out of the way with simple arguments. 

Proof for Case II. Permuting indices if necessary, we may assume 
without loss of generality that for some m, 1~ m 6 n - 2, one has pk = co 
Vk<mand l<p,<cc Vk>m+l. 

Now suppose that T, Y ,,..., gn’,-, , and E fulfill the assumptions in the 
statement of Theorem 2.1. 

Let the functions fk E F&, 1~ k < m, be arbitrary but fixed, and define the 
(n- 1 -m)-linear operator T: Y(Fm+l)x ... x~‘(F~-~)-+ Ya(Fn) by 
T'k,,..., gn-l-m):= (I-I:=, IIf,cllao)-l W,,...,f,n, gl,..., gn-l-m) (T':= 0 
iffk = 0 a.e.-P, for some k < m). Note that T is a product operator. A sim- 
ple argument shows that V t>O, V (gi,..., gn-l-m)E9m+lx *.. x9$-i, 
one has P,( I T’( g, ,..., g, - 1 - ,)I >t)< C(~I~)*Il;~~-“’ lIgkIIp~k+m~lq. Hence 
by Theorem 2.1 for Case I, V (g, ,..., g, _ 1 -,,,) E %m + I x . . . x FZnp i, one has 

IIW-,>...,f,n, gl,..., gn-l-m)llq= fi llhllm). IIT’klm gn--l--m)llq ( k=l 

G CC(P,+ IT..., p, - 1; 4). E . (1 - log 8)“q-J 

Since fk E 4, 1 < k < m, were also arbitrary, Theorem 2.1 holds for Case II, 
with C(Q..., ~0, ~~+~,...,p~-~;q)=C(p~+~,..., ~“-~;q). 
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Proof for Case III. Suppose that T, Y ,,..., 5& 1, and E fulfill the 
assumptions in the statement of Theorem 2.1. Define pO, 1~ p0 < co, such 
that C;rh p;l = q-l. Let (Q,, &, PO) be a trivial probability space with 
Sz, consisting of just one element. Define the n-linear operator T: Y(9J x 
... x9VLl)-+=%J%J by T’(fO,...,fn-l) := fO*T(fi,...,fn-,) (fO is of 
course just a scalar). Taking Cases I and II for granted and mimicking the 
argument for Case II (more or less), one can now derive Theorem 2.1 for 
Case III as a consequence of Theorem 2.1 for Case I or II (whichever is 
applicable), with C(p, ,..., pn - 1 ; q) = C(p, ,..., pn - 1 ; q). 

Now we only need to establish Theorem 2.1 for Case I. 

Proof for Case I. Let p = (p, ,..., pn _ ,) E [ 1, co]“- ’ and q be fixed with 
O<C;:~p,‘=q-‘<l andp,<co Vk. 

First let us define the quantity C, along with some other parameters that 
will be needed later: 

8 := q - 1, 

A:= ,<$yPJ’, 
. . 

w := q/(M), 

C=C(p,q):= [3~q+1~~“~1~q~2w~max{l,~~‘}]‘~q, 

Dlk I= Pkh V k = l,..., n - 1. 

(2-l) 

Every parameter defined here is clearly positive and depends only on p 
and q. Note the following trivial facts: 

w> 1, 

Pk-eClk=Pk/q2 1 V k = l,..., n - 1, 
n-1 n-1 

1 1/ak = 1 = 2 &k. 
k=l k=l 

(2.2) 

Now suppose that T, 4,..., !Yn _ 1, and E satisfy the assumptions in the 
statement of Theorem 2.1 (with respect to p and q). 

Let fk G 9&, 1 < k < n - 1, be arbitrary functions such that (( fkll o. > 0 V k. 
Define the functions g,, 1 < k < n - 1, by g, := fk// f/J p(k). In what follows, 
we shall work with gk instead of fk because of the convenient property 
hklf,(k, = 1 V k. To prove Theorem 2.1 it suffices to prove 

II T(g, ,...> g,-,)J~q<c~&(l-log&)l’? (2.3) 
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For each k, 1 <k < n - 1, and each t > 0, define the following three 
functions on s2,: 

gg’l := g,.z(&-“. Igkpk)<f), 

g& := g, . Z(EW . 1 g/J a(k’ < t < & -w * ) g,l rnCk’), (2.4) 

gk.3 (I) := g, . Z( t < EW. ) g,l a(k)). 

(See (2.1), and keep in mind that P < a-W since E d 1.) Then for each k and 
each t > 0, g, = gr\ + gjji + gu) 

Let S= {(i 
Then for 

‘;,b.A r): &E { ;:)2, 3) V k}. (Thus S has 3”-’ elements.) 
t > 0, T(g, >..., gn-1)=C~i(l),...,i(n-l))ES T(g’,flt,,,-., 

gi1 I i+ i)). Hence for each t > 0 we have the following inclusion of events 
(sets ‘in Pn): 

{IT(gw., g,- I)1 > 3”-‘t) = u {I Tk’,f!,,,,..., gi!l,i(n- 1,)l ’ t}. 
s 

In what follows, if 1 < k < n and f~ yr($$) then the notation Ek f means 
jL?(k) fdpk. 

Now by a well known identity and a simple substitution, 

E, I Vg, ,..., g,-,)/'=q.jom tY-lP,(lT(gl,..., s,-l)l>t)dt 

= 34’“- 1) 4’ s co t4--lP,(lT(gl,..., g,-,)I >3”-‘t)dt 
0 

G3q’“-l’9’C zi(l),...,i(n-l) 
s 

(2.5) 

where V (ir )...) i,- I) E s, 

Ii,1 ),...,i(n - 1 ) := 
s 

O” tq-‘P,(IT(glI1!(l,,..., g~~~,i~n-~,)l ‘t)dt. 
0 

In Lemmas 1 and 2 below, we shall derive upper bounds on these num- 
bers Zi(l ),...,i(n ~ 1). 

LEMMA 1. For each (il ,..., i,-I)~S- ((2, 2 ,..., 2)) one has Zicl ,,,.., i ,+, ,d 
2w*(max{l,P’))-sq(l-log&). 

Proof Let (il ,..., in- 1 ) E S be fixed (# (2, 2 ,..., 2)). Define rk, 1 <k < 
n- 1, by 

rk=pk+hk if i, = 1 

= Pk if ik = 2 

=pk-&k if i, = 3. 
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By (2.2), C;=‘1~kl~C;=:(~~-etl~)-l=l. Define y>l by y-l= 
C;:: rkl. 

By the Markov inequality, V t > 0, 

P (JT(g”! n l,r(l)9”‘, gt’l,i(n- 1))1 ’ t, 

<t-YE IT(g”!  n l,r(l)7”‘3 gt’l,i(n- 1))l’ 

n-1 

<t-Y. n lkg(k,lP(k, 
k=l 

(2.6) 

since T is a product operator. Hence 

Define uk, 1 <k<n- 1, by 

u,=1+8 if ik = 1 

= 1 if ik = 2 

=1-e if ik = 3. 

Then V k = l,..., n-l, rk+(-Uk+l)C(k=Pk and hence by (2.1), -uk= 
-1 + (pk/ak) - (rk/ak) = -1 + q - (rk/ak). Hence by (2.2), 

n-1 n-1 n-1 

- ,c, uky/rk= (q- l) 1 ?bk-Y c l/Or, 
k=l k=l 

=(q-l)*l-y.l=q-1-y. 

Hence by the (multidimensional) Hiilder inequality, Fubini’s theorem, and 
(2.7~~ 

< ;c: [ fom t -U(k)Ek 1 gj$,,I r(k) dt 1 y’r(k) 

1 
ylr(k I = tru’k) Ig&k,l”k’ dt (2.8) 
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For any k, 1 d k 6 n - 1, such that i, = 1 one has 

E, Iorn ~-WC) I g&l r(k) dt = 4 /e;w,gk,a,kj t-u(k) I g,l r(k) dt 

=&[I&1 p(k). ,y lEew] = e- lgQw. 

