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Abstract: We examine, for—1 < ¢ < 1, g-Gaussian processes, i.e. families of op-
erators (non-commutative random variabléS) = a, + a; — where theqa, fulfill the
g-commutation relationssa; — ga;jas = c(s,t) - 1 for some covariance functiof:, -)
—equipped with the vacuum expectation state. We show that thegedasalogue of the
Gaussian functor of second quantization behind these processes and that this structure
can be used to translate questiong-dbaussian processes into corresponding (and much
simpler) questions in the underlying Hilbert space. In particular, we use this idea to show
that a large class @gf Gaussian processes possesses a non-commutative kind of Markov
property, which ensures that there exist classical versions of these non-commutative
processes. This answers an old question of Frisch and Bourret [FB].

Introduction

What we are going to cafi-Gaussian processes was essentially introduced in a remark-
able paper by Frisch and Bourret [FB]. Namely, they considered generalized commuta-
tion relations given by operator(t) and a vacuum vectow, with

AA* () — gA*(t)A() = T(¢, )1
and
A(t) Vo =0

for some real covariance functiof (i.e. positive definite function). The aim of the
authors was to study the probabilistic properties of the “parastochastic” prbbgss
A(t) + A*(¢).

The basic problems arising in this context were the following two types of questions:
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() (realization problem)
Do there exist operators on some Hilbert space and a corresponding vacuum vector
in this Hilbert space which fulfill the above relations, i.e. are there non-commutative
realizations of the-Gaussian processes?

(I) (random representation problem)
Are these non-commutative processes of a classical relevance, i.e. do there exist
classical versions of the-Gaussian processes (in the sense of coinciding time-
ordered correlations, see our Definition 4.1)?

Frisch and Bourret could give the following partial answers to these questions.

() For g = 41 the realization is of course given by the Fock space realization of the
bosonic/fermionic relations. The cage= 0 was realized by creation and annihi-
lation operators on the full Fock space (note that this was before the introduction
of the Cuntz algebras and their extensions [Cun, Eva]). For other valugthef
realization problem remained open.

(I The g = 1 processes are nothing but the Fock space representations of the classical
Gaussian processes. Fpr= —1 a classical realization by a dichotomic Markov
process could be given for the special case of exponential covarigicg) =
exp(=|t —t']). A classical realization fog = 0 could not be found, but the authors
were able to show that there is an interesting representation in terms of Gaussian
random matrices.

The authors started also the investigation of parastochastic equations (i.e. the coupling of
parastochastic processes to other systems), but — probably because of the open problem
on the mere existence and classical relevance of thpsecesses —there was apparently
no further work in this direction and the paper of Frisch and Bourret fell into oblivion.
Starting with [AFL] there has been another and independent approach to non-
commutative probability theory. This wide and quite inhomogenous field — let us just
mention as two highlights the quantum stochastic calculus of Hudson-Parthasarathy
[HP] and the free probability theory of Voiculescu [VDN] — is now known under the
name of “quantum probability”. At least some of the fundamental motivations for un-
dertaking such investigations can be compared with the two basic questions of Frisch
and Bourret:

() Non-commutative probability theory is meant as a generalization of classical proba-
bility theory to the description of quantum systems. Thus first of all their objects are
operators on some Hilbert spaces having a meaning as non-commutative analogues
of the probabilistic notions of random variables, stochastic processes, etc.

(I In many investigations in this area one also tries to establish connections between
non-commutative and classical concepts. The aim of this is twofold. On one side,
one hopes to get a better understanding of classical problems by embedding them
into a bigger non-commutative context. Thus, e.g., themAz martingale, although
classically not distinguished within the class of all martingales, behaves in some
respects like a Brownian motion [Parl]. The non-commutative “explanation” for
this fact comes from the observation of cmann [Sch] that this martingale is one
component of a non-commutative process with independentincrements. In the other
direction, one hopes to get a classical picture (featuring trajectories) of some aspects
of quantum problems. Of course, a total reduction to classical concepts is in general
not possible, but partial aspects may sometimes allow a classical interpretation.
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It was in this context of quantum probability where two of the present authors [BSp1]
reintroduced the-relations — without knowing of, but much in the same spirit as [FB].
Around the same time therelations were also proposed by Greenberg [Gre] as an
example for particles with “infinite statistics”.

The main progress in connection with this renewed interest was the solution of
the realization problem of Frisch and Bourret. There exist now different proofs for the
existence of the Fock representation of theelations for allg with —1 < ¢ < 1
[BSp1, Zag, Fiv, Spel, BSp3, YW].

In [NSp], the idea of Frisch and Bourret to use theelations as a model for a gener-
alized noise was pursued further and the Greens function for such dynamical problems
could be calculated for one special choice of the covariance function — namely for the
case of the exponential covariance. We will call this spegiatocess in the following
g-Ornstein-Uhlenbeck process. It soon became clear that the special status of the ex-
ponential covariance is connected with some kind of (hon-commutative) Markovianity
— as we will see the-Ornstein-Uhlenbeck process is the only stationg@aussian
Markov process. But using the general theory dfnfknerer on non-commutative sta-
tionary Markov processes [Kum1, Kum2] this readily implies the existence of a classical
version (being itself a classical Markov process) of gH@rnstein-Uhlenbeck process.
Thus we got a positive solution of the random representation problem of Frisch and
Bourret in this case. However, the status of the oth@aussian processes, in particular
g-Brownian motion, remained unclear.

Motivated by our preliminary results, Biane [Bial] (see also [Bia2, Bia3]) undertook
a deep and beautiful analysis of the free=(0) case and showed the remarkable result
that all processes with free increments are Markovian and thus possess classical versions
(with a quite explicit calculation rule for the corresponding transition probabilities). This
includes in particular the case of free Brownian motion.

Inspired by this work we could extend our investigations from the case of-the
Ornstein-Uhlenbeck process to aliGaussian processes. The results are presented in
this paper.

Up to now there is only one strategy for establishing the existence of a classical
version of a non-commutative process, namely by showing that the process is Markovian.
That this implies the existence of a classical version follows by general arguments, the
main point is to show that we have this property in the concrete case. Whereas Biane
could use the quite developed theory of freeness [VDN] to prove Markovianity for
processes with free increments, there is at the moment (and probably also in the future
[Spe2]) no kind of;-freeness for general Thus another feature of our considered class
of processes is needed to attack the problem of Markovianity. It is the aim of this paper
to convince the reader of the fact that franalogue of Gaussianity will do this job.

