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Abstract: We examine, for−1 < q < 1, q-Gaussian processes, i.e. families of op-
erators (non-commutative random variables)Xt = at + a∗

t – where theat fulfill the
q-commutation relationsasa∗

t − qa∗
tas = c(s, t) · 1 for some covariance functionc(·, ·)

– equipped with the vacuum expectation state. We show that there is aq-analogue of the
Gaussian functor of second quantization behind these processes and that this structure
can be used to translate questions onq-Gaussian processes into corresponding (and much
simpler) questions in the underlying Hilbert space. In particular, we use this idea to show
that a large class ofq-Gaussian processes possesses a non-commutative kind of Markov
property, which ensures that there exist classical versions of these non-commutative
processes. This answers an old question of Frisch and Bourret [FB].

Introduction

What we are going to callq-Gaussian processes was essentially introduced in a remark-
able paper by Frisch and Bourret [FB]. Namely, they considered generalized commuta-
tion relations given by operatorsA(t) and a vacuum vector90 with

A(t)A∗(t′) − qA∗(t′)A(t) = 0(t, t′)1

and
A(t) 90 = 0

for some real covariance function0 (i.e. positive definite function). The aim of the
authors was to study the probabilistic properties of the “parastochastic” processM (t) =
A(t) +A∗(t).

The basic problems arising in this context were the following two types of questions:
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(I) (realization problem)
Do there exist operators on some Hilbert space and a corresponding vacuum vector
in this Hilbert space which fulfill the above relations, i.e. are there non-commutative
realizations of theq-Gaussian processes?

(II) (random representation problem)
Are these non-commutative processes of a classical relevance, i.e. do there exist
classical versions of theq-Gaussian processes (in the sense of coinciding time-
ordered correlations, see our Definition 4.1)?

Frisch and Bourret could give the following partial answers to these questions.

(I) For q = ±1 the realization is of course given by the Fock space realization of the
bosonic/fermionic relations. The caseq = 0 was realized by creation and annihi-
lation operators on the full Fock space (note that this was before the introduction
of the Cuntz algebras and their extensions [Cun, Eva]). For other values ofq the
realization problem remained open.

(II) The q = 1 processes are nothing but the Fock space representations of the classical
Gaussian processes. Forq = −1 a classical realization by a dichotomic Markov
process could be given for the special case of exponential covariance0(t, t′) =
exp(−|t− t′|). A classical realization forq = 0 could not be found, but the authors
were able to show that there is an interesting representation in terms of Gaussian
random matrices.

The authors started also the investigation of parastochastic equations (i.e. the coupling of
parastochastic processes to other systems), but – probably because of the open problem
on the mere existence and classical relevance of theseq-processes – there was apparently
no further work in this direction and the paper of Frisch and Bourret fell into oblivion.

Starting with [AFL] there has been another and independent approach to non-
commutative probability theory. This wide and quite inhomogenous field – let us just
mention as two highlights the quantum stochastic calculus of Hudson-Parthasarathy
[HP] and the free probability theory of Voiculescu [VDN] – is now known under the
name of “quantum probability”. At least some of the fundamental motivations for un-
dertaking such investigations can be compared with the two basic questions of Frisch
and Bourret:

(I) Non-commutative probability theory is meant as a generalization of classical proba-
bility theory to the description of quantum systems. Thus first of all their objects are
operators on some Hilbert spaces having a meaning as non-commutative analogues
of the probabilistic notions of random variables, stochastic processes, etc.

(II) In many investigations in this area one also tries to establish connections between
non-commutative and classical concepts. The aim of this is twofold. On one side,
one hopes to get a better understanding of classical problems by embedding them
into a bigger non-commutative context. Thus, e.g., the Azéma martingale, although
classically not distinguished within the class of all martingales, behaves in some
respects like a Brownian motion [Par1]. The non-commutative “explanation” for
this fact comes from the observation of Schürmann [Sch] that this martingale is one
component of a non-commutative process with independent increments. In the other
direction, one hopes to get a classical picture (featuring trajectories) of some aspects
of quantum problems. Of course, a total reduction to classical concepts is in general
not possible, but partial aspects may sometimes allow a classical interpretation.
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It was in this context of quantum probability where two of the present authors [BSp1]
reintroduced theq-relations – without knowing of, but much in the same spirit as [FB].
Around the same time theq-relations were also proposed by Greenberg [Gre] as an
example for particles with “infinite statistics”.

The main progress in connection with this renewed interest was the solution of
the realization problem of Frisch and Bourret. There exist now different proofs for the
existence of the Fock representation of theq-relations for allq with −1 ≤ q ≤ 1
[BSp1, Zag, Fiv, Spe1, BSp3, YW].

In [NSp], the idea of Frisch and Bourret to use theq-relations as a model for a gener-
alized noise was pursued further and the Greens function for such dynamical problems
could be calculated for one special choice of the covariance function – namely for the
case of the exponential covariance. We will call this specialq-process in the following
q-Ornstein-Uhlenbeck process. It soon became clear that the special status of the ex-
ponential covariance is connected with some kind of (non-commutative) Markovianity
– as we will see theq-Ornstein-Uhlenbeck process is the only stationaryq-Gaussian
Markov process. But using the general theory of Kümmerer on non-commutative sta-
tionary Markov processes [Kum1, Kum2] this readily implies the existence of a classical
version (being itself a classical Markov process) of theq-Ornstein-Uhlenbeck process.
Thus we got a positive solution of the random representation problem of Frisch and
Bourret in this case. However, the status of the otherq-Gaussian processes, in particular
q-Brownian motion, remained unclear.

Motivated by our preliminary results, Biane [Bia1] (see also [Bia2, Bia3]) undertook
a deep and beautiful analysis of the free (q = 0) case and showed the remarkable result
that all processes with free increments are Markovian and thus possess classical versions
(with a quite explicit calculation rule for the corresponding transition probabilities). This
includes in particular the case of free Brownian motion.

Inspired by this work we could extend our investigations from the case of theq-
Ornstein-Uhlenbeck process to allq-Gaussian processes. The results are presented in
this paper.

Up to now there is only one strategy for establishing the existence of a classical
version of a non-commutative process, namely by showing that the process is Markovian.
That this implies the existence of a classical version follows by general arguments, the
main point is to show that we have this property in the concrete case. Whereas Biane
could use the quite developed theory of freeness [VDN] to prove Markovianity for
processes with free increments, there is at the moment (and probably also in the future
[Spe2]) no kind ofq-freeness for generalq. Thus another feature of our considered class
of processes is needed to attack the problem of Markovianity. It is the aim of this paper
to convince the reader of the fact that theq-analogue of Gaussianity will do this job.

The essential idea of Gaussianity is that one can pull back all considerations from the
measure theoretic (or, in the non-commutative frame, from the operator algebraic) level
to an underlying Hilbert space, thus in the end one essentially has to deal with linear
problems. The main point is that this transcription between the linear and the algebraic
level exists in a consistent way. The best way to see and describe this is by presenting
a functor (“second quantization”) which translates the Hilbert space properties into
operator algebraic properties. Our basic considerations will therefore be on the existence
and nice properties of theq-analogue of this functor. Having this functor, the rest is
mainly linear theory on the Hilbert space level. It turns out that all relevant questions
on ourq-Gaussian processes can be characterized totally in terms of the corresponding
covariance function. In particular, it becomes quite easy to decide whether such a process
is Markovian or not.
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The paper is organized as follows. In Sect. 1 we recall some basic facts about theq-
Fock space and its relevant operators. Furthermore we collect in this section the needed
combinatorial results, in particular onq-Hermite polynomials. Section 2 is devoted to
the presentation of the functor0q of second quantization. The main results (apart from
the existence of this object) are the facts that the associated von Neumann algebras
are in the infinite dimensional case non-injectiveII1-factors and that the functor maps
contractions into completely positive maps. Having thisq-Gaussian functor the definition
and investigation of properties ofq-Gaussian processes (like Markovianity or martingale
property) is quite canonical and parallels the classical case. Thus our presentation of these
aspects, in Sect. 3, will be quite condensed. Sect. 4 contains the classical interpretation
of the q-Gaussian Markov processes. As pointed out above general arguments ensure
the existence of classical versions for these processes. But we will see that we can also
derive quite concrete formulas for the corresponding transition probabilities.