Similarly, for any k such that ik = 2 one has 

Ek Iom t-u(k) (g#,,l r(k) dt 

t-’ dt = -2W log & 1 
and for any k such that i, = 3 one has 

Ek jom trutk’ 1 g(k&k)l r(k’ dt , 

t-l+e dt 1 
=6-lEew (2.11) 

By (2.8t(2.11), ZiCIJ,,..,iCn- 1I < (W1eew)u(1)+0(3). (-2~ log .z)‘(*), where for 
m= l, 2, 3, u(m) := C{k:i(k)=m) y/rk. Now a(l)+a(2)+a(3)= 1; hence 
(&l)a(l)+a(3) <max{ 1, O-l}; 
pr41)+43)i. (-2wlogE) 

hence Zi(l),...,i(n-l)~(max(l,~-‘}). 
a(2J. Now i(k) # 2 for some k by the hypothesis of 

Lemma 1, and for such a k we have by (2.1), y/r, > l/r, > l/(pk + f3a,) >, A, 
and hence &~[a( 1) + u(3)] > Owl = q. Since E < 1, the inequality in 
Lemma 1 holds. 

LEMMA 2. Zc2,* ,,,,, 2) < 2~. E~( 1 -log E). 

Proof: For each k and t, one has gj$ = c. h for some h E $ and some 
positive number c, regardless of whether 4 = y(Fk) or 4 = {Z(A): A E &}. 
From the assumptions in Theorem 2.1 and a trivial argument one has that 
v t > 0, P,( I n$l, &,..., 8:11,2)1 ’ t, 6 [(&It) ’ r-k: I~g~iI~p(k)lq~ 



346 BRADLEY AND BRYC 

Since C;: : q/pk = 1 (see (2.2)), we get 

1(2,2,...,2) Q I(p I’- 1 [(e/t) . “fj’ II &II p(ki]* dt 
k=l 

< &q . 
=& 4. q/P(k) 
= ~4. kvl [Ek Igk(p(k)( -2w log E)]~‘~(~) 

= &q. ( - 2w log E). (2.12) 

Thus Lemma 2 holds. 
Now by (2.5) and Lemmas 1 and 2 we have 

En I Kr I,..., gn-1)14G3 q(n-*)q.2w[3”-1 max{l, O-‘)].sq(l -loge) 

and hence (2.3) holds by (2.1). This completes the proof of Theorem 2.1. 

2.2. A Refinement 

In the proof of Theorem 2.1, with a little more flexibility in the 
arguments one can produce a lower value for C than the value given in 
(2.1). This is particularly true for small values of n. Here we shall illustrate 
this for just one special case: 

THEOREM 2.2. In the special case where n = 2 and 1 < p1 = q < co, 
Theorem 2.1 holds with C= C(q; q) = 3. [q’/(q - l)]““. 

Proof: We shall carry out the argument of Theorem 2.1 with a few 
minor modifications. We shall ignore (2.1) and (2.2). In place of (2.3) we 
shall prove 

~~T(g,)~~q~3~[q2/(q-1)]1’q~~~(1-log~)”q. (2.3’) 

Theorem 2.2 will then follow (because we shall have (I g, II q = 1). 
As was noted in Remark 2.2, we can dismiss the case E = 1 and assume 

E < 1. Fix p very large, q < p < co. Define the constants A := E~‘(~-‘) and 
D := (p-q)‘/(4-P). E~/(~-~). Replace (2.4) by 

g’l:! := g, . Z(D I g, I < f), 

d’l.= g1.W lg,l<tGDlg,Ih , . (2.4’) 

g’,fl,:= gl.Z(t<A IgIl). 
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We shall assume D > A. We can insure this simply by taking p suficiently 
large, since A < 1 (because E < 1) and Lim, ~ oo D = 1. (In fact we shall let 
p --) co later on.) 

Now (2.5) becomes 

E* l~(g1)lq~3qq.(zI+z2+~3). (2.5’) 

Arguing essentially as in (2.6) and (2.7) we have that for each y, 
l<y<co,andeachi(l)~{1,2,3}, 

Starting with (2.7’) with y = p and imitating the argument of (2.9), we 
get I, < DqWp/(p--q). Setting y = 1 in (2.7’) and imitating (2.11), we get 
I, < Aq- ‘/(q - 1). Also, by imitating (2.12) we get Z2 < eq log(D/A). Plugg- 
ing these into (2.5’) we get E2 IT(g < 3qq[(q/(q - 1)) cq f cq log(D/A)]. 
Finally, using Lim, _ o. D = 1 and elementary arithmetic, we obtain (2.3’). 
This completes the proof of Theorem 2.2. 

III. MULTILINEAR FORMS 

This is a continuation of Section 2. As in Section 2 we fix an arbitrary 
integer n > 2 and arbitrary probability spaces (Sz,, &, Pk). The other 
notations and definitions in Section 2 are also carried over. 

Suppose B: Y(fll) x . . . x Y(pn) --* C is a multilinear form (or “n-linear” 
form), where C denotes the field of complex numbers. This terminology 
means of course that for each Iixed j, 1 <j < n, and each fixed choice of 
functions fke Y(&), k # j, the mapping B(f, ,..., fi- 1, a, A+ 1 ,..., fn) is a 
(complex) linear functional on Y(8). As usual, we assume that 
Wf, >...v fn) = m, T--*3 g,) if fk = g, a.e.-P, Q k. 

For our particular discussion of measures of dependence in Sections 1 
and 4, and especially for the measures of dependence between three or 
more families of random variables as discussed in Section 4.2, it seems 
more natural to work with multilinear forms than with the multilinear 
operators studied in Section 2. Section 3 is devoted to comparisons between 
norms for n-linear forms; these norms will be closely related to the 
measures of dependence discussed in Sections 1 and 4. Here we shall 
present six theorems. The first live are all either trivial or well known, and 
the sixth will be (ultimately) a consequence of Theorem 2.1. All six 
theorems will be useful in Section 4. 
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For each n-linear form B on 9’(e) x .*. x Y(9$J and each p = 
(P i ,..., p,) E Cl, co]“, define the following (possibly infinite) quantities: 

m-i Y**‘? .Ln)l 
“B”p := sup n;=, “fk”p(k)’ fk E ,4”(Fk), k = l,..., n, 

d (B) .= sup IBMA,L Wn))l 
P . rI;=,c~k&r’p’k” 

ApeFk, k= l,..., n. 

(Again interpret O/O = 0.) Of course d,(B) < IIBII, for any given p, since 
Il~GMl.~~, = [Pk(Ak)]l’p(k). Note the simple equality d,,,,,..,,,,(B) = 
sup{ JB(Z(A,),..., Z(A,))I: A, EL&V k). ljBjlp is the usual p-norm of B. In the 
case n = 2, Stein and Weiss [37] studied the conditions d,(B) -=c co and 
similar conditions on linear operators; following their terminology one 
might refer to d,(B) as a “restricted” norm. 

We need some notation for certain special vectors in [l, co]“: a0 := 
(00, ~9..., co); and V k = l,..., n, ik := (co ,..., co, 1, cc ,..., co), where the 1 is 
the kth coordinate. 

THHIREM 3.1. Suppose B is an n-linear form, p = (pl,..., p,)~ 
Cl, aIn, and s:= C;=,pki<l. Then d,(B),<d,(B)~[d,(B)]‘-“. 
TI; = 1 Cdick,(B)I 1’p(k)* 

THEOREM 3.2. Suppose B is an n-linear form. Suppose p = (pl ,..., p,) E 
Cl, LXX]" and q = (ql,..., q”)E Cl, co]" such that C;= 1 P~~=C;=~ q;l 

and {k:p,=co}c{k:q,=co}. Then d,,(B)<[d,(B)]‘. 