The essential idea of Gaussianity is that one can pull back all considerations from the
measure theoretic (or, in the non-commutative frame, from the operator algebraic) level
to an underlying Hilbert space, thus in the end one essentially has to deal with linear
problems. The main point is that this transcription between the linear and the algebraic
level exists in a consistent way. The best way to see and describe this is by presenting
a functor (“second quantization”) which translates the Hilbert space properties into
operator algebraic properties. Our basic considerations will therefore be on the existence
and nice properties of the-analogue of this functor. Having this functor, the rest is
mainly linear theory on the Hilbert space level. It turns out that all relevant questions
on ourg-Gaussian processes can be characterized totally in terms of the corresponding
covariance function. In particular, it becomes quite easy to decide whether such a process
is Markovian or not.
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The paper is organized as follows. In Sect. 1 we recall some basic facts abgut the
Fock space and its relevant operators. Furthermore we collect in this section the needed
combinatorial results, in particular gaHermite polynomials. Section 2 is devoted to
the presentation of the functdt, of second quantization. The main results (apart from
the existence of this object) are the facts that the associated von Neumann algebras
are in the infinite dimensional case non-injectiMg-factors and that the functor maps
contractions into completely positive maps. Having thaussian functor the definition
and investigation of properties gfGaussian processes (like Markovianity or martingale
property) is quite canonical and parallels the classical case. Thus our presentation of these
aspects, in Sect. 3, will be quite condensed. Sect. 4 contains the classical interpretation
of the ¢-Gaussian Markov processes. As pointed out above general arguments ensure
the existence of classical versions for these processes. But we will see that we can also
derive quite concrete formulas for the corresponding transition probabilities.

1. Preliminaries on theg-Fock Space

Letq € (—1,1) be fixed in the following.

For a complex Hilbert spack we define itsg-Fock spaceF,(H) as follows: Let
Ffinite(H) be the linar span of vectors of the forfa® ... ® f,, € H®™ (with varying
n € Np), where we put{®° ¥ C Q for some distinguished vecta?, called vacuum. On
Flinite(1{) we consider the sesquilinear forfn-), given by a sesquilinear extension
of

<f1 ... fnagl ®...Q0 gm>q =0nm Z qi(ﬁ)<f1,9w(1)> e <fna97r(n)>a
TESy

where.S,, denotes the symmetric group of permutations aflements and(r) is the
number of inversions of the permutatienc S,, defined by

i(m) = #{(i,)) [ 1< i < j < n,7w(@) > 7(j)}-

Another way to describé, -), is by introducing the operataP, on F/iit¢(}) by a
linear extension of
P,Q = Q, _
qu1® o ® [ Zﬂesn ql(“)fn(1)®...®fﬂ(n).

Then we can write

(€ mq=(&Pmo  (&ne FIMI(H)),

where(-, -)o is the scalar product on the usual full Fock space

Fo(H) = EPH"

n>0

One of the main results of [BSp1] (see also [BSp3, Fiv, Spel, Zag]) was the strict
positivity of P, i.e. (¢,£), > 0 for 0 # ¢ € F/inite(H). This allows the following
definitions.
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Definition 1.1. 1) Theg-Fock spaceF, (H) is the completion of /¢ () with respect

to (-, )q
2) Givenf € H, we define the creation operatat(f) and the annihilation operator
a(f) on Fo(H) by

a*(f)Q = f,
a(N)fi®@..@fa=fO®L®...® fa,

and
a(f) =0,

a(f)fi®...® fo = i d NV @ fi ®...® fa,

where the symbqfi means thaif; has to be deleted in the tensor.

Remark 1.2.The operators(f) anda*(f) are bounded operators ¢ () with

ol = el = { VI 0522,

and they are adjoints of each other with respect to our scalar produgt Furthermore,
they fulfill the ¢-relations

a(f)a*(9) — qa*(9)a(f) = {f.9)- 1 (f,g € H).

Notation 1.3.For a linear operatdf’ : H — H’ between two complex Hilbert spaces
we denote byF(T) : Ffinite(H) — Ffinite(1’) the linear extension of

FT)Q = Q,
F) .. fn=THe...0Tf).

In order to keep the notation simple we denote the vacuurifand the vacuum for
‘H' by the same symbaf2.

It is clear thatF(T") can be extended to a bounded operdig(T) : Fo(H) — Fo(H')
exactly if 7" is a contraction, i.e. if || < 1. The following lemma ensures that the same
is true for all othely € (—1, 1), too.

Lemma 1.4. Let T : Flinite(H) — Flinite(14’) be a linear operator which fulfills
P/T = TP,, whereP, and P, are the operators onF/*"i*¢(7{) and F/imc(}’),
respectively, which define the respective scalar produe},. Then one ha§7||, =

[I7 |lo- Hence, if| 7 ||lo < oo, thenT can, for eachy € (—1, 1), be extended to a bounded
operator fromF, () to F,(H').

Proof. Let¢ € Ffimite(H). Then
17¢|13

<T€7 Tf)‘]

= (P%6 T TP %)
< |IT*T o (Py/%, Py*)o
= I Tlollel,

which implies

T2 < IT*Tlo < [T o 1T llo = 1T 113,
and thus||T ||, < || 7 |lo- Since we can estimate in the same way, by replaéingy
Pt andP) by P(;—l, also|| 7T |jo < ||7||4, We get the assertion. O
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Notation 1.5.For a contractior?” : H — H', we denote the extension ¢(7") from
Flinite(1) — Flinite(H') to F,(H) — F,(H') by F,(T).

Remark 1.6.1) One might callF,(T") the second quantization &, but we will reserve
this name for the restriction of, (1) to some operator algebra lying if,(H) — see
the next section, where we will also prove some positivity properties of this restricted
version.
2) The operatorF,(7") and its differential version (in particular the number operator)
were also considered in [Wer] and [Sta, Mol], respectively.
3) Itis clear thatF,(-) behaves nicely with respect to composition and taking adjoints,
i.e.

Fo)=1,  Fo(ST) = Fo(S)F(T),  Fo(T7) = Fo(T)",

but not with respect to the additive structure, i.e.
Fo(T+8) 7 Fo(T) + Fy(S) in general.

In the context of theg-relations one usually encounters some king-cbmbinato-
rics. Let us just recall the basic facts.

Notation 1.7.We put forn € N,

_1-9q"
[n]q = 1—¢

=1+q+...+q¢" 1 ([0],:=0).

Then we have the-factorial

[l ! =11, ... 7], [0],!:=1,
and ag-binomial coefficient

ny\ [n],! _n_k 1— gk
(k)q " [k]q![nq—k]q! - q 1—¢

Another quite frequently used symbol is th@nalogue of the Pochhammer symbol

n—1 o
(@ q)n = [[(A—ag’)  inparticular € q)s = [ (1 — ag’).
=0 e

The importance of these concepts in connection withgthelations can be seen from
the following ¢-binomial theorem, which is by now quite standard.