1. Preliminaries on theq-Fock Space

Let q ∈ (−1, 1) be fixed in the following.
For a complex Hilbert spaceH we define itsq-Fock spaceFq(H) as follows: Let

Ffinite(H) be the linar span of vectors of the formf1 ⊗ . . .⊗ fn ∈ H⊗n (with varying
n ∈ N0), where we putH⊗0 ∼= C � for some distinguished vector�, called vacuum. On
Ffinite(H) we consider the sesquilinear form〈·, ·〉q given by a sesquilinear extension
of

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gm〉q := δnm
∑
π∈Sn

qi(π)〈f1, gπ(1)〉 . . . 〈fn, gπ(n)〉,

whereSn denotes the symmetric group of permutations ofn elements andi(π) is the
number of inversions of the permutationπ ∈ Sn defined by

i(π) := #{(i, j) | 1 ≤ i < j ≤ n, π(i) > π(j)}.

Another way to describe〈·, ·〉q is by introducing the operatorPq on Ffinite(H) by a
linear extension of

Pq � = �,
Pqf1 ⊗ . . .⊗ fn =

∑
π∈Sn

qi(π)fπ(1) ⊗ . . .⊗ fπ(n).

Then we can write

〈ξ, η〉q = 〈ξ, Pqη〉0 (ξ, η ∈ Ffinite(H)),

where〈·, ·〉0 is the scalar product on the usual full Fock space

F0(H) =
⊕
n≥0

H⊗n.

One of the main results of [BSp1] (see also [BSp3, Fiv, Spe1, Zag]) was the strict
positivity of Pq, i.e. 〈ξ, ξ〉q > 0 for 0 6= ξ ∈ Ffinite(H). This allows the following
definitions.
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Definition 1.1. 1) Theq-Fock spaceFq(H) is the completion ofFfinite(H) with respect
to 〈·, ·〉q.
2) Givenf ∈ H, we define the creation operatora∗(f ) and the annihilation operator
a(f ) onFq(H) by

a∗(f ) � = f,
a∗(f )f1 ⊗ . . .⊗ fn = f ⊗ f1 ⊗ . . .⊗ fn,

and
a(f ) � = 0,

a(f )f1 ⊗ . . .⊗ fn =
∑n
i=1 q

i−1〈f, fi〉f1 ⊗ . . .⊗ f̌i ⊗ . . .⊗ fn,

where the symboľfi means thatfi has to be deleted in the tensor.

Remark 1.2.The operatorsa(f ) anda∗(f ) are bounded operators onFq(H) with

‖a(f )‖q = ‖a∗(f )‖q =

{
‖f‖/

√
1 − q, 0 ≤ q < 1

‖f‖, −1< q ≤ 0,

and they are adjoints of each other with respect to our scalar product〈·, ·〉q. Furthermore,
they fulfill the q-relations

a(f )a∗(g) − qa∗(g)a(f ) = 〈f, g〉 · 1 (f, g ∈ H).

Notation 1.3.For a linear operatorT : H → H′ between two complex Hilbert spaces
we denote byF (T ) : Ffinite(H) → Ffinite(H′) the linear extension of

F (T ) � = �,
F (T )f1 ⊗ . . .⊗ fn = (Tf1) ⊗ . . .⊗ (Tfn).

In order to keep the notation simple we denote the vacuum forH and the vacuum for
H′ by the same symbol�.

It is clear thatF (T ) can be extended to a bounded operatorF0(T ) : F0(H) → F0(H′)
exactly ifT is a contraction, i.e. if‖T‖ ≤ 1. The following lemma ensures that the same
is true for all otherq ∈ (−1, 1), too.

Lemma 1.4. Let T : Ffinite(H) → Ffinite(H′) be a linear operator which fulfills
P ′
qT = T Pq, wherePq and P ′

q are the operators onFfinite(H) and Ffinite(H′),
respectively, which define the respective scalar product〈·, ·〉q. Then one has‖T ‖q =
‖T ‖0. Hence, if‖T ‖0 < ∞, thenT can, for eachq ∈ (−1, 1), be extended to a bounded
operator fromFq(H) to Fq(H′).

Proof. Let ξ ∈ Ffinite(H). Then

‖T ξ‖2
q = 〈T ξ, T ξ〉q

= 〈T ξ, P ′
qT ξ〉0

= 〈P 1/2
q ξ, T ∗T P 1/2

q ξ〉0

≤ ‖T ∗T ‖0 〈P 1/2
q ξ, P

1/2
q ξ〉0

= ‖T ∗T ‖0 ‖ξ‖2
q,

which implies
‖T ‖2

q ≤ ‖T ∗T ‖0 ≤ ‖T ∗‖0 ‖T ‖0 = ‖T ‖2
0,

and thus‖T ‖q ≤ ‖T ‖0. Since we can estimate in the same way, by replacingPq by
P−1
q andP ′

q by P
′−1
q , also‖T ‖0 ≤ ‖T ‖q, we get the assertion. �
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Notation 1.5.For a contractionT : H → H′, we denote the extension ofF (T ) from
Ffinite(H) → Ffinite(H′) to Fq(H) → Fq(H′) by Fq(T ).

Remark 1.6.1) One might callFq(T ) the second quantization ofT , but we will reserve
this name for the restriction ofFq(T ) to some operator algebra lying inFq(H) – see
the next section, where we will also prove some positivity properties of this restricted
version.
2) The operatorFq(T ) and its differential version (in particular the number operator)
were also considered in [Wer] and [Sta, Mol], respectively.
3) It is clear thatFq(·) behaves nicely with respect to composition and taking adjoints,
i.e.

Fq(1) = 1, Fq(ST ) = Fq(S)Fq(T ), Fq(T ∗) = Fq(T )∗,

but not with respect to the additive structure, i.e.

Fq(T + S) 6= Fq(T ) + Fq(S) in general.

In the context of theq-relations one usually encounters some kind ofq-combinato-
rics. Let us just recall the basic facts.

Notation 1.7.We put forn ∈ N0,

[n]q :=
1 − qn

1 − q
= 1 +q + . . . + qn−1 ([0]q := 0).

Then we have theq-factorial

[n]q! := [1]q . . . [n]q, [0]q! := 1,

and aq-binomial coefficient

(n
k

)
q

:=
[n]q!

[k]q![n− k]q!
=
n−k∏
i=1

1 − qk+i

1 − qi
.

Another quite frequently used symbol is theq-analogue of the Pochhammer symbol

(a; q)n :=
n−1∏
j=0

(1 − aqj) in particular (a; q)∞ :=
∞∏
j=0

(1 − aqj).

The importance of these concepts in connection with theq-relations can be seen from
the followingq-binomial theorem, which is by now quite standard.

Proposition 1.8. Letxandy be indeterminates whichq-commute in the sensexy = qyx.
Then one has forn ∈ N,

(x + y)n =
n∑
k=0

(n
k

)
q
ykxn−k.

Proof. This is just induction and the easily checked equality(n
k

)
q

+ qk
( n

k + 1

)
q

=

(
n + 1
k + 1

)
q

. �
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In the same way as the usual Hermite polynomials are connected to the bosonic
relations, theq-relations are linked toq-analogues of the Hermite polynomials.

Definition 1.9. The polynomialsH (q)
n (n ∈ N0), determined by

H (q)
0 (x) = 1, H (q)

1 (x) = x,

and
xH (q)

n (x) = H (q)
n+1(x) + [n]qH

(q)
n−1(x) (n ≥ 1)

are calledq-Hermite polynomials.