IY$4~)UW~? where 8 := min{k:q(k)<a,l(qk/pk) and v k, a(k) := 
1 

k k . 

In Theorem 3.2 note that 0 < 0 < 1, a(k) 2 0 V k, and 0 + C;= i a(k) = 1. 
The same comment will apply to Theorem 3.4 below. To prove Theorems 
3.1 and 3.2 one can simply note that, for fixed A, E 6 ,..., A, E FE, defining 
b := IB(Z(A,),..., Z(A,))I, in the context of Theorem 3.1 one has 

b VP(k) 
b< 

~;=l~pk(Ak)]l’p’k’=bl-~‘k~~ 

b [ 1 Pk(A/c) 

and in the context of Theorem 3.2 one has 

b 

n;:=,[&(Ak)]l’p(k)= ~;=,&b~,l”‘*’ 

Theorems 3.1 and 3.2 follow easily. (In the theorems in this section, we 
shall not labor over such trivial cases as, say, when d,(B) = cc or 0.) 
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THEOREM 3.3. Suppose B, p, and s are as in Theorem 3.1. Then (1 B(( g, < 

IlBllp~ CllBll~1’~“~~~~~~llBlli~~~1”“‘“‘~ 

THEOREM 3.4. Suppose B, p, q, 8, and a(k), 1 <k< n, are as in 
Theorem 3.2. Then I(B(J,< [llB1l,le~~~,~[~~Bl~ic~,]“~k~. 

Theorems 3.3 and 3.4 are just simple consequences of the multidimen- 
sional Riesz-Thorin interpolation theorem. (Apply the argument in 
Remark 2.1, but in using [l, p. 18, Exercise 13 ] think of B as a linear 
operator into Z1(sZ, + i, 9$+ 1, P,, r), where O,, I is trivial, consisting of 
just one element.) 

THEOREM 3.5. Suppose B is an n-linear form. Then 

(i) IlBll, <6”.d,(B); 
(ii) V k = I,..., n, /j BIl i(k) d 6”- *. di,,,(B); and 

(iii) 11~11~1,1 . . . . . I) = &,, ,._., ,,(B). 
In different guises this theorem has been used frequently in probability 

theory (e.g., in [2, 12, 18, 20, 21, 33, 381). Its proof will be postponed until 
after the statement of Lemma 3.7 below. The reader seeking the sharpest 
possible constants to replace 6” and 6”-’ (which are not sharp) might find 
[12, p. 528, Lemma 5.31 and [21, p. 121, Lemma S] to be valuable. 

Before stating Theorem 3.6 we need another definition: An n-linear form 
B is a “product form” if (IB((i(k) < 1 V k= l,..., n. Of course by Theorem 3.3 
(and analogous to Remark 2.1), I( B/l, < 1 whenever B is a product form 
and C;=, pk’< 1. 

THEOREM 3.6. Suppose p = (pl ,..., p,)~ [l, co]“such thatC;:=, p;l<l. 
Define the number c = c(p) := (cardinality of (k: pk < CO >) - C;= 1 p; l. 
Then there exists a constant C= C(p) which is a function only of p, such that 
the following statement holds: 

Zf B is an n-linear product form then (I B(j p < C. dp( B) . [ 1 - log d,(B)]‘. 

It is emphasized that the constant C, like c, does not depend at all on the 
particular probability spaces (Q,, &, Pk), 1 < k < n, being used. The proof 
of Theorem 3.6 will be postponed until after the statement of Lemma 3.7 
below. 

Remark 3.1. Theorem 3.6 is closely related to the work of Stein and 
Weiss [37]. In the context of Theorem 3.6 for the case n = 2, if p = (pl, pz), 
where 1 < pl, p2 < cc and p; l+ py ’ < 1, the slightly weaker inequality 
1) B(I p < C. [d,(B)]‘-“, where E > 0 can be fixed arbitrarily small and C 
depends only on E and p, can be established (for product forms) by carry- 
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ing out two applications of [ 37, Theorem VII], with the parameters chosen 
carefully depending on p and E, followed by an application of the Riesz 
interpolation (convexity) theorem. In order to do this, one first has to 
incorporate explicitly into [37, Theorem VII] a bound which is based 
partly on the arguments in [37] and partly on a bound in the Mar- 
cinkiewicz interpolation theorem. In any case this approach is quicker than 
the argument used in [3]. Theorem 3.6 is proved by combining (in the 
proof of Lemma 3.7 below) Theorem 2.1 and a key idea in [37]. 

Remark 3.2. In our applications of the theorems in this section to 
measures of dependence in Section 4, we shall be primarily interested in 
product forms (or n-linear forms which differ from a product form by only 
a constant factor). If B,, B2,... is a sequence of (n-linear) product forms and 
P=(P l,...,pn)~[l, co]” withC;!,p;‘<l, then Limj,,dP(Bj)=Oifand 
only if Lim, _ m d,(Bi) = 0 by Theorem 3.1, and thus for product forms the 
norms dP and d, can in a certain sense be regarded as “equivalent.” In this 
sense, for product forms, by Theorems 3.1-3.6, the norms d,(.), 11. lip, d,(e), 
and I(. (I,, are equivalent, where p= (pl,..., p,)~ Cl, cc]” and q = 
(ql ,..,, qJ E Cl, co]“, if either (i) C;= 1 pkl < 1 and C;! 1 qk l < 1, or else (ii) 
c;=, Pk’=C;=Iqk ‘=l and {k:p,=oo)=(k:q,=oo). 

The proofs of Theorems 3.5 and 3.6 will be based on the following cum- 
bersome technical lemma: 

, LEMMA 3.7. Suppose B is an n-linear form and p = (pl ,..., p,) E [ 1, 00 1”. 
Suppose 1 < j < n; and suppose that for each k, 1~ k < n, k # j, either 4 := 
Y(&) or 4 := {I(A): A E &). Define the quantities A(‘) and A(*) by 

IWfi ,...v fn)l 
d(1):= sup IIf,II,(l,. . . . . llfnll*(n)’ 

fi=Z(A), AE$; fkE2& Vk#j, 

IB(fi ,..., fJl 
4’2’:= sup (If,(IP(l). . . . . IIf”IIph,’ 

fi~9’(9’$ fksS Vk#j. 

Then the foilqwing statements hold: 

(i) Ifpj= 1 then 4’*‘=d(‘). 

(ii) Zf pj = co then A(*) < 64”‘. 

(iii) If B is a product form and xi! 1 pk ’ < 1 then A(*) < C,(p). A(‘). 
(1 _ log d(l))‘- VP(j), where C,(p) is a function only of j and p. 

In this lemma, clearly dP(B)<d(‘J<A4’2’i //B/l,,. Of course the 
possibilities d (l) = 0 or co may occur, but in these cases the lemma is 
trivial. Under the hypothesis of (iii) we have ((B((, < 1 (as was mentioned 
earlier) and hence 1 -log A(‘) > 1 (in the case A(‘) > 0). In (iii) of course 
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C,(p) need not really depend on j; it can be replaced by maxr G jCn C,(p). 
Also, (iii) is redundant if either pi = 1 or pi = a;). 

Before proving Lemma 3.7, let us first quickly show how it can be used 
to prove Theorems 3.5 and 3.6. In the proofs of both theorems one simply 
fixes B and p and then defines d,, 0 <j< n, as follows: 

IB(f,,...> fn)l 
‘j’= “P II~~II~(~,. . . . . Ilfnll,(,,’ 

fk~9’(Fk) for k<j, 

fk=Wd, AkE% for k2j+l. 