Proposition 1.8. Letx andy be indeterminates whighcommute inthe sensg = gyz.
Then one has for € N,

n

(@+y)" =Y (Z)qy’“w”*’“'

k=0

Proof. This is just induction and the easily checked equality

(Z>q+qk (k21>q: (Z:)q =
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In the same way as the usual Hermite polynomials are connected to the bosonic
relations, thej-relations are linked tg-analogues of the Hermite polynomials.

Definition 1.9. The polynomiald? (n € Ny), determined by
HP@2)=1, H)=x
and
eH (@) = (@) + [l 4 () (n>1)
are calledg-Hermite polynomials.

We recall two basic facts about these polynomials which will be fundamental for
our investigations on the classical aspectg-@aussian processes.

Theorem 1.10. 1) Lety, be the measure on the intenfat2//1 — ¢,2/+/1 — ¢] given
by

1 o> _

v (dx) = =\/1—gsing H(l — ML = ¥ 2,
T
n=1
where ,
T = cosf with 6 € [0, 7].

v1i—gq

Then theg-Hermite polynomials are orthogonal with respectfg i.e.

[

—2/4/1-q

2) Letr > Oandz,y € [-2/v/I— ¢,2/v/I— q]. Denote byp{?(z, y) the kernel

Hy (2)Hp (x)vg(dx) = Onm[n]g!.

Pp9(x,y) = Z[ n H(Q)(x)H(Q)(y)

Then we have with

the formula

P9 (2, y) = (r?; q)oo
Y |(T6i(w+¢); Qoo (rei?=¥); q) e 2 .

In particular, for ¢ = 0, we get

1—12
A —72)2 —r(L+7r2)zy +r2(z2+92)’

Pz, y) =

As usual ing-mathematics these formulas are quite old, namely the orthogonalizing
measure, was calculated by Szego [Sze], whereas the keiftglr, y) goes even back
to Rogers [Rog]. For more recent treatments, see [Bre, ISV, GR], in connection with the
g-Fock space also [LM1, LM2].
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2. Second Quantization — The FunctorT,

An abstract way of dealing with classical Gaussian processes is by using the Gaussian
functor I". This is a functor from real Hilbert spaces and contractions to commutative
von Neumann algebras with specified trace-state and unital trace preserving completely
positive maps [Nell, Nel2, Gro, Sim1, Sim2]. Essentially, this point of view can be
traced back to Segal [Seg]. Fermionic and free analogues of this functor are also known,
see, e.g., [Wil, CL, Voi, VDN].

In this section we will present@analogue of the Gaussian functor. Namely, to each
real Hilbert space}, we will associate a von Neumann algebra with specified trace-
state, (C,(7), E), and to every contractiofi : H — H’ a unital completely positive
trace preserving mapy(7) : T'y(H) — To(H).

Definition 2.1. LetH be areal Hilbert space ant ¢ its complexificatioft¢ = H®iH.

Put, for f € H,
w(f) = a(f) +a*(f) € B(Fq(Hc))

and denote by, (H) C B(F,(Hc)) the von Neumann algebra generated by.(lf),
I'y(H) == vN(a(f) +a*(f) | f € H).

Notation 2.2. We denote by
E:T,(H)—C

the vacuum expectation state ®y)(*) given by
E[X]:= (Q,X Q) (X € T4(H)).
We recall some basic facts aboDj () in the following proposition.

Proposition 2.3. The vacuums2 is a cyclic and separating trace-vector fdr,(H),
hence the vacuum expectatiris a faithful normal trace onl",(+) and T',(H) is a
finite von Neumann algebra in standard form.

Proof. See Theorems 4.3 and 4.4 in [BSp3]. O
The first part of the proposition yields in particular that the mapping

Iﬁq(H) - fq(HC)a
X— XQ

is injective, in this way we can identify eacki € I';(H) with some element of the
g-Fock spacer, (Hc).

Notation 2.4.1) Let us denote by
Ly (H) = Ty(H)Q

the image ofl"y () under the mapping — X Q.
2) We also put
LE(H) = Fy(He)-

Definition 2.5. Let W : L°(H) — I'y(H) be the identification of.3°(H) with Ty ()
given by the requirement

VEQ=¢  for &€ LP(H) C Li(H) = Fy(Ho).
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Remark 2.6.1) Of course, not each element of thd-ock space comes from ah €
I'4(H), but the main relation for observing the cyclicity &, namely

n—1
A®.®fmw(f) . w(f)—n  with nePH,
=0

yields that we have atleagt @ ... @ f,, € Ly°(H).
2) In a quantum field theoretic context [Sim1, Sim2] the operabff; ® ... ® f,)
would be called “Wick product” and denoted by

V([1®...0 fa) =t w(f1) ... w(fn) ©

3) In a quantum probabilistic context [Par2, Mey| would correspond to taking an
iterated quantum stochastic integral: Fge = L?(R) and¢ = f1 ® ... ® f, with
E(ty, ... tn) = fa(ty) . .. fu(tn) one would denote

w(e) = / e ta)dus(ty) . . duo(t)

and call¢ the “Maassen kernel” oft(&).

The explicit form of our Wick products is given in the following proposition.

Proposition 2.7. We have fon € Nand f1, ..., f,. € H the normal ordered represen-
tation

W ® f)= N
ERk0 0 Ny @ i) @ Fiwdalfi) - alfiw) - g,
12={j(1‘;‘)li-t;1~-j(l)}
IUI={1,...,n}
I3NI=0

where
i, L) =#{(p,q) | 1<p <k, 1< q <1ip) > j(@)}

Denote byX the right-hand side of the above relation. It is clear tha® = f; ®
... ® fn, the problem is to see thaf can be expressed in terms of this.

Proof. Note that the formula is true for

V(f) = w(f) = al(f) +a™(f)
and that the definition af*(f) and ofa(f) gives

V(fRAD. @ fn) =w() V(8.0 f) =D ¢ [ i) W(he...0fie...0f).

=1
From this the assertion follows by induction. [

Note that ¥(f; ® ... ® f,) is just given by multiplying outus(f1)...w(f,) and
bringing all appearing terms with the help of the relatiart = ga*a into a normal
ordered form — i.e. we throw away all normal ordered terms(ifh) . . . w(f,,) which
have less than factors. Thus, for the special cage= ... = f,,, we are in the realm of
the g-binomial theorem and we have the following nice formula.
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Corollary 2.8. We have forn € Nand f € H,
" n
(o) = a*(f)fa(f)" .
> (1),

Instead of writing®(f®™) in a normal ordered form we can also express it in terms
of w(f) with the help of the;-Hermite polynomials.