We recall two basic facts about these polynomials which will be fundamental for
our investigations on the classical aspects ofq-Gaussian processes.

Theorem 1.10. 1) Letνq be the measure on the interval[−2/
√

1 − q, 2/
√

1 − q] given
by

νq(dx) =
1
π

√
1 − q sinθ

∞∏
n=1

(1 − qn)|1 − qne2iθ|2dx,

where

x =
2√

1 − q
cosθ with θ ∈ [0, π].

Then theq-Hermite polynomials are orthogonal with respect toνq, i.e.∫ 2/
√

1−q

−2/
√

1−q
Hn(x)Hm(x)νq(dx) = δnm[n]q!.

2) Letr > 0 andx, y ∈ [−2/
√

1 − q, 2/
√

1 − q]. Denote byp(q)
r (x, y) the kernel

p(q)
r (x, y) :=

∞∑
n=0

rn

[n]q!
H (q)
n (x)H (q)

n (y).

Then we have with

x =
2√

1 − q
cosϕ, y =

2√
1 − q

cosψ

the formula

p(q)
r (x, y) =

(r2; q)∞
|(rei(ϕ+ψ); q)∞(rei(ϕ−ψ); q)∞|2 .

In particular, for q = 0, we get

p(0)
r (x, y) =

1 − r2

(1 − r2)2 − r(1 + r2)xy + r2(x2 + y2)
.

As usual inq-mathematics these formulas are quite old, namely the orthogonalizing
measureνq was calculated by Szego [Sze], whereas the kernelp(q)

r (x, y) goes even back
to Rogers [Rog]. For more recent treatments, see [Bre, ISV, GR], in connection with the
q-Fock space also [LM1, LM2].
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2. Second Quantization – The Functor0q

An abstract way of dealing with classical Gaussian processes is by using the Gaussian
functor 0. This is a functor from real Hilbert spaces and contractions to commutative
von Neumann algebras with specified trace-state and unital trace preserving completely
positive maps [Nel1, Nel2, Gro, Sim1, Sim2]. Essentially, this point of view can be
traced back to Segal [Seg]. Fermionic and free analogues of this functor are also known,
see, e.g., [Wil, CL, Voi, VDN].

In this section we will present aq-analogue of the Gaussian functor. Namely, to each
real Hilbert space,H, we will associate a von Neumann algebra with specified trace-
state, (0q(H),E), and to every contractionT : H → H′ a unital completely positive
trace preserving map0q(T ) : 0q(H) → 0q(H′).

Definition 2.1. LetH be a real Hilbert space andHC its complexificationHC = H⊕iH.
Put, forf ∈ H,

ω(f ) := a(f ) + a∗(f ) ∈ B(Fq(HC))

and denote by0q(H) ⊂ B(Fq(HC)) the von Neumann algebra generated by allω(f ),

0q(H) := vN(a(f ) + a∗(f ) | f ∈ H).

Notation 2.2.We denote by
E : 0q(H) → C

the vacuum expectation state on0q(H) given by

E[X] := 〈 �, X �〉q (X ∈ 0q(H)).

We recall some basic facts about0q(H) in the following proposition.

Proposition 2.3. The vacuum� is a cyclic and separating trace-vector for0q(H),
hence the vacuum expectationE is a faithful normal trace on0q(H) and 0q(H) is a
finite von Neumann algebra in standard form.

Proof. See Theorems 4.3 and 4.4 in [BSp3]. �

The first part of the proposition yields in particular that the mapping

0q(H) → Fq(HC),
X 7→ X �

is injective, in this way we can identify eachX ∈ 0q(H) with some element of the
q-Fock spaceFq(HC).

Notation 2.4.1) Let us denote by

L∞
q (H) := 0q(H) �

the image of0q(H) under the mappingX 7→ X �.
2) We also put

L2
q(H) := Fq(HC).

Definition 2.5. Let 9 : L∞
q (H) → 0q(H) be the identification ofL∞

q (H) with 0q(H)
given by the requirement

9(ξ) � = ξ for ξ ∈ L∞
q (H) ⊂ L2

q(H) = Fq(HC).
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Remark 2.6.1) Of course, not each element of theq-Fock space comes from anX ∈
0q(H), but the main relation for observing the cyclicity of�, namely

f1 ⊗ . . .⊗ fn = ω(f1) . . . ω(fn) � − η with η ∈
n−1⊕
l=0

H⊗l,

yields that we have at leastf1 ⊗ . . .⊗ fn ∈ L∞
q (H).

2) In a quantum field theoretic context [Sim1, Sim2] the operator9(f1 ⊗ . . . ⊗ fn)
would be called “Wick product” and denoted by

9(f1 ⊗ . . .⊗ fn) =: ω(f1) . . . ω(fn) : .

3) In a quantum probabilistic context [Par2, Mey]9 would correspond to taking an
iterated quantum stochastic integral: ForHC = L2(R) and ξ = f1 ⊗ . . . ⊗ fn with
ξ(t1, . . . , tn) = f1(t1) . . . fn(tn) one would denote

9(ξ) =
∫
ξ(t1, . . . , tn)dω(t1) . . . dω(tn)

and callξ the “Maassen kernel” of9(ξ).

The explicit form of our Wick products is given in the following proposition.

Proposition 2.7. We have forn ∈ N andf1, . . . , fn ∈ H the normal ordered represen-
tation

9(f1 ⊗ . . .⊗ fn) =
=

∑
k,l=0,...,n

k+l=n

∑
I1={i(1),...,i(k)}
I2={j(1),...,j(l)}

with
I1∪I2={1,...,n}

I1∩I2=∅

a∗(fi(1)) . . . a∗(fi(k))a(fj(1)) . . . a(fj(l)) · qi(I1,I2),

where
i(I1, I2) := #{(p, q) | 1 ≤ p ≤ k, 1 ≤ q ≤ l, i(p) > j(q)}.

Denote byX the right-hand side of the above relation. It is clear thatX � = f1 ⊗
. . .⊗ fn, the problem is to see thatX can be expressed in terms of theω’s.

Proof. Note that the formula is true for

9(f ) = ω(f ) = a(f ) + a∗(f )

and that the definition ofa∗(f ) and ofa(f ) gives

9(f⊗f1⊗. . .⊗fn) = ω(f ) 9(f1⊗. . .⊗fn)−
n∑
i=1

qi−1〈f, fi〉 9(f1⊗. . .⊗f̌i⊗. . .⊗fn).

From this the assertion follows by induction. �
Note that 9(f1 ⊗ . . . ⊗ fn) is just given by multiplying outω(f1) . . . ω(fn) and

bringing all appearing terms with the help of the relationaa∗ = qa∗a into a normal
ordered form – i.e. we throw away all normal ordered terms inω(f1) . . . ω(fn) which
have less thann factors. Thus, for the special casef1 = . . . = fn, we are in the realm of
theq-binomial theorem and we have the following nice formula.
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Corollary 2.8. We have forn ∈ N andf ∈ H,

9(f⊗n) =
n∑
k=0

(n
k

)
q
a∗(f )ka(f )n−k.

Instead of writing9(f⊗n) in a normal ordered form we can also express it in terms
of ω(f ) with the help of theq-Hermite polynomials.

Proposition 2.9. We have forn ∈ N0 andf ∈ H with ‖f‖ = 1 the representation

9(f⊗n) = H (q)
n (ω(f )).

Proof. This follows by the fact that the9(f⊗n) fulfill the same recurrence relation as
theH (q)

n (ω(f )), namely

ω(f ) 9(f⊗n) = 9(f⊗(n+1)) + [n]q 9(f⊗(n−1))

and that we have the same initial conditions

9(f⊗0) = 1, 9(f⊗1) = ω(f ). �

We know [Voi, VDN] that forq = 0 the von Neumann algebra00(H) is isomorphic
to the von Neumann algebra of the free group on dimH generators – in particular, it is
a non-injective II1-factor for dimH ≥ 2. We conjecture non-injectivity and factoriality
in the case dimH ≥ 2 for arbitraryq ∈ (−1, 1), but up to now we can only show the
following.