Thus A, = d,(B) and A,, = 1) BIJ p. 
To prove Theorem 3.5(i), set p = 00 and note that Aj,<6Aj- 1 V j= I,..., n 

by Lemma 3.7(ii). The proofs of Theorem 3S(ii) and (iii) are similar. 
To prove Theorem 3.6 (assuming d,(B) > 0) note that if pi= co then 

Aj/Aj-1<6, and if 1 ,<pj<oo then 

d~/d~_~~C~(~)~(1-lOgA~-~)‘-“~“’ 

< C,(p). (1 - log d,(B))’ - 1’p(j’ 

(since d,(B) < Aj- 1 d 1). Theorem 3.6 follows. 

Proof of Lemma 3.7. Without losing generality we assume j=n. 
(Otherwise we can transfer to this case by simply permuting indices.) The 
proofs of (i) and (ii) are entirely elementary but are given here for com- 
pleteness. 

Proof of (i). Here p, = 1. Let fkE ~!2~ be fixed, 1 <k < n- 1. Fix 
f,, E Y(z) and represent it by f, = C,“=, c,Z(A,), where {A, ,..., A,,,] is a 
partition of Sz, (with each A, E Fn) and c, E @ V m. Then 

lB(f,>..., fn)l d : IWi ,..., fn - 1, c,Z(4,))I 
m=l 

< f Ic,I ,A’“* 
m=l 

(jj llfAI,,+‘n(A,) 

=/j(l). 
ii II fkll p(k). 

k=l 

Part (i) follows. 

Proofof (ii). Here p, = 00, Let fi ,..., f,, {A, ,..., A,,,,}, and c, ,..., c,,,, be as 
in the proof of (i) above. 
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Consider first the case where f, is real, i.e., c, is real V m. Then 

Re B(f, ,.-, A,) = f cm Re4fl,...~fn-l~ &%J) 
??I=1 

G IlfnllcQ~ 
[ 

ReB(fl,...,fn-l, J(F,)) 
-ReB(f,,...,f,-,,Z(F,)) 1 

where 

F, = u A,, {m:ReB(f,,...,f,-,,Z(A,))~O0), 

F, = u A,, {m:ReB(f,,...,f,-,,Z(A,))<O). 

Hence Re B(f, ,..., f,) < 2. d(i). JJ; = 1 /I fkjl p(kj. After applying a similar 
argument to Re( -B(f, ,..., f,)) we obtain IReB(f,,..., fn)l 62*4”‘. 
lx= 1 IIf/&( Similarly (Im B(f,,..., f,)l <2~A(“*~I”,=, (1 fkllpckj. Hence 
(WhenA, is real), P(fi,...,fn)I G~“~.~(‘).II;=, IIfklIpckl. 

Hence for general fn E 9’(Yn), 

Mfl,...~ fJl 6 IB(f,,..., f,- I, ReLJl 
+ IW,,...,fn-l, ImfJl 

< 32112. ~(1). kij, 11 fkli p(k)* 

Since 32”* < 6, this completes the proof of (ii). 

Proof of (iii). For the cases pn = 1 and p,, = 03 one can simply apply (i) 
and (ii). Now assume 1 < p, < co. To avoid trivialities, assume A(‘)> 0 
also. Define q, 1 < q < co, by q-l + p;’ = 1. Define C= C,(p) := 
max(6, 6. C(p, ,..., pn-,; q)}, where C(p, ,..., pnel; q) is taken from 
Theorem 2.1. (Note that C depends only on pl,..., p,.) To prove Lem- 
ma 3.7(iii) it suffices to prove A(‘) < C. do’. (1 -log d(‘))‘K 

First, since B is a product form it can be extended to an n-linear form on 
Y(e) x ... x Y(Fn2;,_ ,) x Y1(9”) retaining the same i,-norm IIBlli(,) < 1. 
This extended B induces an (n - l)-linear operator T: Y(%) x ... x 
Y’(E- 1) -+ b;p,(gn) by a well known procedure: For fixed fi E 9’(~&),..., 
fn _ 1 E 9’(gn _ 1) the (extended) mapping B( fi ,..., f, _ i, .) is a linear 
functional on gl(Pn) with norm d n;:: I( fk/l m; hence there is a unique 
function gEYm(9”) (depending on fi ,..., fnel) such that B(f ,,..,, f,)= 
[n(n) gf, dpn v fn E %(-%h and in fact llgll, <n;:: llfkll m since llgll m is 
the norm of the functional; define T(fi ,..., f,- 1) := g. It is easily seen that 
T is (n - I)-linear, i.e., linear in each coordinate separately. An easy, stan- 
dard argument shows that T is in fact a product operator. 
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. . inequality, v c”ri )‘..) ~;~;s,, x IWl,..., f,)l G II WI,-., f,- IN,. IIfnllp~n) 
... x Y’(FJ. To prove Lemma 3.7(iii) it suffices to 

show that if fk E 4 V k = l,..., n - 1, then 

n-1 

II~(f,,...,f,-,)ll,~c~~“‘~(1-l0g~”’)”Q~ n IIf&( (3.1) 
k=l 

If d(l) > $, then (3.1) holds automatically, since T is a product operator, 
C>6 A”‘< 1 (so logd”’ GO), and 4-l ax;!: p;‘. (See Remark 2.1.) 

Henceforth we assume A(‘) < $. We will apply Theorem 2.1, but we first 
need to establish a version of [37, Lemma I]: 

CLAIM 0. Zf t >O and fk~ 4 V k = l,..., n - 1, then P,( IT(fi ,..., 

fn-l)l ‘t)G CWA’l’lM-I~~: Iifkllp(k)lq* 

To prove Claim 0, let us first show that 

P,(IRe T(fl,...,fn- 1)1 > 2-l?) d [ (8”‘A(‘)/t)- “fi’ II~xII~,,,]~. (3.2) 
k=l 

We shall simply repeat the argument for [37, Lemma 1 ] (with trivial 
modifications). Let g := T(fi ,..., f,- 1), and define the events (sets) A 1 and 
A,cSZ, by A, := (Reg>2-1’2t} and A,:= (Reg< -2-1/2t}. Then for 
m = 1,2, one has IjAtrnj g dP,I > lj,+,) Re g dP,( > 2-“2tP,(A,), and by 
our assumptions, 

<A(‘). (jj: 11 fk/,,k,) i?n(Am)I1’P(“). 

Hence 

< (2”‘/t). A(‘). (‘0’ ilr,l,,k,). i t?n(Am)I”P’“‘. 
k=l m=l 

Since the last sum is obviously < 2[P,(A 1) + P,(A,)] “p(“), we have 
[P,(A,)+P,(A2)]“q~(81’2/t).A”‘.~~=~ )\fk)I@). Taking both sides to 
the power q, we get (3.2). 

A similar argument gives (3.2) with Im g in place of Re g. Combining 
these two parts, one easily establishes the inequality in Claim 0. 
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Now we can apply Theorem 2.1, with E := 64(i)< 1. Since 1 < 1 - 
log&<1-logd”‘, we have (3.1). This completes the proof of Lemma 3.7. 

IV. MEASURES OF DEPENDENCE 

In this section we shall always be working on a probability space 
(52, &!, P). Whenever Theorems 3.1-3.6 are applied, it is assumed that the 
probability space (Sz,, 3k, Pk) in Sections 2-3 satisfy Q1, = 52, 3k c A, and 
Pk = P (on 3k). Section 4.1 examines measures of dependence between two 
a-fields, Section 4.2 examines measures of dependence between three or 
more o-fields, Section 4.3 examines measures of dependence involving 
Hilbert-space-valued r.v.‘s, and Section 4.4 gives an exact (sharp) com- 
parison between two particular measures of dependence in a special con- 
text. 