Proposition 2.9. We have forn € Ng and f € H with || f|| = 1 the representation

W(Fe") = HP(w(f)-

Proof. This follows by the fact that thal(f®") fulfill the same recurrence relation as
the H9 (w(f)), namely

w(f) W(fe™) = WD) + [n], w(Fer—D)
and that we have the same initial conditions
W(Fe0) =1, V(Y =w(f). O

We know [Voi, VDN] that forq = 0 the von Neumann algebiay(#) is isomorphic
to the von Neumann algebra of the free group on #igenerators — in particular, it is
a non-injective I}-factor for dimH+ > 2. We conjecture non-injectivity and factoriality
in the case dink{ > 2 for arbitraryq € (—1, 1), but up to now we can only show the
following.

Theorem 2.10.1) For -1 < ¢ < Landdim™ > 16/(1 — |q|)? the von Neumann
algebra I'y(H) is not injective.
2)If -1 < ¢ < 1anddim™ = oo thenT'y(H) is a ll;-factor.

Proof. 1) This was shown in a more general context in Theorem 4.2 in [BSp3].
2) Let{e; }ien be an orthonormal basis &. Fix n € Ng andr(1),...,r(n) € Nand
consider the operator

X = \Il(e,,(l) ®R...Q er(n)).

(Forn = 0 this will be understood a& = 1.) We put

m

6n(X) = LY w(e)Xu(e)  (meN)

=1

and claim that,,,(X) converges forn — oo weakly to¢(X) := ¢" X. Because of the
m-independent estimate

16m(X)lq < 1X g lwlen)lI3

it suffices to show

n!ig]oo<€7 O (X)) g = (5 P(XIn)q
for all ¢, n € F4(Hc) of the form

£=e)® ... ® eau), nN=epn)® ... D epw)
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with u,v € Np, a(1),...,a(w),b(l),...,b(v) € N (for u = 0 we put = ). To see
this, put

mo = max{a(l),...,a(u),b(l),...,b(),r1),...,r(n)}.
Since|(§, w(e;) Xwle)n),| < M for someM (independent of), we have

<£7 ¢M(X)n>q = nlE»noo % Zz7no+l<£a w(ei)Xw(ei)n>q
= lim L3577 (€ ale) Werw) @ ... ® exm)at(e)n)q.

n—oo

lim
n—oo

By Prop. 2.7,%(e,(1) ® ... ® ermn)) IS Now a linear combination of terms of the form
Y = Y1Y5 with
Y= a*(e,.(i(l))) - a*(e,'(i(k))) and Y, = a(er(j(l))) - a(e,.(j(l)))
with k + [ = n. Each such term gives, fer> mg, a contribution
(& alen)Ya*(ei)n)g = (€, alei)Y1Yaa™(e:)n)q
= Mg, Yiale;)a™ (e)Yan),
= ¢" (€, Y1(1 + qa™(ei)alei)) Yzm)q
qn <§7 Y1Y277>q

4" (€, Y n)q,
and hence
Mmoo (€, G (X)) = iMoo 55 300000 7€, Wler@) @ - ® er(m))g
= (£,q"Xn)q-

Thus we have shown
W-lim ¢, (X) = $(X).
Let now tr be a normalized normal trace (). Then

trlo(X)] = lim o0 tr[gm (X)]
= lim,—oo % o trlw(es) Xw(e;)]
= iMoo % St tr[ X wle)w(e;)]
= t[X - lim—ee % Yo weiw(e;)]
= tr[X¢(2)]
= tr[X].

Since¢*(X) = ¢*" X converges, fok — oo, (even in norm) to

_ |0, n>1
e 1={ %y nZo

we obtain
r[X]= lim tr¢"(X)] = tf lim ¢"(X)] = E[X]tr[1] = E[X].

Thus tr coincides on all operators of the form
X=V(rw®...Qerm) (n € N, r(1),...,r(n) € N)

with our canonical trace E. Since the set of finite linear combinations of such operators
X is weakly dense i, (), we get the uniqueness of a normalized normal trace on
I',(H), which implies thatl", () is a factor. O
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The second part of ourGaussian functoi, assigns to each contracti@h: H —
H amapTy(T) : Ty(H) — T'y(H'). The idea is to extendy(T)w(f) = w(T'f) in
a canonical way to all of"; (7). In general, theg-relations prohibit the extension as a
homomorphism, i.e.

Co(Mw(fr) .. - w(fn) Zw(Tfr)...w(T'f) in general.

But what can be done is to demand the above relation for the normal ordered form, i.e.
F(MV(f1®..0fHL)=VYTHQ...0Tf)=WWF,(D)HL®...Q fn),

or
(Ty(T)X) Q2 = Fy(T)(X Q).

Thus our second quantizatidn, (7)) is the restriction ofF, (T') from F,(H) = Lg(H) to

I'y(H) = L°(H) and the question on the existencelaf(7") amounts to the problem
whetherF,(T)(Lg°(H)) C L3°(H'). We know thatF,(T') can be defined for” a con-
traction and we will see in the next theorem that no extra condition is needed to ensure
its nice behaviour with respect fg;°. The case = 0 is due to Voiculescu [Voi, VDN].

Theorem 2.11.1) LetT : H — H’ be a contraction between real Hilbert spaces. There
exists a unique map,(T) : I',(H) — T'q(H’) such that

(Ty(T)X) 2 = Fy(T)(X ).

The mapI',(T) is linear, bounded, completely positive, unital and preserves the canon-
ical traceE.

2) If T'is isometric, thenl"y(T") is a faithful homomorphism, andit is the orthogonal
projection onto a subspace, thdh,(T) is a conditional expectation.

Proof. Uniqueness of", (') follows from the fact that is separating fol"y(H’). To
prove the existence and the propertiedg{T") we notice that any contractidfi can be
factored [Hal] as” = POI where

—1:H — K=HaH isanisometric embedding

-0 : K — K is orthogonal

—-P:K=H&H — His an orthogonal projection onto a subspace.

Thus if we prove our assertions for each of these three cases then we will also get the
general statement far,(T") = T',(P) T'4(O) T'y(1).

a) Letl : H — K = H & H’' be anisometric embedding agd: X — K the orthogonal
projection ontdH. ThenZ,(Q) is a projection inF,(ICc) andF,(Hc) can be identified
with F,(Q)F,(Kc). Let us denote bwx(f) the sum of the creation and annihilation
operator onF,(Kc). If we put

Iy (H) =Nk (f) | f € H) C B(Fy(Kc)),

then
I (H)Fy(He) C Fo(He),

and we have the canonical identification
To(H) = Th(H)F(Q),

which gives a homomorphism (and thus a completely positive)



g-Gaussian Processes 141

Ly(I) 1 Ty(H) — Ty(K).