Theorem 2.10. 1) For −1 < q < 1 and dimH > 16/(1 − |q|)2 the von Neumann
algebra 0q(H) is not injective.
2) If −1< q < 1 anddimH = ∞ then 0q(H) is a II1-factor.

Proof. 1) This was shown in a more general context in Theorem 4.2 in [BSp3].
2) Let {ei}i∈N be an orthonormal basis ofH. Fix n ∈ N0 andr(1), . . . , r(n) ∈ N and
consider the operator

X := 9(er(1) ⊗ . . .⊗ er(n)).

(Forn = 0 this will be understood asX = 1.) We put

φm(X) :=
1
m

m∑
i=1

ω(ei)Xω(ei) (m ∈ N)

and claim thatφm(X) converges form → ∞ weakly toφ(X) := qnX. Because of the
m-independent estimate

‖φm(X)‖q ≤ ‖X‖q ‖ω(e1)‖2
q

it suffices to show
lim
m→∞〈ξ, φm(X)η〉q = 〈ξ, φ(X)η〉q

for all ξ, η ∈ Fq(HC) of the form

ξ = ea(1) ⊗ . . .⊗ ea(u), η = eb(1) ⊗ . . .⊗ eb(v)
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with u, v ∈ N0, a(1), . . . , a(u), b(1), . . . , b(v) ∈ N (for u = 0 we putξ = �). To see
this, put

m0 := max{a(1), . . . , a(u), b(1), . . . , b(v), r(1), . . . , r(n)}.
Since|〈ξ, ω(ei)Xω(ei)η〉q| ≤ M for someM (independent ofi), we have

lim
n→∞〈ξ, φm(X)η〉q = lim

n→∞
1
m

∑m
i=m0+1〈ξ, ω(ei)Xω(ei)η〉q

= lim
n→∞

1
m

∑m
i=m0+1〈ξ, a(ei) 9(er(1) ⊗ . . .⊗ er(n))a∗(ei)η〉q.

By Prop. 2.7,9(er(1) ⊗ . . . ⊗ er(n)) is now a linear combination of terms of the form
Y = Y1Y2 with

Y1 = a∗(er(i(1))) . . . a
∗(er(i(k))) and Y2 = a(er(j(1))) . . . a(er(j(l)))

with k + l = n. Each such term gives, fori > m0, a contribution

〈ξ, a(ei)Y a∗(ei)η〉q = 〈ξ, a(ei)Y1Y2a
∗(ei)η〉q

= qk+l〈ξ, Y1a(ei)a∗(ei)Y2η〉q
= qn〈ξ, Y1(1 + qa∗(ei)a(ei))Y2η〉q
= qn〈ξ, Y1Y2η〉q
= qn〈ξ, Y η〉q,

and hence

limm→∞〈ξ, φm(X)η〉q = limm→∞ 1
m

∑m
i=m0+1 q

n〈ξ, 9(er(1) ⊗ . . .⊗ er(n))η〉q
= 〈ξ, qnXη〉q.

Thus we have shown
w-lim
m→∞

φm(X) = φ(X).

Let now tr be a normalized normal trace on0q(H). Then

tr[φ(X)] = limm→∞ tr[φm(X)]

= limm→∞ 1
m

∑m
i=1 tr[ω(ei)Xω(ei)]

= limm→∞ 1
m

∑m
i=1 tr[Xω(ei)ω(ei)]

= tr[X · limm→∞ 1
m

∑m
i=1ω(ei)ω(ei)]

= tr[Xφ(1)]

= tr[X].

Sinceφk(X) = qknX converges, fork → ∞, (even in norm) to

E[X] · 1 =

{
0, n ≥ 1
X = 1, n = 0 ,

we obtain

tr[X] = lim
k→∞

tr[φk(X)] = tr[ lim
k→∞

φk(X)] = E[X] tr[1] = E[X].

Thus tr coincides on all operators of the form

X = 9(er(1) ⊗ . . .⊗ er(n)) (n ∈ N0, r(1), . . . , r(n) ∈ N)

with our canonical trace E. Since the set of finite linear combinations of such operators
X is weakly dense in0q(H), we get the uniqueness of a normalized normal trace on
0q(H), which implies that0q(H) is a factor. �
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The second part of ourq-Gaussian functor0q assigns to each contractionT : H →
H′ a map0q(T ) : 0q(H) → 0q(H′). The idea is to extend0q(T )ω(f ) = ω(Tf ) in
a canonical way to all of0q(H). In general, theq-relations prohibit the extension as a
homomorphism, i.e.

0q(T )ω(f1) . . . ω(fn) 6= ω(Tf1) . . . ω(Tfn) in general.

But what can be done is to demand the above relation for the normal ordered form, i.e.

0q(T ) 9(f1 ⊗ . . .⊗ fn) = 9(Tf1 ⊗ . . .⊗ Tfn) = 9(Fq(T )f1 ⊗ . . .⊗ fn),

or
( 0q(T )X) � = Fq(T )(X �).

Thus our second quantization0q(T ) is the restriction ofFq(T ) fromFq(H) = L2
q(H) to

0q(H) ∼= L∞
q (H) and the question on the existence of0q(T ) amounts to the problem

whetherFq(T )(L∞
q (H)) ⊂ L∞

q (H′). We know thatFq(T ) can be defined forT a con-
traction and we will see in the next theorem that no extra condition is needed to ensure
its nice behaviour with respect toL∞

q . The caseq = 0 is due to Voiculescu [Voi, VDN].

Theorem 2.11. 1) LetT : H → H′ be a contraction between real Hilbert spaces. There
exists a unique map0q(T ) : 0q(H) → 0q(H′) such that

( 0q(T )X) � = Fq(T )(X �).

The map0q(T ) is linear, bounded, completely positive, unital and preserves the canon-
ical traceE.
2) If T is isometric, then0q(T ) is a faithful homomorphism, and ifT is the orthogonal
projection onto a subspace, then0q(T ) is a conditional expectation.

Proof. Uniqueness of0q(T ) follows from the fact that� is separating for0q(H′). To
prove the existence and the properties of0q(T ) we notice that any contractionT can be
factored [Hal] asT = POI where
– I : H → K = H ⊕ H′ is an isometric embedding
–O : K → K is orthogonal
– P : K = H ⊕ H′ → H′ is an orthogonal projection onto a subspace.
Thus if we prove our assertions for each of these three cases then we will also get the
general statement for0q(T ) = 0q(P ) 0q(O) 0q(I).
a) LetI : H → K = H⊕H′ be an isometric embedding andQ : K → K the orthogonal
projection ontoH. ThenFq(Q) is a projection inFq(KC) andFq(HC) can be identified
with Fq(Q)Fq(KC). Let us denote byωK(f ) the sum of the creation and annihilation
operator onFq(KC). If we put

0K
q (H) := vN(ωK(f ) | f ∈ H) ⊂ B(Fq(KC)),

then
0K
q (H)Fq(HC) ⊂ Fq(HC),

and we have the canonical identification

0q(H) ∼= 0K
q (H)Fq(Q),

which gives a homomorphism (and thus a completely positive)
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0q(I) : 0q(H) → 0q(K).

Faithfulness is clear sinceFq(Q) � = � and � separating. This yields also that the
trace is preserved.
b) Let P : K = H ⊕ H′ → H′ be an orthogonal projection, i.e.PP ∗ = 1H′ , where
P ∗ : H′ → K is the canonical inclusion. Then

0q(P )X := Fq(P )XFq(P ∗) (X ∈ 0q(K))

gives the right operator, because we have fork, l ∈ N0 andf1, . . . , fk, g1, . . . , gl ∈ K,

Fq(P )a∗(f1) . . . a∗(fk)a(g1) . . . a(gl)Fq(P ∗) =
= a∗(Pf1) . . . a∗(Pfk)Fq(P )Fq(P ∗)a(Pg1) . . . a(Pgl)
= a∗(Pf1) . . . a∗(Pfk)a(Pg1) . . . a(Pgl).