4.1. Measures of Dependence between Two a-Fields 

Let 3 and 9 be arbitrary but fixed a-fields (CA). Define the well 
known bilinear form Cov: Y’(3) x Y(S) --) C by Cov(f, g) := Efg - EfEg. 
(Some people might prefer to replace g by its complex conjugate g, but that 
will be of no importance in what follows.) If (p, q)E [ 1, co]* then 
d(p,q)(COV) = %/,.1/q (3, ~9). (See (1.1)) For any (p, q) E [ 1, co]* define the 
following measure of dependence: 

L 
lCov(f, 811 

RP4(3* ,̂ 9) := sup ,,f,,, ,,g(/,’ fE 973), g E ww 1 = IIcovll (p,q). (4.1) 

In this definition we shall not impose the “natural” additional restriction 
Ef = Eg = 0, because the results in Section 3 can be applied more smoothly 
without it. In any case such a restriction would lower the value by at worst 
a factor of l/4, since I( f - Ef II p d (I f (( p + (Ef I< 2 11 f I( p holds for every 
PE [l, co] and every fcL$(.&). 

Of course in (4.1), if R,,(B, ‘9) < co then the same sup is achieved over 
all f E 5$(3) and all g E Tq(Y). 

Also note that R2,J3, Y)=p(3, 9). (See (1.3).) 
The first theorem here is just a list of some results obtained by applying 

Theorems 3.1-3.6 to the bilinear form Cov. However, for the sake of sim- 
plicity we shall not use the full strength of all of these theorems. It should . . 
be kept m mmd that dtp,4j (Cov) < 1 whenever p-l + q-l < 1, by the trivial 
fact that IP(A nB) - P(A) P(B)( <min{P(A), P(B)} for any two events A 
and B. Also llCov(( (p,qJ d 2 whenever p-l + q-’ < 1. (Theorem 3.6 will be 
applied to f. Cov.) For any p E [ 1, co], its conjugate exponent will be 
denoted by p’, i.e., (l/p) + (l/p’) = 1. 
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THEOREM 4.1. For any two a-fields 9 and 9 the following six statements 
hold: 

(i) Zf r 20, ~20, and r+s < 1, then a,,,(9, 9) <a,,(@‘, ‘S)< 
[Iao,dFG, Wll--r--s. 

(ii) Zf O<r<s<l then a,,l-,(~,~)~[a,,_,(~,~)J”” and 
as.l-s(F, 3)G [c~,,~-,(.F, 9)](1-s)/(1-r). 

(iii) Zf l<p, q<m with p-‘+q-‘cl, then R,,,(F,Y)< 
Rp,q(Sr 9) < 2(l’p)+ (‘qz&&F, S)]’ -(Up)- (l/q). 

(iv) If 1 <p<q< 00 then R,,,(P, 3)<21-4”P’. [R,,.(S, Y)]q’ip’ 
and R,,JF-, 9) < 2’ --P/q . [R,,.(ZT, S)] p/‘7. 

(v) &+A~-, 9) < 36a,,dF, % R,,,(s, 3) G 6al,d~, W, 
R,.,(~, $1 G %,,(B, W, and R,J(~, 9) = al,l(F, 9). 

(vi) Zf l<p,q<c~ and p-r+q-‘61, then R,,,(9,Y)<C. 

alip,liq(K 3) * Cl - loi3 allp,llq (9, S)]‘, where the constants C = C(p, q) and 
c = (p, q) are functions only of p and q, the latter constant being as follows: 
c(cq co)=O, c(p,oO)=l-p-’ if l<p<co, c(co,q)=l-q-r if 
16q<co, andc(p,q)=2-(p-‘+q-‘) ifl<p, q<oo. 

Statement (iv) was given (in the language of linear operators) by Rosen- 
blatt [33, Chap. 71. Dvoretzky [12, p. 528, Lemma 5.33 showed that in the 
first inequality in (v) the 36 can be replaced by the much better constant 
27~. The last equality in (v) appeared in [2]. The other two inequalities in 
(v) are also well known. Statement (vi) sharpens the main result in [3]. 

Remark 4.1. In more or less the same spirit as in Remark 3.2, one 
might regard two measures of dependence as “equivalent” if each one 
becomes arbitrarily small as the other becomes sufficiently small. In this 
sense, by Theorem 4.1, (i) the dependence coefficients a,,S, 0 Gr, s < 1, 
r+s< 1, and Rp,q, l<p, q<oo,p-‘+q-’ < 1, are all equivalent to each 
other; and (ii) the dependence coefficients ar,l-,, 0 <r < 1, and R,,,, 
1 < p < co, are all equivalent to each other. This understanding may be 
helpful in trying to fit into a comprehensible structure the numerous 
measures of dependence that have been studied in the literature. It appears 
that many of them belong to one of the four distinct equivalence classes 
represented by aO,O, al,O, a,,,, and a1,2,1,2; and so these four equivalence 
classes would perhaps be a “central” part of such a structure. These four 
“central” classes-as we shall call them here for convenience-correspond 
to four equivalence classes of mixing conditions on Markov chains that 
were discussed by Rosenblatt [33, Chap. 73. The measures of dependence 
based on Hilbert-space-valued r.v.‘s that will be discussed later on in Sec- 

683/16/3-6 
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tion 4.3, also belong to these four “central” classes (by Theorem 4.2 in that 
section). Also, the dependence coefficient b,(e, .) defined in [4] by 

q% % := SUP IIW 1%) - W)ll,, AES 

is equivalent to a,,, ( res p. ao,l) if 1 d p < cc (resp. if p = co). Of course, two 
very important measures of dependence that do not belong to the four 
“central” classes are ul,r and the one that is the basis for the “absolute 
regularity” condition (see Volkonskii and Rozanov [38]). Whatever 
“equivalence structure” there is for the measures of dependence E,,,, 
r+s> 1, and RP,4, p - ’ + q- ’ > 1, seems to be somewhat complicated and 
not so easy to decipher; it will not be treated further here. 

Proof of Theorem 1.1. To prove (i), simply note that by Theorems 3.3 
and 3.5 and [12, Lemma 5.31, 

R,,W*l, g) G CKo,,(~t, %)I I”. CR,,,(g, WI “JJ * CR,,,(~, WI l/q 
. < [27ca,,(P, S)]“‘. [6a,,,(F, S)] “/J * [6cr,,,(F, a)] 1’q. 

To prove (ii), first assume without loss of generality that p < q (and 
hence p 6 2 <q by our assumption p- ’ + q-l = 1). The case where p = 1 
(and q = cc ) is trivial, so let us assume p > 1. By Theorem 4.1 (iv),( vi), 

Rp,,(9, 9) < 2’ -2’q[R2,2(cF, 9J)]2’4 

<21-2’4. [C(2,2)* \ %,2,,,2(9t, 9) * Cl -1% %,2,,,2(99 wl12’q. 

The upper bound of 3000 on C(2,2) (a rather crude bound) can be seen 
as follows: By Theorem 2.2 one can take C(2; 2) = 6 in Theorem 2.1. From 
the proof of Lemma 3.7(iii) we see that in that lemma one can take 
C,((2,2)) = C,((2,2)) = 62. From the proof of Theorem 3.6 we see that one 
can take C((2, 2)) = 64 there. Since Theorem 4.l(vi) was obtained by apply- 
ing Theorem 3.6 to 1. Cov, a simple, crude calculation shows that in 
Theorem 4.l(vi) one can take C(2, 2) = 2. 64 < 3000. This completes the 
proof of Theorem 1.1. 