Faithfulness is clear sincg,(Q) 2 = @ and Q separating. This yields also that the
trace is preserved.
b) LetP : K = H® H' — M’ be an orthogonal projection, i.€P* = 15, where
P* :'H' — K is the canonical inclusion. Then
Lo(P)X = Fy(P)X Fy(P) (X € Ty (K))
gives the right operator, because we havekidre No and f1, ..., fx,91,..-,91 € K,
Fq(P)a*(f1)...a™(fr)a(ga) ... alg) Fo(P™) =
= a*(Ph)...a"(Pf)F(P)F(P*)a(Pgy) ... a(Pg)
= a*(Pf)...a"(Pfa(Pag) ... a(Pg).

By its concrete form[',(P) is a conditional expectation and
E[F,(P)X F,(P*)] = (F,(P*)Q, X F,(P*)Q), = (Q, X Q), = E[X]

shows that it preserves the trace.
C) LetO : K — K be orthogonal, i.e00* = O*O = 1. Then, as in b),

[, (0)X = F(O)X F,(0"),
which is, by
Fq(O7)F(O) = Fo(1x) = 1r,x0)
also a faithful homomorphism. O

Instead of working on the level of von Neumann algebras we could also consider the
C*-analogues of the above constructions. This would be quite similar. We just indicate
the main points.

Definition 2.12. Let H be a real Hilbert space and{ its complexificationH¢ =
H e iH. Put, for f € H,

w(f) = a(f) +a*(f) € B(F4(Hc)),
and denote byd,(H) C B(F,(Hc)) the C*-algebra generated by alb(f),

®q(H) = C™(al(f) +a*(f) | f € H).

Clearly, the vacuum is also a separating trace-vecto®fg(f+) and, by Remark 2.6.,
itis also cyclic and¥(f; ® ... ® f,) € ®,(H)foralln € Noand allfy, ..., f, € H.

The most important fact for our later considerations is thatl") can also be re-
stricted to the”™*-level.

Theorem 2.13.1) LetT : H — H’ be a contraction between real Hilbert spaces. There
exists a unique ma@,(T) : ®,(H) — ®,(H’) such that

(0,(T)X)Q = F (T)(X Q).

The map®, (7)) is linear, bounded, completely positive, unital and preserves the canon-
ical traceE.

2) If T'is isometric, thend (") is a faithful homomorphism, andif is the orthogonal
projection onto a subspace, theh,(7') is a conditional expectation.

3) We haved,(T') = T'y((T)/ @,(H).
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Proof. This is analogous to the proof of Theorem 2.11. [

We can now also prove the analogue of the second part of Theorem 2.10. The
analogue of factoriality fo€'*-algebras is simplicity.

Theorem 2.14.1f —1 < ¢ < 1 anddim’ = oo then ®,(H) is simple.

Proof. Again, this is similar to the proof of the von Neumann algebra result. We just
indicate the main steps.

We use the notations from the proof of Theorem 2.10. First, by norm estimates, one can
show that the convergence L, o ¢ (X) = ¢(X) for X of the formX = ¥(e,q1) ®

... ®erm) is even a convergence in norm. SindeX) is nothing butp(X) = Ty(g) X,
whereg is regarded as a multiplication operatorinwe have, by 2.13, the bound

[6(X)lq < [1Xlq-
This together with then-independent bound

16m (X)lg < 1X g (el
implies that
lim ¢, (X) = Ty(g)X uniformly for all X € &,(H).

Now assume we have a non-trivial ideBlin ®,(H) and consider a positive non-
vanishingX € I. Then¢,,(X) € I for all m € N and thusT,(¢)X € I. lter-
ating showsI',(¢™)X € I for all n € N and because of the uniform convergence
lim, . Ty(¢™)X = E[X]1, we obtain EX]1 € I. The faithfulness of E implies then
I= d,(H). O

Remark 2.15.0ne might be tempted to conjecture that, for fig¢dthe von Neumann
algebrasT',(H) or the C*-algebras®,(H) are for allg € (—1,1) isomorphic. At

the moment, no results in this direction are known. One should note that there exist
partial answers [JSW1, JSW2, JW, DN] to the analogous question fartredgebra
generated byi(f), a*(f) (not the sum) showing that at least for small valueg ahd

n = dimHc < oo these algebras are isomorphic to the 0)-algebra, which is

an extension of the Cuntz algebty, by compact operators [Cun, Eva]. However, the
methods used there do not extend to the casié ¢f{) or (7).

3. Non-commutative Aspects ofj-Gaussian Processes

Before we define the notion ofaGaussian process, we wantto present our general frame
on non-commutative processes. Bywe will denote the range of our time parameter
typically 7' will be some interval irR.

Definition 3.1. 1) Let.4 be a finite von Neumann algebra anpd: A — C a faithful
normal trace onA. Then we call the paifA, ¢) a (tracial) probability space.

2) Arandom variable on (A4, ) is a self-adjoint operatoX € A.

3) A stochastic procesn (A, ¢) is a family (X;);cr of random variablesX; € A
teD).

4) Thedistribution of a random variableX on (A4, ) is the probability measure on
the spectrum oK determined by

(XM = /:c”dl/(x) for all n € Np.
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We should point out that there are also a lot of quantum probabilistic investigations
in the context of more general, non-tracial situations, see e.g. [AFL, Kum1]. Of course,
life becomes much harder there.

We will only consider centered Gaussian processes, thiSaussian process will
be totally determined by its covariance. Since we would like to have realizations of our
processes ogseparableHilbert spaces, our admissible covariances are not just positive
definite functions, but they should admit a separable representation.

Definition 3.2. A functionc : T' x T' — R is called acovariance function if there
exists a separable real Hilbert spagéand vectorsf; € H for all t € T such that

c(s,t) = (fs, fr) (s,t € H).

Definition 3.3. Letc : T'x T — R be a covariance function corresponding to a real
Hilbert spaceH and vectorsf; € H (t € T)). Then we put for alt € T,

Xy = w(f) € Te(H)

and call the procesgX;):c on (I'y(H), E) the g-Gaussian process with covariance
C.

Remark 3.4.1) Of course, theg-Gaussian process depends, up to isomorphism, only on
¢ and not on the special choice &fand (f;):c -
2) We can characterize ogrGaussian process also by theelations in the form

Xi=ar+a; and E[1=(Q,- @),
where for alls, t € T,
asa; —qajas = c(s,t)- 1 and a; Q2 =0.
In this form ourg-Gaussian processes were introduced by Frisch and Bourret [FB].