By its concrete form,0q(P ) is a conditional expectation and

E[Fq(P )XFq(P ∗)] = 〈Fq(P ∗) �, XFq(P ∗) �〉q = 〈 �, X �〉q = E[X]

shows that it preserves the trace.
c) LetO : K → K be orthogonal, i.e.OO∗ = O∗O = 1K. Then, as in b),

0q(O)X = Fq(O)XFq(O∗),

which is, by
Fq(O∗)Fq(O) = Fq(1K) = 1Fq(KC)

also a faithful homomorphism. �

Instead of working on the level of von Neumann algebras we could also consider the
C∗-analogues of the above constructions. This would be quite similar. We just indicate
the main points.

Definition 2.12. Let H be a real Hilbert space andHC its complexificationHC =
H ⊕ iH. Put, forf ∈ H,

ω(f ) := a(f ) + a∗(f ) ∈ B(Fq(HC)),

and denote by8q(H) ⊂ B(Fq(HC)) theC∗-algebra generated by allω(f ),

8q(H) := C∗(a(f ) + a∗(f ) | f ∈ H).

Clearly, the vacuum is also a separating trace-vector for8q(H) and, by Remark 2.6.,
it is also cyclic and9(f1 ⊗ . . .⊗ fn) ∈ 8q(H) for all n ∈ N0 and allf1, . . . , fn ∈ H.

The most important fact for our later considerations is that0q(T ) can also be re-
stricted to theC∗-level.

Theorem 2.13. 1) LetT : H → H′ be a contraction between real Hilbert spaces. There
exists a unique map8q(T ) : 8q(H) → 8q(H′) such that

( 8q(T )X) � = Fq(T )(X �).

The map8q(T ) is linear, bounded, completely positive, unital and preserves the canon-
ical traceE.
2) If T is isometric, then8q(T ) is a faithful homomorphism, and ifT is the orthogonal
projection onto a subspace, then8q(T ) is a conditional expectation.
3) We have8q(T ) = 0q(T )/8q(H).
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Proof. This is analogous to the proof of Theorem 2.11. �
We can now also prove the analogue of the second part of Theorem 2.10. The

analogue of factoriality forC∗-algebras is simplicity.

Theorem 2.14. If −1< q < 1 anddimH = ∞ then 8q(H) is simple.

Proof. Again, this is similar to the proof of the von Neumann algebra result. We just
indicate the main steps.
We use the notations from the proof of Theorem 2.10. First, by norm estimates, one can
show that the convergence limm→∞ φm(X) = φ(X) for X of the formX := 9(er(1) ⊗
. . .⊗ er(n)) is even a convergence in norm. Sinceφ(X) is nothing butφ(X) = 0q(q)X,
whereq is regarded as a multiplication operator onH, we have, by 2.13, the bound

‖φ(X)‖q ≤ ‖X‖q.
This together with them-independent bound

‖φm(X)‖q ≤ ‖X‖q ‖ω(e1)‖2
q

implies that

lim
m→∞φm(X) = 0q(q)X uniformly for allX ∈ 8q(H).

Now assume we have a non-trivial idealI in 8q(H) and consider a positive non-
vanishingX ∈ I. Thenφm(X) ∈ I for all m ∈ N and thus0q(q)X ∈ I. Iter-
ating shows0q(qn)X ∈ I for all n ∈ N and because of the uniform convergence
limn→∞ 0q(qn)X = E[X]1, we obtain E[X]1 ∈ I. The faithfulness of E implies then
I = 8q(H). �
Remark 2.15.One might be tempted to conjecture that, for fixedH, the von Neumann
algebras0q(H) or theC∗-algebras8q(H) are for all q ∈ (−1, 1) isomorphic. At
the moment, no results in this direction are known. One should note that there exist
partial answers [JSW1, JSW2, JW, DN] to the analogous question for theC∗-algebra
generated bya(f ), a∗(f ) (not the sum) showing that at least for small values ofq and
n := dimHC < ∞ these algebras are isomorphic to the (q = 0)-algebra, which is
an extension of the Cuntz algebraOn by compact operators [Cun, Eva]. However, the
methods used there do not extend to the case of0q(H) or 8q(H).

3. Non-commutative Aspects ofq-Gaussian Processes

Before we define the notion of aq-Gaussian process, we want to present our general frame
on non-commutative processes. ByT we will denote the range of our time parametert,
typically T will be some interval inR.

Definition 3.1. 1) LetA be a finite von Neumann algebra andϕ : A → C a faithful
normal trace onA. Then we call the pair(A, ϕ) a (tracial) probability space.
2) A random variable on (A, ϕ) is a self-adjoint operatorX ∈ A.
3) A stochastic processon (A, ϕ) is a family (Xt)t∈T of random variablesXt ∈ A
(t ∈ T ).
4) Thedistribution of a random variableX on (A, ϕ) is the probability measureν on
the spectrum ofX determined by

ϕ(Xn) =
∫
xndν(x) for all n ∈ N0.
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We should point out that there are also a lot of quantum probabilistic investigations
in the context of more general, non-tracial situations, see e.g. [AFL, Kum1]. Of course,
life becomes much harder there.

We will only consider centered Gaussian processes, thus aq-Gaussian process will
be totally determined by its covariance. Since we would like to have realizations of our
processes onseparableHilbert spaces, our admissible covariances are not just positive
definite functions, but they should admit a separable representation.

Definition 3.2. A functionc : T × T → R is called acovariance function, if there
exists a separable real Hilbert spaceH and vectorsft ∈ H for all t ∈ T such that

c(s, t) = 〈fs, ft〉 (s, t ∈ H).

Definition 3.3. Let c : T × T → R be a covariance function corresponding to a real
Hilbert spaceH and vectorsft ∈ H (t ∈ T ). Then we put for allt ∈ T ,

Xt := ω(ft) ∈ 0q(H)

and call the process(Xt)t∈T on ( 0q(H),E) theq-Gaussian process with covariance
c.

Remark 3.4.1) Of course, theq-Gaussian process depends, up to isomorphism, only on
c and not on the special choice ofH and (ft)t∈T .
2) We can characterize ourq-Gaussian process also by theq-relations in the form

Xt = at + a∗
t and E[· ] = 〈 �, · �〉,

where for alls, t ∈ T ,

asa
∗
t − qa∗

tas = c(s, t) · 1 and at � = 0.

In this form ourq-Gaussian processes were introduced by Frisch and Bourret [FB].

We can now defineq-analogues of all classical Gaussian processes, just by choosing
the appropriate covariance. In the following we consider three prominent examples.

Definition 3.5. 1) Theq-Gaussian process(XqBM
t )t∈[0,∞) with covariance

c(s, t) = min(s, t) (0 ≤ s, t < ∞)

is calledq-Brownian motion.
2) Theq-Gaussian process(XqBB

t )t∈[0,1] with covariance

c(s, t) = s(1 − t) (0 ≤ s ≤ t ≤ 1)

is calledq-Brownian bridge.
3) Theq-Gaussian process(XqOU

t )t∈R with covariance

c(s, t) = e−|t−s| (s, t ∈ R)

is calledq-Ornstein-Uhlenbeck process.

Remark 3.6.1) That the three examples forc are indeed covariance functions is clear
by the existence of the respective classical processes, for a direct proof see, e.g., [Sim2].
2) The Ornstein-Uhlenbeck process is often also called an oscillator process, see [Sim2].
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Let (A, ϕ) be a tracial probability space and letB be a von Neumann subalgebra
of A. Then we have (see, e.g., [Tak]) a unique conditional expectation (“partial trace”)
from A ontoB which preserves the traceϕ – which we will denote in a probabilistic
language byϕ[ · |B]. Thus in the frame of tracial probability spaces we always have the
following canonical generalization of the classical Markov property (which says that the
future depends on the past only through the present).