Remark 4.2. The upper bound of 3000 on C(2,2) can be substantially 
lowered by the following approach: Use [39, p. 512, Theorem 1.11 to con- 
vert this task into one involving just real-valued functions; take advantage 
of this in order to lower the constant 6 in Claim 0 in the proof of Lem- 
ma 3.7(iii) (look at the original argument in [37, Lemma 11); and at an 
appropriate place in the proof of Theorem 3.6, use the sharp result 
(Theorem 4.3) in Section 4.4. The details are left to the reader. 
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4.2. Measures of Dependence between Three or More a-Fields 

Measures of dependence between three or more a-fields have been 
studied by several authors, e.g., StatuleviEius [35, 361, %irbenko [41], 
Mase [25], and Dmitrovskii, Ermakov, and Ostrovskii [ 111. Some of 
their results can, except perhaps for a constant factor, be derived from 
Theorems 3.1-3.6. This was part of the motivation for presenting Theorems 
3.1-3.6 in their present (multidimensional) form instead of limiting them to 
the case n = 2. 

Let us consider an example of Mase [25]. Suppose Ai, A$, Jll,, and J& 
are sub-a-fields of A!. Mase considered the 4-linear form “Cum” 
(cumulant) on, say, Y(A!,) x Y(&) x Y(J&) x Y(J&), defined by 

cWfi,f2,f3,f4) := E fi (fk-Efk) 
k=l 

- 1 CE(fa - -?fJfb - Efdl . CE(fc - Efc,)(fd - EfJl 

where the sum is taken over (a, b, c, 4 E { (L2, 3,4), (1, 3, 2,4), 
(1,4, 2, 3)). (We retain this definition of “cumulant” even when the fis are 
complex-valued.) Then for a given 6 >O, Theorem 1 of [25] can be 
obtained from the following inequalities, where p = (4 + 6,4 + 6,4 + 6, 
4+6): 

I(CumII,< [llCum11,]6”4+6). kfI, ClIC~~lli~k~11’(4+5) 

< [6 46/(4+ 6) . 644/‘4+6’] . [d,(Cum)]“/‘4 +a). 

Here the first inequality comes from Theorem 3.3, and the second from 
Theorem 3.5(i) and the elementary fact that (lCum(lr(kj < 64 V k = 1, 2, 3,4. 

Here is another possible example. By Theorem 3.6 (applied to (l/64). 
Cum), there exists a constant K such that the inequality IlCurnII +,4,4J d K* 
dc4,4,4,4)(Cum) . C 1 - 1% dc4,4,4,4)( Cum)13 always holds. Such an inequality 
might be useful, for example, in verifying an assumption such as CyzO 
cTz0 cp+ ICum(xO, xi, xj, xk)( < (zc for strictly stationary sequences of 
real-valued T.V.% (xk, k= . . . . - 1, 0, l,...) under certain dependence 
assumptions. This latter inequality has played a natural role in certain 
kinds of limit theorems, especially for estimators of parameters in time 
series analysis; see e.g., Hannan [15, pp. 226-2271 and Mase [25, 
Theorem 3 1. 

Some general comments might be worth making. Suppose n 22 and 
A I ,..., A,, are o-fields (CA). If 9 = {S,, S2 ,..., S,} is a partition of 
{ 1, Z..., n} with each S, non-empty, then the n-linear form 
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&a-l ,--*, .a := l-I:= 1 N-I ksS(mjfk), defined on Y(J&) x ..* x Y(&), is 
a product form by the multidimensional Holder inequality. If B, = 
Cs= 1 ciBBcjJ, where B(1) ,..., B(J) are each a partition of {l,..., n} and 
ci,..., cJ are complex numbers, then c-i&, is a product form for c = 
Cg= i IcJ. For appropriate choices of such n-linear forms B,, one might 
regard the norms d&B,) and ([&,I(, for vectors p E [ 1, cc]“, as measures of 
“multidimensional” dependence between the o-fields ‘Si ,..., gn. By applying 
Theorems 3.1-3.6 to appropriate forms B, (or to c-l&, when a product 
form is called for), one can obtain numerous inequalities, including ones 
analogous to Theorem l.l(i),(ii) and Theorem 4.1. In order to regard 
d&B,) or l/Boll,, as a “measure of dependence,” one would naturally want 
B, to be such that d,(B,) = 0 whenever 4 ,..., 4 are independent o-fields. 
(The forms “Cov” and “Cum” used above both have this property.) Of 
course even for a “natural” form BO, only certain kinds of dependence 
might be detected. For example, if n = 4, 9i, 4, and 4 are independent 
o-fields, and $ = 4, then d,(Cum) = 0 and thus the (severe) dependence 
between 4 and 9Sd is not detected by the dependence coefficient d,(Cum). 

Without getting into the details, here are a few more possibilities for 
applications of interpolation theory to measures of dependence: 

(i) Theorem 3.1 (resp. Theorem 3.2) is in an obvious way an analog 
of Theorem 3.3 (resp. Theorem 3.4). In our present context there are other 
applications of the (multidimensional) Riesz-Thorin interpolation theorem 
that are similar to but outside of the narrow scope of Theorems 3.3-3.4, 
and they have analogs similar to but outside of Theorems 3.1-3.2. A wider 
class of inequalities for measures of dependence can be derived if one 
makes use of these more general applications (in addition to Theorems 3.1- 
3.6). 

(ii) Interpolation theory on Orlicz spaces (see, e.g., Peetre [27], 
Gustavsson and Peetre [14], and the references therein) might be useful in 
obtaining inequalities such as the ones by Zuev [40] and Zurbenko and 
Zuev [42] alluded to in Remark 1.1. The (essentially unavoidable) log 
terms in those inequalities might well be due to the same basic underlying 
“cause” as the log terms in Theorems 1.1, 2.1, 3.6, and 4.1. 

(iii) An operator T(f) is called “sublinear” if there is a constant K 
such that the inequality ( T(f + g)( < K( (T(f)1 + 1 T( g)( ) always holds. 
Similarly an operator T(fi ,..., f,) is called “multi-sub-linear” if it is sub- 
linear in each coordinate separately. It appears that Theorem 2.1 can 
perhaps be extended to some multi-sub-linear operators (besides mul- 
tilinear ones), and Theorem 3.6 to some multi-sub-linear forms. This would 
perhaps lead to inequalities, such as ones similar to Theorems 1.1 and 4.1, 
for a broader class of measures of dependence (between two or more 
a-fields) than the measures discussed here, 
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4.3. Measures of Dependence Involving H- Valued T.v.5 

Because of the research that has been done on limit theorems for depen- 
dent sequences of, Hilbert-space-valued (H-valued) random variables (see, 
e.g., [S, 24]), it might be worthwhile to take a quick look at measures of 
dependence involving H-valued r.v.‘s and see how they relate to the other 
measures of dependence discussed so far. We shall follow the basic 
approach of Dehling and Philipp [S], where a well known theorem of 
Grothendieck (see [23, p. 683) is used in order to derive “moment 
inequalities” for H-valued random variables. Just for simplicity, we shall 
restrict our attention to real (not complex) Hilbert spaces H and to mean- 
zero H-valued (strongly measurable) r.v.‘s. 

Let H be an arbitrary real Hilbert space, and let the inner product be 
denoted by (., *). For any two o-fields % and ‘SCM and any vector 
(p, q)E [l, co12 with p-l +qP1 d 1, define the measure of dependence 

p&(%, 9) := sup IE(f, g)l 
Ilfll, llgllq 

where this sup is taken over all H-valued r.v.‘s f and g such that f is 
%-measurable, g is g-measurable, (( f I/ p < co, (1 g(14 < co, and Ef = Eg = 0. 
Here of course (IX([ p := [1(X, X)“2((p for any H-valued r.v. X and any 
p E [ 1, co]. Note that Rfq(%, 9) < 16 * p&(%, 9). (The 16 could of course 
be omitted if we revised (4.1) by taking only real, mean-zero r.v.‘s into 
account.) 