We can now defing-analogues of all classical Gaussian processes, just by choosing
the appropriate covariance. In the following we consider three prominent examples.

Definition 3.5. 1) Theg-Gaussian processX¢”");c(0 o) with covariance
c(s, t) = min(s, t) (0< s,t <)

is calledg-Brownian maotion.
2) Theg-Gaussian proces@(fB B )tefo,11 With covariance

c(s,t) =s(1—1) (0<s<t<)

is calledg-Brownian bridge.
3) Theg-Gaussian processX{°Y),cr with covariance

s, t) = e 1t (s,t € R)
is calledg-Ornstein-Uhlenbeck process

Remark 3.6.1) That the three examples forare indeed covariance functions is clear
by the existence of the respective classical processes, for a direct proof see, e.g., [Sim2].
2) The Ornstein-Uhlenbeck process is often also called an oscillator process, see [Sim2)].
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Let (A4, ¢) be a tracial probability space and IBtbe a von Neumann subalgebra
of A. Then we have (see, e.g., [Tak]) a unique conditional expectation (“partial trace”)
from A onto B which preserves the trace— which we will denote in a probabilistic
language by - |B]. Thus in the frame of tracial probability spaces we always have the
following canonical generalization of the classical Markov property (which says that the
future depends on the past only through the present).

Definition 3.7. Let (A, ¢) be a probability space an@X;):cr a stochastic process on
(A, ). Denote by
VN(X, |u<t)C A,
Arg = VN(X) C A,
e = UN(X, | u>t) C A
We say that{X;):cr is a Markov processif we have for alls, ¢ € T with s < ¢ the
property

o[ X|Aq] € Ag forall X € Apy.

Note that another canonical definition for the Markov property would be the require-
ment
W[ X|Aq] € Ay forall X € Ay,.

In the classical case this latter condition is equivalent to the one we use in Definition 3.7,
but in the non-commutative case there is in general a difference. We have chosen the
weaker condition, since this is sufficient to ensure the existence of transition operators
(see Definition 4.3 and Theorem 4.4).

Now, the conditional expectations E[A,)] in the case of-Gaussian processes are
quite easy to handle because they are nothing but the second quantization of projec-
tions in the underlying Hilbert space. Namely, consider@aussian processX():cr
corresponding to the real Hilbert spakieand vectorsf; (¢t € T). Let us denote by

Hy = spanf, | u <t) CH,
H[t] = th CH,
Hp = spanf, | u >t) CH,

the respective Hilbert space analoguesigf Ay, Ap:. Then we have
Ag = Ty(Hy), Ay = To(Hp),  Ap = To(Hp),
and E[- | A4] = T'4(Py) is the second quantization of the orthogonal projection
Pt] TH— Ht]

Thus we can translate the Markov property jeéGaussian processes into the following
Hilbert space level statement.

Proposition 3.8. Let (X;);c1 be ag-Gaussian process as above. It has the Markov
property if and only if

PyaHig C Hig forall s,t € T with s < t.

Note that the stronger form of Markovianity{.A;,, Aq] C Ap,, corresponds for the
g-Gaussian processes on the linear leveP§d{;; C H[. But this is clearly equivalent
to the condition of Proposition 3.8. Thus, fgiGaussian processes the apriori possibly
different definitions for “Markovianity” are all equivalent.

As Proposition 3.8. shows, Markovianity is a property of the underlying Hilbert
space and does not depend @nThus we get as in the classical case the following
characterization in terms of the covariance.
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Proposition 3.9. A ¢g-Gaussian process with covarianeés Markovian if and only if
we have for all tripless, u, t € T with s < u < ¢ that

c(t, s)e(u, u) = c(t, u)e(u, s).
Proof. See the proof of Theorem 3.9 in [Sim2]. O

Corollary 3.10. The g-Brownian motion(XfBAf)te[o,oo), the ¢-Brownian bridge
(X755, 10,17, and theg-Ornstein-Uhlenbeck proce$x °V),cx are all Markovian.

Analogously, we have all statements of the classical Gaussian processes which
depend only on Hilbert space properties. Let us just state the characterization of the
Ornstein-Uhlenbeck process as the only stationary Gaussian Markov process with con-
tinuous covariance and the characterization of martingales among the Gaussian pro-
cesses.

Proposition 3.11. Let(X}),c7 be ag-Gaussian process which is stationary, Markovian
and whose covarianc&s, t) = ¢/(t — s) is continuous. TheX,; = antOU for suitable
a,3>0.

Proof. See the proof of the analogous statement for classical Gaussian processes, Corol-
lary 4.10 in [Sim2]. |

Definition 3.12. Let(X;):c1 be a stochastic process on a probability spédey) and
let the notations be as in Definition 3.7. Then we say (&), is a martingale if

o[ X[ Ag]l = X, forall s <t.

Proposition 3.13. A g-Gaussian process is a martingale if and only?i f; = £, for
all s <t —which is the case if and onlyd{s, t) = ¢(s, s) for all s < ¢.

Proof. We have
w(fs) =X, = E[Xt‘-As]] = Fq(Ps])w(ft) = (-‘J(Ps]ft)v

Implylng ]Ds]ft = fs O

4. Classical Aspects ofj-Gaussian Processes

In this section we want to address the question whether our non-commutative stochastic
processes can also be interpreted classically.

Definition 4.1. Let (X.):er be a stochastic process on some non-commutative proba-
bility space(A, ¢). We call a classical real-valued proce§k,).cr on some classical
probability spacg 2, A, P) aclassical versionof (X;).cr if all time-ordered moments

of (X})ter and (X,):cr coincide, i.e. if we have foralk € N, all ¢ ...,¢, € T with

t; <...<t,,and all bounded Borel functiors, . . . , h,, onR the equality

AR (Xe) . (X)) = /Q (E (@) n(Kr, (@) AP).
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Remark 4.2.Most calculations in a non-commutative context involve only time-ordered
moments, see, e.g., the calculation of the Green function af-tbmstein-Uhlenbeck
process in [NSp]. Thus, results of such calculations can also be interpreted as results for
the classical version — if such a version exists.