Definition 3.7. Let (A, ϕ) be a probability space and(Xt)t∈T a stochastic process on
(A, ϕ). Denote by

At] := vN(Xu | u ≤ t) ⊂ A,
A[t] := vN(Xt) ⊂ A,
A[t := vN(Xu | u ≥ t) ⊂ A.

We say that(Xt)t∈T is a Markov process if we have for alls, t ∈ T with s ≤ t the
property

ϕ[X|As] ] ∈ A[s] for all X ∈ A[t] .

Note that another canonical definition for the Markov property would be the require-
ment

ϕ[X|As] ] ∈ A[s] for all X ∈ A[s.

In the classical case this latter condition is equivalent to the one we use in Definition 3.7,
but in the non-commutative case there is in general a difference. We have chosen the
weaker condition, since this is sufficient to ensure the existence of transition operators
(see Definition 4.3 and Theorem 4.4).

Now, the conditional expectations E[· |As] ] in the case ofq-Gaussian processes are
quite easy to handle because they are nothing but the second quantization of projec-
tions in the underlying Hilbert space. Namely, consider aq-Gaussian process (Xt)t∈T
corresponding to the real Hilbert spaceH and vectorsft (t ∈ T ). Let us denote by

Ht] := span(fu | u ≤ t) ⊂ H,
H[t] := Rft ⊂ H,
H[t := span(fu | u ≥ t) ⊂ H,

the respective Hilbert space analogues ofAt] , A[t] , A[t. Then we have

At]
∼= 0q(Ht] ), A[t]

∼= 0q(H[t] ), A[t
∼= 0q(H[t),

and E[· |At] ] = 0q(Pt] ) is the second quantization of the orthogonal projection

Pt] : H → Ht] .

Thus we can translate the Markov property forq-Gaussian processes into the following
Hilbert space level statement.

Proposition 3.8. Let (Xt)t∈T be a q-Gaussian process as above. It has the Markov
property if and only if

Ps]H[t] ⊂ H[s] for all s, t ∈ T with s ≤ t.

Note that the stronger form of Markovianity,ϕ[A[s,As] ] ⊂ A[s] , corresponds for the
q-Gaussian processes on the linear level toPs]H[s ⊂ H[s] . But this is clearly equivalent
to the condition of Proposition 3.8. Thus, forq-Gaussian processes the apriori possibly
different definitions for “Markovianity” are all equivalent.

As Proposition 3.8. shows, Markovianity is a property of the underlying Hilbert
space and does not depend onq. Thus we get as in the classical case the following
characterization in terms of the covariance.
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Proposition 3.9. A q-Gaussian process with covariancec is Markovian if and only if
we have for all tripless, u, t ∈ T with s ≤ u ≤ t that

c(t, s)c(u, u) = c(t, u)c(u, s).

Proof. See the proof of Theorem 3.9 in [Sim2]. �

Corollary 3.10. The q-Brownian motion (XqBM
t )t∈[0,∞), the q-Brownian bridge

(XqBB
t )t∈[0,1], and theq-Ornstein-Uhlenbeck process(XqOU

t )t∈R are all Markovian.

Analogously, we have all statements of the classical Gaussian processes which
depend only on Hilbert space properties. Let us just state the characterization of the
Ornstein-Uhlenbeck process as the only stationary Gaussian Markov process with con-
tinuous covariance and the characterization of martingales among the Gaussian pro-
cesses.

Proposition 3.11. Let(Xt)t∈T be aq-Gaussian process which is stationary, Markovian
and whose covariancec(s, t) = c′(t− s) is continuous. ThenXt = αXqOU

βt for suitable
α, β > 0.

Proof. See the proof of the analogous statement for classical Gaussian processes, Corol-
lary 4.10 in [Sim2]. �

Definition 3.12. Let (Xt)t∈T be a stochastic process on a probability space(A, ϕ) and
let the notations be as in Definition 3.7. Then we say that(Xt)t∈T is a martingale if

ϕ[Xt|As] ] = Xs for all s ≤ t.

Proposition 3.13. A q-Gaussian process is a martingale if and only ifPs]ft = fs for
all s ≤ t – which is the case if and only ifc(s, t) = c(s, s) for all s ≤ t.

Proof. We have

ω(fs) = Xs = E[Xt|As] ] = 0q(Ps] )ω(ft) = ω(Ps]ft),

implying Ps]ft = fs. �

4. Classical Aspects ofq-Gaussian Processes

In this section we want to address the question whether our non-commutative stochastic
processes can also be interpreted classically.

Definition 4.1. Let (Xt)t∈T be a stochastic process on some non-commutative proba-
bility space(A, ϕ). We call a classical real-valued process(X̃t)t∈T on some classical
probability space( �,A, P ) a classical versionof (Xt)t∈T if all time-ordered moments
of (Xt)t∈T and (X̃t)t∈T coincide, i.e. if we have for alln ∈ N, all t1 . . . , tn ∈ T with
t1 ≤ . . . ≤ tn, and all bounded Borel functionsh1, . . . , hn onR the equality

ϕ[h1(Xt1) . . . hn(Xtn )] =
∫

�
h1(X̃t1(ω)) . . . hn(X̃tn (ω))dP (ω).
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Remark 4.2.Most calculations in a non-commutative context involve only time-ordered
moments, see, e.g., the calculation of the Green function of theq-Ornstein-Uhlenbeck
process in [NSp]. Thus, results of such calculations can also be interpreted as results for
the classical version – if such a version exists.

It is clear that there is at most one classical version for a given non-commutative
process (Xt)t∈T . The problem consists in showing the existence. If we denote by1B the
characteristic function of a measurable subsetB of R, then we can construct the classical
version (X̃t)t∈T of (Xt)t∈T via Kolmogorov’s existence theorem from the collection of
all µt1,...,tn (n ∈ N, t1 ≤ . . . ≤ tn) – which are forB1, . . . , Bn ⊂ R defined by

µt1,...,tn (B1 × . . .×Bn) = P (X̃t1 ∈ B1, . . . , X̃tn ∈ Bn)
= ϕ[1B1(Xt1) . . . 1Bn

(Xtn )]

– if and only if allµt1,...,tn are probability measures. Whereas this is of course the case
for µt1 and, in our tracial frame because of

µt1,t2(B1 ×B2) = ϕ[1B1(Xt1)1B2(Xt2)] = ϕ[1B1(Xt1)1B2(Xt2)1B1(Xt1)],

also forµt1,t2, there is no apriori reason why it should be true for biggern. And in
general it is not. It is essentially the content of Bell’s inequality that there are examples
of non-commutative processes which possess no classical version – for a discussion of
these subjects see, e.g., [KM].

But for special classes of non-commutative processes classical versions might exist.
One prominent example of such a class are the Markov processes.

Definition 4.3. Let (Xt)t∈T be a Markov process on a probability space(A, ϕ). Let,
for t ∈ T , spect(Xt) andνt be the spectrum and the distribution, respectively, of the
self-adjoint operatorXt. Denote by

L∞(Xt) := vN(Xt) = L∞(spect(Xt), νt).

The operators
Ks,t : L∞(Xt) → L∞(Xs) (s ≤ t),

determined by
ϕ[h(Xt)|As] ] = ϕ[h(Xt)|A[s] ] = (Ks,th)(Xs)

are calledtransition operators of the process(Xt)t∈T , and, looked upon from the other
side, the process(Xt)t∈T is called adilation of the transition operatorsK = (Ks,t)s≤t.

The following theorem is by now some kind of folklore in quantum probability, see,
e.g. [AFL, Kum2, BP, Bia1]. We just indicate the proof for sake of completeness.