THEOREM 4.2. If H is a real Hilbert space, (p, q) E [ 1, co]* with 
p-l + q-l < 1, and F,9 c A, then pEJ.F,‘S) $ A. R,,,(F, S), where 
A = A(p, q) is a function only of p and q. Moreover p&(9,9) = ~(9, ‘9) = 
R2,2W> 9). 

Theorem 4.2 is not new; it is simply a formulation, in our context, of 
results that are well known in other contexts (e.g., in functional analysis). 
Its presentation here is motivated partly by Dehling and Philipp [8, 
Lemma 2.23, in which this theorem for the case p = q= 00 was shown to 
follow from Grothendieck’s inequality, and partly by a simple proof of the 
very last statement (p&(%, 3) =p(%, $)) that was shown to one of the 
authors by S. Kwapien. The cases (p, q) # (co, co) can be made very trans- 
parent with totally elementary arguments. Although these arguments are 
well known in various forms (see, e.g., Pietsch [29, Chap. 22]), they will be 
repeated here in our terminology for the sake of expository clarity. 

For 1 <p < cc define Z,, := [(2~)-‘/~ sTm lxlp epX212 dx]‘lP, the p-norm 
of a real N(0, 1) r.v. We shall consider just these two cases: 
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Case I. 1 <p < cc and q = oc), with A = A(p, a~) = (7r/2)“* 2,. 

Case II. l<p, q<w withp-‘+q-‘<l, with A=A(p,q)=Z;Z,. 
(Then the very last part of Theorem 4.2 becomes a simple consequence of 

(1.3), Case II, and the fact Z2 = 1.) We shall use a Gaussian measure on H 
as in Rietz [30]. 

Proof for Case I. By a standard approximation argument it suffices to 
consider a finite dimensional Hilbert space H. Let y be a standard Gaussian 
measure on H, i.e., y is the distribution of the r.v. C$?jH) Yiei, where 
el, %-7 edim(ff) is an orthonormal basis for H and the yis are independent 
real N(0, 1) T.v.%. 

LEMMA 0. VX,~EH, 

(4 v) = 1.14 . (7GP2. J, (4 ~1 skn(y, ~1 Y(~u). 

Here 1 y[ just means ( y, y)‘j2. 

Thanks to the spherical symmetry of the measure y, to prove Lemma 0 
it suffices to consider the case y = e,. For x = el, Lemma 0 simply boils 
down to the fact E Lyle = (2/7r)“*, an elementary property of N(0, 1) r.v.‘s. 
For x = ej, j # 1, Lemma 0 boils down to Eyj sign(y,) = 0. And now Lem- 
ma 0 can be established for general x by the usual equation x= 
Cd& eJ ei. 

Now to prove Case I let f and g be arbitrary H-valued r.v.‘s, measurable 
with respect to 9 and 9, respectively, such that Ilfl/p < co, lJg/l o. < co, 
and Ef = Eg = 0. Using Lemma 0 and Fubini’s theorem, we have 

E(f; g) = (Q)‘/* 1 ECU u) * sign(g, u)* I gll Y(~u) 
H 

G W)1’2 j-H &,a,) (9,g) * II Al m . (El (f, ~11 p)“p Y(~u) 

< (7~/2)“~ R (p,m)(K 3). llgllm~ E [J 
UP 

H ILL ~)I”Y(~u) I 
= (7c/2)i’* R (p,m)w~ 9). II gll m . II s lip .zp 

where, in order to obtain the last equality, we use the following elementary 
fact: If ye H and Iv/= 1 then on the probability space (H, y) the r.v. 
Y: H -+ Iw defined by Y(u) = (y, u) has the N(0, 1) distribution. Case I is 
proved. 
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Proof for Case II. Use the elementary identity (x, y) = jw(x, u) * 
(y, u) y(du) in place of Lemma 0. (It can be proved in the same way as 
Lemma 0.) The rest of the argument is essentially the same as for Case I. 

Remark 4.3. Theorem 1.1 now extends to H-valued r.v.‘s X and Y, with 
(E(X, Y) - (ZX, EY)l in place of (EXY- EXEYI. If H is a real Hilbert 
space and ZX = EY = 0, then it suffices to multiply the factors 2n and 3000 
in Theorem 1.1 by A(p, q) from Theorem 4.2. If one wishes to allow H to 
be a complex Hilbert space and remove the restriction ZX= EY = 0, then 
an additional constant factor may be needed. 

4.4. An Exact Comparison 

Referring to Theorems 3.6 and 4.l(vi), we shall present a special 
situation in which a closely related exact (sharp) inequality has been 
established. First, for any two a-fields 9 and ‘9, define the measure of 
dependence 

z(F, 9) := sup ICorr(Z(A), Z(B))\, AES, BEG. 

Now ICorr(Z(A), Z(B))( and IP(A n B) - P(A) P(B)( each remain 
unchanged if A (or B) is replaced by its complement. Hence, in both the 
definition of r(., -) and of A(*, a) (see (1.2)) the sup can be taken over events 
A and B with probability ~1. It follows immediately that 

A(*, 93) < $9, 3) 6 21(9,9). (4.2) 

(This inequality was noted in [3].) 

THEOREM 4.3. Suppose 9 = {a,#, A, A’} for some event A, and $9 is 
any o-field. Then p(F,9) < z(F, 8) * [ 1 -log $9, S)]“‘. 

Here of course A’ denotes the complement of A, and p(9,9) is the 
maximal correlation (see (1.3)). In Example 4.4 below it will be shown that 
this inequality is sharp. 

Proof of Theorem 4.3. Let t = ~(9, ‘9). If t = 0 or 1 then Theorem 4.3 is 
trivial. So we assume 0 < t < 1. (Of course t > 0 implies 0 < P(A) < 1.) 

Let f and g be of the form 

f =f,Z(A)+f,Z(A’), g= i gjZ(Bj) 
j=l 

where .Z> 2, { B1,..., B,} is a Y-measurable partition of 9, P(B,) > 0 V j, 
f,<f2, g,<g,< ... <g,, and Ef=Eg=O. It &ices to prove 
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JCorr(J; g)[ <t. (1 -log t) ‘I2 Since -g can be expressed in the same way . 
as g, it in fact suffices to prove 

Corr(f,g)~t~(l-logt)1~2 (4.3) 

Similarly to the argument in [ 33, define the positive numbers q = f2 -f, , 
c= P(A), and the r.v. V= c-I(A); and for each j= l,..., J- 1 define the 
event Di= lJizl B,, the positive numbers ri = gj+ r - gj and dj = P(Dj), 
and the r.v. Wi = di - I(Dj). Note that EV = 0 and EWj = 0 V j. Keeping in 
mind that Ef = Eg = 0 by assumption, one can easily show that 

J-I 

f=sK g= C rjW. I’ (4.4) 
j=l 

We need to digress for a moment to define several functions on the unit 
interval. For each x, 0 <x < 1, define the function H,(.) on [0, 1) as 

H,(y) := min{x( 1 - Y)~ y( 1 -x), t[x( 1 - x) JJ( 1 - r)] ‘j2) (4.5) 

and define the numbers 

t2x X 

7X := (1 _ x)‘+ pX’ px := x+ f’(l -x)’ 

With a little arithmetic one can show that for 0 <x < 1 one has 

o<y,~x<p~< 1, 
H,(Y) = Al -xl if O<y<y, 

=$x(1-X)Y(l-y)]1’2 if yx<y<pL, 

=x(1 - y) if pX<<Yl. 