It is clear that there is at most one classical version for a given non-commutative
process X;).cr. The problem consists in showing the existence. If we denolg;tifre
characteristic function of a measurable sulisef R, then we can construct the classical
version (X;):er of (Xt):er Via Kolmogorov's existence theorem from the collection of
all g, ...+, (n e N, t1 <...<t,)—whichare forBy, ..., B,, C R defined by

fity. ., (BLX ...x By) = P(Xy, € By,..., X;, € By)
= Sa[lBl(th) .. 1Bn (th)]

—ifand onlyifall, .., are probability measures. Whereas this is of course the case
for 11, and, in our tracial frame because of

/"t1,tz(Bl X BZ) = 90[131(Xt1)1B2(Xt2)] = Sp[lBl(th)lBZ(th)lBl(th)])

also for u, +,, there is no apriori reason why it should be true for biggeAnd in
general it is not. It is essentially the content of Bell's inequality that there are examples
of non-commutative processes which possess no classical version — for a discussion of
these subjects see, e.g., [KM].

But for special classes of non-commutative processes classical versions might exist.
One prominent example of such a class are the Markov processes.

Definition 4.3. Let (X;):c7 be a Markov process on a probability spaCé, ¢). Let,
fort € T, spect(X;) and v, be the spectrum and the distribution, respectively, of the
self-adjoint operatorX,;. Denote by

L>(X;) = VN(X;) = L™ (spect((;), ;).
The operators

’Cs,t . LOO(Xt) — LOO(XS) (S S t),

determined by
Plh(Xe)[Aq] = e[A(Xe) | Apg] = (Ks,th)(X5)

are calledtransition operators of the proceséX;),c7, and, looked upon from the other
side, the processX;):cr is called adilation of the transition operatorl = (ICs ¢)s<¢.

The following theorem is by now some kind of folklore in quantum probability, see,
e.g. [AFL, Kum2, BP, Bial]. We just indicate the proof for sake of completeness.

Theorem 4.4. If (X;),c7 is a Markov process on some probability spggeg ¢), then
there exists a classical versidX ;). of (X;):cr, Which is a classical Markov process.

Proof. One can express the time-ordered moments of a Markov process in terms of the
transition operators via

o[h1(X4,) .. ha(Xe,)]

olhi(Xe,) .. hn(Xe, ) A, 4]

So[hl(th) cee hnfl(Xt,,L71)<p[hn(th) At”fﬂ]]

= plha(Xe,) .. hn—a(Xe, (K, ot ho) (X2, )]
QD[hl(th) cee hn72(th_2)(hn71 . ICtn_l,tn hn)(th_l)]

Pl(h - Ky iy Kyl - D],
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from which it follows — becauséC, ; preserves positivity — that the corresponding
...+, are probability measures. That the classical version is also a classical Markov
process follows by the same formula. O

Corollary 4.5. There exist classical versions of glliGaussian Markov processes. In
particular, we have classical versions of theBrownian motion, of the-Brownian
bridge, and of the-Ornstein-Uhlenbeck process.

Our aim now is to describe these classical versions more explicitly by calculating
their transition probabilities in terms of the orthogonalizing measyr@nd the kernel
{9 (x, y) of Theorem 1.10.

Theorem 4.6. Let(X,);cr be ag-Gaussian Markov process with covariancand put

A =/t t) and Ast 1= c(z%i)(tt)

1) We have

L (Xy) = LOO([—Z)\t/\/l - q, 2)\t/\/1 —ql, vg(dz /M)
2) If A; ; = £1, then the transition operatdﬁg‘fi is given by
(KOR)(@) = h(EaAe/As).

If |\s.¢] < 1, then the transition operatdC(s‘f% is given by
(K@) = [ e ),

where the transition probabilities!?] are Feller kernels which have the explicit form

KO, dy) = @/ N, y/M)ve(dy/ M),

In particular, forg = 0and|\; ;| < 1, we have the following transition probabilities for
the free Gaussian Markov processes:

1 (1— X2 )V4aN2 — y2dy

2mA7 (1=A2 )2 = s (14X )@/ A/ Ae) + A2, ((22/A2) + (2 /AD)

KOz, dy) =

Recall that a kernek(z, dy) is called Feller, if the map — k(x, dy) is weakly
continuous and(x, -) — 0 weakly asc — +oo— or equivalently that the corresponding
operatorC sendCp(R) to Cp(R), see, e.g., [DM].

Proof. 1) This was shown in [BSp2]; noticing the connection betwe&alations and
g-Hermite polynomials the assertion reduces essentially to part 1) of Theorem 1.10.
2) By Prop. 2.9, we know

W) = | FIIMHP @A/ D

Let our g-Gaussian processX¢).cr now be of the formX; = w(f;). Markovianity
implies
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_ {fes fs) _ clt, 9)

P2 f)  cls,s)

Pgfie=pnfs, where

Because of
E[W(fP™)Ag] = W((Pg fo)®") = u™ W(fE™)
we obtain with

o A dts)
A= | fill = Vet t)  and Ast S T D

the formula
E[HO(Xe/ A Ag] = 5B A4]
= L W(fE)
= (3 HO (X, /\)
= AL HP(X /),
implying

KOHD(/0)) = A2 HD(/A).

Let us now consider the canonical extension of our transition operators frofifthe
spaces to th&?2-spaces, i.e.

K9 LX(Xy) — L3(X,).

If we use the fact that the rescalgeHermite polynomials KD (-/\;)/vI[n]") nen,
constitute an orthonormal basis 6f(X;), we get directly the assertion in the case
Asi = £1. (For\,; = —1 one also has to note thak? and H\?,, are even and odd
polynomials, respectively.)

In the casé)\, ;| < 1, our formula implies that'!?} is a Hilbert-Schmidt operator,
thus it has a concrete representation by a kelcﬁ{e,l which is given by

oo A?t
K@, dy) = Y00 it HO@/ N HD (y/ \e)vg(dy/ M)
= P (@ As, Y/ A)ve(dy [ Ae).

That our kernels are Feller follows from the fact that, by Theorem 2.13, our second
guantization (i.e. our transition operators) restrict to €felevel (i.e. to continuous
functions).

The formula forkg?l)t follows from the concrete form gf®) of Theorem 1.10 and the fact
that

1
vo(dy) = Z\/‘l — y2dy for ye[-22]. O

The main formula of our proof, namely the action of the conditional expectation
on the g-Hermite polynomials, says that we have some quite canonical martingales
associated tg-Gaussian Markov processes — provided the fakjgrdecomposes into
a quotient\, , = A(s)/A(t). Since this can be assured by a corresponding factorization
property of the covariance function — which is not very restrictive for Gaussian Markov
processes, see Theorem 4.9 of [Sim2] — we get the following corollary.
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Corollary 4.7. Let(X;):cr be ag-Gaussian process whose covariance factorizes for
suitable functiong and f as

c(s,t) = g(s)f(t) fors <t.
Then, for alln € Np, the processe§\V,,(t)):cr With

n/2

M, (1) = (9()/ F@©)" “HD (X, /\)

are martingales.

