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Computing moments of free additive
convolution of measures
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Abstract

This short note explains how to use ready-to-use components of symbolic software to convert between the free cumu-
lants and the moments of measures without sophisticated programming. This allows quick access to low order moments of
free convolutions of measures, which can be used to test whether a given probability measure is a free convolution of other
measures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Free additive convolution l�m of compactly supported probability measures l; m was introduced by Voi-
culescu [11]; it was extended to measures with finite variance in [6] and to arbitrary probability measures in
[1]. It becomes an increasingly important tool in applications, see [10].

There are two definitions of free convolution which offer different advantages. The analytical definition
relies on the Cauchy-Stieltjes transforms and employs inverse functions which may be difficult to implement
on a computer; but this definition is applicable to arbitrary probability measures [1,6]. Ref. [7] advances this
approach towards computer-assisted computations when the Cauchy-Stieltjes transforms of the distributions
satisfy polynomial equations.

The combinatorial definition of Speicher [8] is applicable only to probability measures with all moments,
but this case is often encountered in practice, and it yields direct analytical relations between polynomials that
can be programmed into symbolic software. This definition relies on free cumulants and their combinatorial
relation to moments, through the sums over the latticed of non-crossing partitions. Our goal is to express this
elegant theory in the analytic form which is ready for use with symbolic software. The resulting formulas can
be used to explore whether a given probability measure with known moments can be represented as a free
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convolution of some other measures with known moments. In fact, Theorem 1 originated in the early stages of
work on [3, Theorem 1.3] as an exploratory tool to identify the limiting law.

2. Background on free convolution

2.1. Free cumulants

For a probability measure l which has finite moments

mk ¼
Z

xklðdxÞ

of all orders k ¼ 1; 2; . . ., let

MðzÞ ¼ 1þ
X1
k¼1

mkzk ð1Þ

be the formal moment generating function. Define the R-series as the formal power series

RðzÞ ¼
X1
k¼1

ckzk�1 ð2Þ

such that

MðzÞ ¼ 1þ zMðzÞRðzMðzÞÞ ð3Þ

see [9, formula (75)]. (We note that this composition of formal power series is indeed well defined.) The coef-
ficients ck ¼ ckðlÞ in (2) are called free cumulants of probability measure l.

Denoting by RlðzÞ the R-series for probability measure l, the fundamental result of the theory is that for a
pair of probability measures l; m with finite moments there exists a probability measure l�m called the free
(additive) convolution of l; m such that

Rl�mðzÞ ¼ RlðzÞ þ RmðzÞ:
This relation determines uniquely probability measure l�m when it is uniquely determined by moments; this is
the case, for example, when measures l; m have compact support. Of course, the equivalent form of the defin-
ing relation is

ckðl�mÞ ¼ ckðlÞ þ ckðmÞ; k ¼ 1; 2; . . .

2.2. Algorithmic version of the relations

For computer usage, the relation between moments and free cumulants should be expressed in terms of the
polynomials obtained by truncation of the formal power series. Let

MnðzÞ � MðzÞ mod znþ1; RnðzÞ � RðzÞ mod znþ1

denote the nth truncations of the formal series, i.e., MnðzÞ ¼ 1þ
Pn

k¼1mkzk and RnðzÞ ¼
Pnþ1

k¼1ckzk�1.

Theorem 1

(i) The consecutive truncations of M(z) are determined from the consecutive truncations of R(z) by the follow-

ing recurrence. With M0ðzÞ ¼ 1,

MnðzÞ � 1þ zMn�1ðzÞRn�1ðzMn�1ðzÞÞ mod znþ1; n P 1: ð4Þ
(ii) Coefficients ck in (2) are determined from the consecutive truncations Mn of M(z) by c1 ¼ M 0

1ð0Þ, and for
2 6 k 6 n,
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ck ¼ �
1

k � 1

1

k!

dk

dzk

1

Mk�1
n ðzÞ

����
z¼0

: ð5Þ

Remark 1. One can also write (4) as

MnðzÞ � 1þ
Xn

k¼1

mk�1zkRn�k�1ðzMn�k�1ðzÞÞ mod znþ1:

Proof. Since ðzMðzÞÞk � 0 mod znþ1 for k P nþ 1, we get MnðzÞ � 1þ zMn�1ðzÞRn�1ðzMðzÞÞ mod znþ1. Con-
sidering separately k = 0 and k > 0 we see that for all k P 0

ðzMðzÞÞk � zkMk
n�kðzÞ � zkMk

n�1ðzÞ mod znþ1:

Thus Rn�1ðzMðzÞÞ � Rn�1ðzMn�1ðzÞÞ mod znþ1.
We now prove (5). For n P k P 1 we have

ck ¼
1

2pi

I
juj¼e

1þ uRnðuÞ
ukþ1

du:

Since z 7! zMnðzÞ maps the origin back into itself, and the derivative at 0 is 1 5 0, for small enough e > 0 we
can substitute u ¼ zMnðzÞ to get

ck ¼
1

2pi

I
jzj¼e

1þ zMnðzÞRnðzMnðzÞÞ
zkþ1Mkþ1

n ðzÞ
ðMnðzÞ þ zM 0

nðzÞÞdz:

From (4) it follows that there are real coefficients {dj} such that 1þ zMnðzÞRnðzMnðzÞÞ ¼ Mnþ1ðzÞþPn2þnþ2
j¼nþ2 djzj ¼ MnðzÞ þ

Pn2þnþ2
j¼nþ1 djzj. Since k 6 n and MnðzÞ 6¼ 0 in the neighborhood of 0,

ðMnðzÞ þ zM 0
nðzÞÞ

Pn2þnþ2
j¼nþ1 djzj�k�1

Mkþ1
n ðzÞ

is an analytic function. So for small enough e > 0 we have

ck ¼
1

2pi

I
jzj¼e

MnðzÞ
zkþ1Mkþ1

n ðzÞ
ðMnðzÞ þ zM 0

nðzÞÞdz ¼ 1

2pi

I
jzj¼e

1

zkþ1Mk�1
n ðzÞ

dzþ 1

2pi

I
jzj¼e

M 0
nðzÞ

zkMk
nðzÞ

dz:

We now use the fact that the derivative of

�1

zkMk�1
n ðzÞ

is

k

zkþ1Mk�1
n ðzÞ

þ ðk � 1ÞM 0
nðzÞ

zkMk
nðzÞ

:

Thus, for k > 1,I
jzj¼e

M 0
nðzÞ

zkMk
nðzÞ

dz ¼ � k
k � 1

I
jzj¼e

1

zkþ1Mk�1
n ðzÞ

dz;

and

ck ¼ �
1

ðk � 1Þ2pi

I
jzj¼e

1

zkþ1Mk�1
n ðzÞ

dz;

which ends the proof. h
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3. Applications

In this section we show how to use formulas (4) and (5) to compute free cumulants and moments of free
convolutions of measures.

3.1. Symbolic software implementation

Using symbolic software and M6ðzÞ ¼ 1þ
P6

k¼1mkzk, we can use Theorem 1(ii) together with Mathematica
code Table[{k, �1/(k � 1)/k!D[(M[z])^(1 � k),{z,k}]/.{z! 0}}, {k,2,6}] to generate the
following expressions for the free cumulants, which are listed in Table 1.

Similarly, Theorem 1(i) has straightforward implementation in Mathematica:

M[z_] = 1; Do[
Rtmp[z_] = PolynomialMod[z R[z], z^(k + 1)];
M[z_] = PolynomialMod[1 + Rtmp[z M[z]], z^(k + 1)], {k, 0, 5}]

This gives

M5½z� ¼ 1þ zc1 þ z2ðc2
1 þ c2Þ þ z3ðc3

1 þ 3c1c2 þ c3Þ þ z4ðc4
1 þ 6c2

1c2 þ 2c2
2 þ 4c1c3 þ c4Þ þ z5ðc5

1 þ 10c3
1c2

þ 10c2
1c3 þ 10c1c2

2 þ 5c2c3 þ 5c1c4 þ c5Þ;

from which we can read out explicit expressions for low order moments (1). Of course, explicit relations be-
tween free cumulants and moments are known in terms of sums over non-crossing partitions [8,9]; our point
here is that these relations have simple implementation in symbolic software.

3.2. Free cumulants of some classical laws

Lehner [5, Theorem 4.1] expresses free cumulants as the sum of products of classical cumulants over all
connected partitions. Here, we list free cumulants derived from (4) using the well known formulas for moment
generating functions M(z) of classical laws from Table 2. Table 3 lists numerical values. We remark that free
cumulants ck of the standard normal law are the number of connecting pairings [2] and free cumulants of the
Poisson law are the number of connected partitions [5] of f1; . . . ; kg, so Table 3 enumerates these sets for
k 6 15. Table 4 expresses free cumulants in terms of the parameters of Poisson and Binomial laws.