Theorem 4.4. If (Xt)t∈T is a Markov process on some probability space(A, ϕ), then
there exists a classical version(X̃t)t∈T of (Xt)t∈T , which is a classical Markov process.

Proof. One can express the time-ordered moments of a Markov process in terms of the
transition operators via

ϕ[h1(Xt1) . . . hn(Xtn )] = ϕ[h1(Xt1) . . . hn(Xtn )|Atn−1] ]
= ϕ[h1(Xt1) . . . hn−1(Xtn−1)ϕ[hn(Xtn )|Atn−1] ]]
= ϕ[h1(Xt1) . . . hn−1(Xtn−1)(Ktn−1,tnhn)(Xtn−1)]
= ϕ[h1(Xt1) . . . hn−2(Xtn−2)(hn−1 · Ktn−1,tnhn)(Xtn−1)]
= . . .
= ϕ[(h1 · Kt1,t2(h2 · Kt2,t3(h3 · . . .)))(Xt1)],
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from which it follows – becauseKs,t preserves positivity – that the corresponding
µt1,...,tn are probability measures. That the classical version is also a classical Markov
process follows by the same formula. �

Corollary 4.5. There exist classical versions of allq-Gaussian Markov processes. In
particular, we have classical versions of theq-Brownian motion, of theq-Brownian
bridge, and of theq-Ornstein-Uhlenbeck process.

Our aim now is to describe these classical versions more explicitly by calculating
their transition probabilities in terms of the orthogonalizing measureνq and the kernel
p(q)
r (x, y) of Theorem 1.10.

Theorem 4.6. Let (Xt)t∈T be aq-Gaussian Markov process with covariancec and put

λt :=
√
c(t, t) and λs,t :=

c(t, s)√
c(s, s)c(t, t)

.

1) We have

L∞(Xt) = L∞([−2λt/
√

1 − q, 2λt/
√

1 − q], νq(dx/λt)).

2) If λs,t = ±1, then the transition operatorK(q)
s,t is given by

(K(q)
s,th)(x) = h(±xλt/λs).

If |λs,t| < 1, then the transition operatorK(q)
s,t is given by

(K(q)
s,th)(x) =

∫
h(y)k(q)

s,t(x, dy),

where the transition probabilitiesk(q)
s,t are Feller kernels which have the explicit form

k(q)
s,t(x, dy) = p(q)

λs,t
(x/λs, y/λt)νq(dy/λt).

In particular, forq = 0 and|λs,t| < 1, we have the following transition probabilities for
the free Gaussian Markov processes:

k(0)
s,t(x, dy) =

1
2πλ2

t

(1 − λ2
s,t)

√
4λ2

t − y2dy

(1−λ2
s,t)2−λs,t(1+λ2

s,t)(x/λs)(y/λt) + λ2
s,t((x2/λ2

s) + (y2/λ2
t ))
.

Recall that a kernelk(x, dy) is called Feller, if the mapx 7→ k(x, dy) is weakly
continuous andk(x, ·) → 0 weakly asx → ±∞ – or equivalently that the corresponding
operatorK sendsC0(R) toC0(R), see, e.g., [DM].

Proof. 1) This was shown in [BSp2]; noticing the connection betweenq-relations and
q-Hermite polynomials the assertion reduces essentially to part 1) of Theorem 1.10.
2) By Prop. 2.9, we know

9(f⊗n) = ‖f‖nH (q)
n (ω(f )/‖f‖).

Let our q-Gaussian process (Xt)t∈T now be of the formXt = ω(ft). Markovianity
implies
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Ps]ft = µfs, where µ =
〈ft, fs〉
〈fs, fs〉

=
c(t, s)
c(s, s)

.

Because of
E[ 9(f⊗n

t )|As] ] = 9((Ps]ft)
⊗n) = µn 9(f⊗n

s )

we obtain with

λt := ‖ft‖ =
√
c(t, t) and λs,t := µ

λs
λt

=
c(t, s)√

c(s, s)c(t, t)

the formula
E[H (q)

n (Xt/λt)|As] ] = 1
λn

t
E[ 9(f⊗n

t )|As] ]

= µn

λn
t

9(f⊗n
s )

= (µλs

λt
)nH (q)

n (Xs/λs)

= λns,tH
(q)
n (Xs/λs),

implying

K(q)
s,t(H

(q)
n (·/λt)) = λns,tH

(q)
n (·/λs).

Let us now consider the canonical extension of our transition operators from theL∞-
spaces to theL2-spaces, i.e.

K(q)
s,t : L2(Xt) → L2(Xs).

If we use the fact that the rescaledq-Hermite polynomials (H (q)
n (·/λt)/

√
[n]!)n∈N0

constitute an orthonormal basis ofL2(Xt), we get directly the assertion in the case
λs,t = ±1. (Forλs,t = −1 one also has to note thatH (q)

2k andH (q)
2k+1 are even and odd

polynomials, respectively.)
In the case|λs,t| < 1, our formula implies thatK(q)

s,t is a Hilbert-Schmidt operator,

thus it has a concrete representation by a kernelk(q)
s,t, which is given by

k(q)
s,t(x, dy) =

∑∞
n=0

λn
s,t

[n]q !H
(q)
n (x/λs)H (q)

n (y/λt)νq(dy/λt)

= pλs,t
(x/λs, y/λt)νq(dy/λt).

That our kernels are Feller follows from the fact that, by Theorem 2.13, our second
quantization (i.e. our transition operators) restrict to theC∗-level (i.e. to continuous
functions).
The formula fork(0)

s,t follows from the concrete form ofp(0)
r of Theorem 1.10 and the fact

that

ν0(dy) =
1

2π

√
4 − y2dy for y ∈ [−2, 2]. �

The main formula of our proof, namely the action of the conditional expectation
on theq-Hermite polynomials, says that we have some quite canonical martingales
associated toq-Gaussian Markov processes – provided the factorλs,t decomposes into
a quotientλs,t = λ(s)/λ(t). Since this can be assured by a corresponding factorization
property of the covariance function – which is not very restrictive for Gaussian Markov
processes, see Theorem 4.9 of [Sim2] – we get the following corollary.
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Corollary 4.7. Let (Xt)t∈T be aq-Gaussian process whose covariance factorizes for
suitable functionsg andf as

c(s, t) = g(s)f (t) for s ≤ t.

Then, for alln ∈ N0, the processes(Mn(t))t∈T with

Mn(t) :=
(
g(t)/f (t)

)n/2
H (q)
n (Xt/λt)

are martingales.

Note that the assumption on the factorization of the covariance is in particular ful-
filled for the q-Brownian motion, for theq-Ornstein-Uhlenbeck process, and for the
q-Brownian bridge.

Proof. Our assumption on the covariance implies

λs,t =

√
g(s)/f (s)
g(t)/f (t)

,

hence our formula for the action of the conditional expectation on theq-Hermite poly-
nomials (in the proof of Theorem 4.6) can be written as(

g(t)/f (t)
)n/2

E[H (q)
n (Xt/λt)|As] ] =

(
g(s)/f (s)

)n/2
H (q)
n (Xs/λs),

which is exactly our assertion. �

Remark 4.8.Consider theq-Brownian motion (XqBM
t )t∈[0,∞). Then the corollary states

that
M (q)
n (t) := tn/2H (q)

n (XqBM
t /

√
t)

is a martingale. In terms of quantum stochastic integrals these martingales would have
the form

M (q)
n (t) =

∫
· · ·

∫
0≤t1,...,tn≤t

ti 6=tj (i 6=j)

dXqBM
t1 . . . dXqBM

tn .