For each 0 <x < 1 define the function h,(e) on [0, l] by 

h,(y)=l-x if OGyGy, 
/[x(1 -x)]“2(1-2Y) 

2x1- Y)11’2 
if Y,-=Y<P, 

= -x if ~.~dy< 1. 

(4.6) 

(4.7) 

(4.8) 

For each fixed x, 0 XX < 1, H,(y) is continuous, h,(y) is bounded and 
monotonically decreasing and (except at y = 0, y,, pL,, and 1) is the 
derivative of H,, and so H, is an indefinite integral of h, on [0, 11. 
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Define the numbers d,, = 0 and dJ = 1 and define the function g* on the 
half-open unit interval (0, l] by 

g*(Y) '= i gjz(d,-,,dj](Y)' 
j= 1 

Now for eachj, Corr(V, wj)=Corr(Z(A), Z(Oj)) < t, and by taking into 
account the additional restriction P(A n Oj) < min{ P(A), P(Dj)} we find 
that EVWj < H,(dj) by (4.5). Keeping in mind that H,(O) = H,( 1) = 0 for 
0 <x < 1 and q, rj are positive, we have by (4.4) 

J-l 

Efg 6 1 qrjfJ,<dj) = 4 i gjCHc(dj- 1) - ffc(dj)l 
j=l j= 1 

= o1 4. g*(y). UY) dy. I 

NOW Eg* = sh( g*( y))’ dy. Thus by the Cauchy-Schwarz inequality, Efg < 

(&2)1’2(~A q*My))* &I ‘I*. Also, Ef * = q*c( 1 -c). Hence, to verify (4.3) 
and thereby prove Theorem 4.3 it suffices to prove that 

I 
1 

hf( y) dy = c( 1 - c) t2( 1 - log t). (4.9) 
0 

Using (4.8), the integral is equal to 

(1-c)2v,+t2c(l-c)[Y.~~(~~~dy+c2(l-~~). 
Yr 

Now (log y - log( 1 - y) - 4y) is an indefinite integral of (1 - 2y)*/ 
( y( 1 - y)), and hence by (4.6) and some arithmetic, (4.9) follows. This com- 
pletes the proof of Theorem 4.31 

EXAMPLE 4.4. With this example we shall. show that Theorem 4.3 is 
sharp no matter what P(A) is, as long as 0 < P(A) < 1. Let 0 <s < 1 and 
0 < t < 1 be fixed. We shall construct a probability space (B, J?, P) and 
a-fields 9 = (a, 4, A, A’) and 9 c M such that P(A) = s, ~(9, 3) = t, and 
p(F, 59) = t . (1 - log tp*. 

Let D = (0, 1 } x [0, l] (the union of two line segments in the plane), let 
.& be the family of all Bore1 subsets of Q, and define the random variables 
X and. Y by X(x, y) := x and Y(x, y) := y for (x, y) EQ. Let P be the 
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probability measure on (8, A) determined by the following condition: for 
each Bore1 subset B c [0, 11, 

P(X=O, YGB)=[ (h,(y)+s)dy, 
B 

P(X=l, y~B)=J‘a(l-s-h,(y))& 

where h,(y) is as defined in (4.8) (in the proof of Theorem 4.3); it was 
noted in the proof of Theorem 4.3 that h,(y) is monotonically decreasing 
on [0, 11, so that --s <h,(y) < 1 --s V ye [0, 11, and it follows that both 
integrands here are always non-negative. Define the a-fields 9 = g(X) and 
3=0(Y). Defining the event A = {X=0} we have g= {Q, d, A, A’) and 
P(A) = s. Also, Y is uniformly distributed on [0, 11. 

We shall first show that $9, 9) < t. Let B be any Bore1 subset of the 
interval [O, 1 ] and let b = P( YE B) = the Lebesgue measure of B. Since 
Corr(Z(A ), Z( Y E B)) simply changes sign if A is replaced by A’ or B by B’, 
it suffkes to prove Corr(Z(A), Z( YE B)) < t. Since h,(y) is monotonically 
decreasing, 

P(x= 0, YE B) = sb + jB h,(y) u’y < sb + J; h,(y) dy 

=sb+H,(b)<sb+t[s(l-s)b(l-b)]“* (4.10) 

by (4.5). (Recall that ZZ, is an indefinite integral of h,.) Since P(X= 0) = s 
and P( YE B) = 6, (4.10) implies Corr(Z(A), Z( YE B)) < t. Hence 
z(9-, 54) d t. 

To show that ~(9, Y) = t, note that both inequalities in (4.10) become 
equalities if we let B = [O, b] with y, < b ,< pu, (see (4.7)), and in this case 
Corr(Z(A), Z( YE B)) = t. 

Finally we need to show that p(4”, 3) = t. (1 - log t)“*. Define the ran- 
dom variable Z by Z = h,(Y); then Z is ‘&measurable. Note that EZ = 
jh k(r) 6~ = 0, EZ* = j; h?(y) 4s and 
EZ* by the definition of P. Hence 

EW) Z= j: h,(y)(h,(y) + s) dy = 

Corr(Z(A), 2) = [(EZ’)/(Var Z(A))]‘/* 

= [(EZ*)/(s(l -s))]“*= [t’(l -log t)]“* 

by (4.9). Hence ~(9, 9) = t( 1 -log t)‘/* (by Theorem 4.3). This completes 
Example 4.4. 

Remark 4.4. Example 4.4 shows that for the vector (co, 2), 
Theorem 4.l(vi) (as well as Theorem 3.6) is within a constant factor of 
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being sharp. Simply set s = 3 in Example 4.4 (so that P(A) = P(A’) = l/2) 
and observe that ~r,,i,~(Y-, 99) < n(.F, 9) < $9, Y) and R,,J9, 9) 2 
2-‘/2R2,2(5F, 9) =2-9&F, 9). 

Remark 4.5. In the special case when n = 2 and p1 = q = 2, Theorem 2.1 
is within a constant factor of being sharp. Let E, 0 <E < 1, be arbitrary but 
fixed. Using Example 4.4, let (B, .&‘, P) be a probability space with o-fields 
&I and J11/2 c A such that r(&, JZ2) = ~13, p(A,, A,) = (~/3). 

[ 1 - log(&/3)] 1’2, and &‘i = {Sz, 4, A, A’} for some event A. Next let us turn 
our attention to Lemma 3.7(iii) in the case where n = 2, j = 2, p, = p2 = 2, 
Q,=sZ,=Q, F1=&?1, F2=Jll,, and P,=P2=P (restricted to Jz’~ or JZ2), 
$ = Y(&), and B= (l/2). Cov (a product form). Now in the proof of 
Lemma 3.7(iii) we have that q = 2, A (l) < ~/6, T is defined by T(fi) = 4. 
CJW~I%;)-W~I~ and by Claim& POT( >t)G C(O). IIfil1212 V t>O, 
V fi E gl. Also a simple calculation gives (I T(I 2 _ 2 = (( BII t2,2j = jp(J&, A*,) > 

&. E. (1 -log &)I’*. Since T is a product operator, it is now clear that 
Theorem 2.1 is sharp up to a constant factor when n = 2 and p1 = q = 2. 
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Note added in proof: The authors have constructed examples which show that 
Theorems 2.1, 3.6, and 4.l(vi) are within a constant factor of being sharp, for every choice of 
parameters meeting the given specifications. S. Janson has shown that of the measures of 
dependence mentioned in the last sentence of Remark 4.1, no two are equivalent outside of 
Theorem 4.1(v) (fourth equation). S. Janson has also shown that the inequality at the 
beginning of the second line of Theorem 4.2 can be removed; his proof of this more general 
version of Theorem 4.2 involves some extra work using interpolation techniques. 
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