Table 1
Free cumulants expressed through moments

c2 ¼ �m2
1 þ m2

c3 ¼ 2m3
1 � 3m1m2 þ m3

c4 ¼ �5m4
1 þ 10m2

1m2 � 2m2
2 � 4m1m3 þ m4

c5 ¼ 14m5
1 � 35m3

1m2 þ 15m2
1m3 � 5m2m3 þ 5m1ð3m2

2 � m4Þ þ m5

c6 ¼ �42m6
1 þ 126m4

1m2 þ 7m3
2 � 56m3

1m3 � 3m2
3 � 6m2m4 þ 21m2

1ð�4m2
2 þ m4Þ þ 6m1ð7m2m3 � m5Þ þ m6

Table 2
Notation for some classical laws

Name Parameters Distribution Notation

Poisson k > 0 e�kkk=k!; k ¼ 0; 1; 2; . . . PoissðkÞ
Exponential k > 0 f ðxÞ ¼ k expð�kxÞ, x > 0 ExpðkÞ
Normal r > 0, m expð�ðx� mÞ2=ð2r2ÞÞ=ðr

ffiffiffiffiffiffi
2p
p
Þ Nðm; rÞ

Binomial n P 0, 0 6 p 6 1
n
k

� �
pkqn�k , k ¼ 0; 1; . . . ; n; q ¼ 1� p Binðn; pÞ

Uniform a < b f ðxÞ ¼ ðb� aÞ�11a<x<b Uða; bÞ
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3.3. Free convolutions with the semicircle and Marchenko–Pastur laws

Free convolutions with the semicircle and Marchenko–Pastur laws arise frequently as the asymptotic spec-
tra of sums of independent matrices, see [4]. The free cumulants of the semicircle law xr are zero except for
c2 ¼ r2; the free cumulants of the Marchenko–Pastur law pk are all equal to k > 0. Therefore, it is easy to

Table 3
Free cumulants of some classical laws

k Nð0; 1Þ Exp(1) Poiss(1) Uð�1; 1Þ
2 1 1 1 1

3

3 0 2 1 0
4 1 7 2 � 1

45

5 0 34 6 0
6 4 206 21 2

945

7 0 1476 85 0
8 27 12123 385 � 1

4725

9 0 111866 1907 0
10 248 1143554 10205 2

93555

11 0 12816572 58455 0
12 2830 156217782 355884 � 1382

638512875

13 0 2057246164 2290536 0
14 38232 29111150620 15518391 4

18243225

15 0 440565923336 110283179 0

Table 4
Free cumulants of the general Poisson Binomial laws

k PoissðkÞ Binðn; pÞ
2 k npq

3 k npðq� pÞq
4 kð1þ kÞ npqð1þ ð�6þ nÞpqÞ
5 kð1þ 5kÞ npðq� pÞqð1þ ð�12þ 5nÞpqÞ
6 kð1þ 4kð4þ kÞÞ npqð1þ 2pqð�15ðq� pÞ2 þ nð8þ ð�41þ 2nÞpqÞÞÞ
7 kð1þ 42kð1þ kÞÞ npðq� pÞqð1þ 6pqð�10þ 7nþ ð60þ 7ð�8þ nÞnÞpqÞÞ

Table 5
Moments Mk ¼

R
xkðl�xrÞðdxÞ expressed in terms of mk ¼

R
xklðdxÞ

k Mk

1 m1

2 r2 þ m2

3 3r2m1 þ m3

4 2r4 þ 2r2m2
1 þ 4r2m2 þ m4

5 5r2m1ð2r2 þ m2Þ þ 5r2m3 þ m5

6 5r6 þ 15r4m2
1 þ 15r4m2 þ 3r2m2

2 þ 6r2m1m3 þ 6r2m4 þ m6

Table 6
Moments Mk ¼

R
xkðl�pkÞðdxÞ expressed in terms of mk ¼

R
xklðdxÞ

k Mk

1 kþ m1

2 kþ k2 þ 2km1 þ m2

3 kþ 3k2 þ k3 þ 3kð1þ kÞm1 þ 3km2 þ m3

4 kþ 6k2 þ 6k3 þ k4 þ 4kð1þ 3kþ k2Þm1 þ 2km2
1 þ 2kð2þ 3kÞm2 þ 4km3 þ m4

5 kþ 10k2 þ 20k3 þ 10k4 þ k5 þ 5kð1þ 2kÞm2
1 þ 5kð1þ 4kþ 2k2Þm2 þ 5km1ð1þ 6kþ 6k2 þ k3 þ m2Þ þ 5km3 þ 10k2m3 þ 5km4 þ m5
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describe how the free cumulants change, and then to compute the moments from (4). To compute the
moments of free convolutions with a semicircle law xr, we change the value of the second cumulant c2 in
the results of the previous section to c2 þ r2, and then use (4) to derive the corresponding moments. Similarly,
to compute moments of free convolution with Marchenko–Pastur law, we replace the kth free cumulant ck

with ck þ k and apply (4).
To illustrate this method, we apply it first to the general relations (Table 1) between moments and free

cumulants. We get the following relations (see Tables 5 and 6).
As a further illustration of the method, Tables 7 and 8 list low order moments for specific distributions.
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