Since at the moment, for generalq, no rigorous theory ofq-stochastic integration exists,
this has to be taken as a purely formal statement. Forq = 0, however, such a rigorous
theory was developed in [KSp], and the above representation by stochastic integrals was
established by Biane [Bia2]. In this case, he could put this representation into the form
of the stochastic differential equation

M (0)
n (t) =

n−1∑
k=0

∫ t

0
M (0)
k (s)dX0BM

s M (0)
n−k−1(s),

which should be compared with the classical formula

M (1)
n (t) = n

∫ t

0
M (1)
n−1(s)dX1BM

s .
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Example 4.9 (Free Gaussian processes).We will now specialize the formula fork(0)
s,t to

the case of the free Brownian motion, the free Ornstein-Uhlenbeck process and the free
Brownian bridge. The transition probabilities for the two former cases were also derived
by Biane [Bia1] in the context of processes with free increments.
1) Free Brownian motion: We havec(s, t) = min(s, t), thus

λt =
√
t and λs,t =

√
s/t.

This yields

ks,t(x, dy) =
(t− s)

(t− s)2 − (t + s)xy + x2t + y2s

√
4t− y2dy

2π

for
x ∈ [−2

√
s, 2

√
s] and y ∈ [−2

√
t, 2

√
t].

2) Free Ornstein-Uhlenbeck process: We havec(s, t) = e−|t−s|, thus

λt = 1 and λs,t = e−|t−s|.

Since this process is stationary, it suffices to consider the transition probabilities for
s = 0:

k0,t(x, dy) =
(e2t − 1)

4 sinh2 t− 2xy cosht + x2 + y2

√
4 − y2dy

2π
for x, y ∈ [−2, 2].

Let us also calculate the generatorN of this process – which is characterized by

Ks,t = e−(t−s)N .

It has the property
NH (0)

n = nH (0)
n (n ∈ N0),

and differentiating the above kernel shows that it should be given formally by a kernel
−2/(y − x)2 with respect toν0. Making this more rigorous [vWa] yields thatN has on
functions which are differentiable the form

(Nh)(x) = xf ′(x) − 2
∫
f (y) − f (x) − f ′(x)(y − x)

(y − x)2
ν0(dy).

3) Free Brownian bridge: We havec(s, t) = s(1 − t) for s ≤ t, thus

λt =
√
t(1 − t) and λs,t =

√
s(1 − t)
t(1 − s)

.

This yields

ks,t(x, dy) =

= 1−s
1−t

(t−s)
(t−s)2−(s+t−2st)xy+t(1−t)x2+s(1−s)y2

√
4t(1−t)−y2dy

2π ,

for

x ∈ [−2
√
s(1 − s), 2

√
s(1 − s)] and y ∈ [−2

√
t(1 − t), 2

√
t(1 − t)].
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Example 4.10 (Fermionic Gaussian processes).For illustration, we also want to con-
sider the fermionic (q = −1) analogue of Gaussian processes. Although this case has
not been included in our frame everything works similarly, the only difference is that in
the Fock space we get a kernel of our scalar product consisting of anti-symmetric ten-
sors. This is responsible for the fact that the corresponding (−1)-Hermite polynomials
collapse just to

H (−1)
0 (x) = 1 and H (−1)

1 (x) = x.

The corresponding measureν−1 is not absolutely continuous with respect to the
Lebesgue measure anymore, but collapses to

ν−1(dx) =
1
2

(δ−1(dx) + δ+1(dx)).

This yields

p(−1)
r (x, y) = H (−1)

0 (x)H (−1)
0 (y) + rH (−1)

1 (x)H (−1)
1 (y) = 1 +rxy,

giving as transition probabilities

k(−1)
s,t (x, dy) =

1
2

(1 +
c(s, t)

c(s, s)c(t, t)
xy)(δ−

√
c(t,t)

(dy) + δ
+
√
c(t,t)

(dy)).

1) Fermionic Brownian motion:Xt can only assume the values +
√
t and−

√
t and the

transition probabilities are given by the table

ks,t
√
t −

√
t√

s 1
2(1 +

√
s/t) 1

2(1 −
√
s/t)

−
√
s 1

2(1 −
√
s/t) 1

2(1 +
√
s/t)

.

This case coincides with the correspondingc = −1 case of the Aźema martingale, see
[Par1].
2) Fermionic Ornstein-Uhlenbeck process: This stationary process lives on the two
values +1 and−1 with the following transition probabilities

ks,t 1 −1
1 1

2(1 + e−(t−s)) 1
2(1 − e−(t−s))

−1 1
2(1 − e−(t−s)) 1

2(1 + e−(t−s))
.

This classical two state Markov realization of the corresponding fermionic relations has
been known for a long time, see [FB].
3) Fermionic Brownian bridge:Xt can only assume the values +

√
t(1 − t) and

−
√
t(1 − t) and the transition probabilities are given by the table

ks,t
√
t(1 − t) −

√
t(1 − t)

√
s(1 − s) 1

2(1 +
√

s(1−t)
t(1−s) )

1
2(1 −

√
s(1−t)
t(1−s) )

−
√
s(1 − s) 1

2(1 −
√

s(1−t)
t(1−s) )

1
2(1 +

√
s(1−t)
t(1−s) )

.
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Example 4.11 (Hypercontractivity).Consider theq-Ornstein-Uhlenbeck process with
stationary transition operatorsK(q)

t := KqOU
s,s+t. Note that thisq-Ornstein-Uhlenbeck semi-

group is nothing but the second quantization of the simplest contraction, namely with
the one-dimensional real Hilbert spaceH = R and the corresponding identity operator
1 : R → R we have

0q(R) ∼= L∞([−2/
√

1 − q, 2/
√

1 − q], νq(dx)) and 0q(e
−t1) ∼= K(q)

t .

We have seen that theK(q)
t are, for allt > 0, contractions onL2 and onL∞ (and thus,

by duality and interpolation, on allLp). In the classical caseq = 1 (and also forq = −1)
it is known [Sim1, Nel1, Nel2, Gro, CL] that much more is true, namely the Ornstein-
Uhlenbeck semigroup is also hypercontractive, i.e. it is bounded as a map fromL2 to
L4 for sufficiently larget. Having the concrete form of the kernel

k(q)
t (x, dy) = p(q)

e−t (x, y)νq(dy)

of K(q)
t , it is easy to check that we also have hypercontractivity for all−1 < q < 1.

Even more, we can show thatK(q)
t is bounded fromL2 to L∞ for t > 0, i.e. we have

what is called “ultracontractivity” [Dav] – which is, of course, not given forq = ±1.
This ultracontractivity follows from the estimate

‖K(q)
t h‖∞ ≤ α(t, q)1/2‖h‖2 where α(t, q) := sup

x∈[−2,2]
sup

y∈[−2,2]
p(q)
e−t (x, y),

and from the explicit form ofp(q)
r from Theorem 1.10, which ensures thatα(t, q) is finite

for t > 0 and−1 < q < 1 (comp. also [Dav], Lemma 2.1.2). One may also note that
for smallt the leading term ofα(t, q)1/2 is of ordert−3/2.

4.12 Open Problems. 1) The situation concerning classical versions of non-Markovian
q-Gaussian processes is not clear at the moment.
2) Consider a symmetric measureµ on R with compact support. Then there exist a
sequence of polynomials (Pn)n∈N0 such thatPn is of degreen and such that these
polynomials are orthogonal with respect toµ. Let us define a semigroupUt onL2(µ) by

UtPn = e−ntPn.

If theseUt are positivity preserving then they constitute the transition operators of a
stationary Markov process, whose stationary distribution is given byµ. Ourq-Ornstein-
Uhlenbeck process is an example of this general construction for the measureνq. The
existence of the functor0q “explains” the fact that theq-Ornstein-Uhlenbeck semigroup
is positivity preserving from a more general (non-commutative) point of view – note that
although Theorem 2.11 is for dimH = dimH′ = 1 a purely commutative statement, its
proof is even in this case definitely non-commutative. Of course, not for all measuresµ
the semigroupUt is positivity preserving. But one might wonder whether it is possible
to find for each measure with this property –or at least for some special class of such
measures – some analogous kind of functor. See also [BSp4] for related investigations.
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