Note that the assumption on the factorization of the covariance is in particular ful-
filled for the ¢g-Brownian motion, for the;-Ornstein-Uhlenbeck process, and for the
g-Brownian bridge.

Proof. Our assumption on the covariance implies

NGO
> g@)/ f(t)’

hence our formula for the action of the conditional expectation orgtHermite poly-
nomials (in the proof of Theorem 4.6) can be written as

n/2

(9()/ £(8)"PEIHD (X, /M) Aq] = (9(5)/ £(5))" 2 HO(X,/As),

which is exactly our assertion. [

Remark 4.8.Consider thg-Brownian motion (XfBM)te[o,oo). Thenthe corollary states
that

M) = 2 HD(XEPM V)
is a martingale. In terms of quantum stochastic integrals these martingales would have
the form
MO(t) = / : / dxPM L ax P,

0<ty,...,tn <t
t; 7t (i74)

Since at the moment, for genergino rigorous theory of-stochastic integration exists,

this has to be taken as a purely formal statementgFo10, however, such a rigorous
theory was developed in [KSp], and the above representation by stochastic integrals was
established by Biane [Bia2]. In this case, he could put this representation into the form
of the stochastic differential equation

n—1 .t
Mg))(t) = Z/ MliO)(s)ngBMMr(Lolk—l(s)7
k=00

which should be compared with the classical formula

t
M) =n / M (s)dX 3PN
0
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Example 4.9 (Free Gaussian processaake will now specialize the formula f(hﬁ?z to

the case of the free Brownian motion, the free Ornstein-Uhlenbeck process and the free
Brownian bridge. The transition probabilities for the two former cases were also derived
by Biane [Bial] in the context of processes with free increments.

1) Free Brownian motion: We havés, t) = min(s, t), thus

)\t = \/E and As,t = S/t
This yields

(t—s) At — y2dy

ko o, dy) =
(. dy) (t —8)2 — (t+s)zy + 22t +y2s 2

for
re[-2vs,2/s] and  ye[-2vVt 2V
2) Free Ornstein-Uhlenbeck process: We haet) = e~1*—#!, thus
A =1 and )\s,t = e_lt_sl.
Since this process is stationary, it suffices to consider the transition probabilities for

s=0:
(¢ - 1) V4 — yidy

4sintft — 2zycosht +a2+y2 27

ko+(x, dy) = for z,y €[-2,2].

Let us also calculate the generaférof this process — which is characterized by
’CS t = 6_(t_s)N.

It has the property
NHO =nHO®  (n € Ny),

and differentiating the above kernel shows that it should be given formally by a kernel
—2/(y — x)? with respect tay. Making this more rigorous [vWa] yields thaf has on
functions which are differentiable the form

(NR)(z) = o f'(z) — 2 / f@) — f@) — f'(@)(y — )

o — 1) vo(dy).

3) Free Brownian bridge: We havgs, t) = s(1 — t) for s < ¢, thus

_ )
A=/t —1) and Asit = =9

This yields
ks,t(xa dy) =
_1-s (t—s) V4t(1—t)—y2dy
T 1t (t—s)2—(s+t—2st)zy+t(1—t)x2+s(1—s)y? 2 ’
for

re[-2ys(1—-5),2y/s(1—s)] and ye[-2y/t1—1),2/t1—1).
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Example 4.10 (Fermionic Gaussian processég)r illustration, we also want to con-
sider the fermionic{ = —1) analogue of Gaussian processes. Although this case has
not been included in our frame everything works similarly, the only difference is that in
the Fock space we get a kernel of our scalar product consisting of anti-symmetric ten-
sors. This is responsible for the fact that the correspondirig-Hermite polynomials
collapse just to

A Y@) =1 and  H{ V(@) =2

The corresponding measute ; is not absolutely continuous with respect to the
Lebesgue measure anymore, but collapses to

1
voa(d) = 5(-1(d2) + Sa(da)).
This yields
P, y) = HS (@) HS D (y) +rHS V(@) HS DY) = 1+rey,

giving as transition probabilities

K2 ) = 50+ - SO ) + 6, (),

1) Fermionic Brownian motionX; can only assume the values/+ and—+/t and the
transition probabilities are given by the table

ks,t \/E *\/z
Vs 3aeVa) 2a- VA,
Y (R W Y

This case coincides with the corresponding —1 case of the Azma martingale, see
[Parl].

2) Fermionic Ornstein-Uhlenbeck process: This stationary process lives on the two
values +1 and-1 with the following transition probabilities

ko 1 -1
1 il+et9) L@-et-9).
—1 f1—et9) L(L+e(t9)

This classical two state Markov realization of the corresponding fermionic relations has
been known for a long time, see [FB].

3) Fermionic Brownian bridgeX; can only assume the values/#(1—t) and
—+/t(1 — t) and the transition probabilities are given by the table

o NG o) B )
A=H s+ D fa- 55D
—VST=s) a5 das /585D
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Example 4.11 (HypercontractivityConsider the;-Ornstein-Uhlenbeck process with
stationary transition operatdféq) = Kfjgﬂ. Note that thig;-Ornstein-Uhlenbeck semi-
group is nothing but the second quantization of the simplest contraction, namely with
the one-dimensional real Hilbert spake= R and the corresponding identity operator

1:R — R we have
T (R) ¥ L®([—2/v/1—q,2/v/1—ql,vy(dz)) and  Ty(e 1) = K9,

We have seen that théi‘” are, for allt > 0, contractions ori? and onL> (and thus,

by duality and interpolation, on all?). In the classical casg= 1 (and also fo; = —1)

it is known [Sim1, Nell, Nel2, Gro, CL] that much more is true, namely the Ornstein-
Uhlenbeck semigroup is also hypercontractive, i.e. it is bounded as a map_from

L* for sufficiently larget. Having the concrete form of the kernel

KD (2, dy) = 2, (2, y)vy(dy)

of IC,E‘?), it is easy to check that we also have hypercontractivity fordll< ¢ < 1.

Even more, we can show thﬁlﬁq) is bounded from.? to L*> for t > 0, i.e. we have
what is called “ultracontractivity” [Dav] — which is, of course, not given for +1.
This ultracontractivity follows from the estimate

IKPh||o < alt,q)?|h]2  where  aft,q):= sup sup p2,(z,y),

z€e[—-2,2] ye[—-2,2]

and from the explicit form 0p(? from Theorem 1.10, which ensures thét, q) is finite
fort > 0 and—1 < ¢ < 1 (comp. also [Dav], Lemma 2.1.2). One may also note that
for smallt the leading term ofu(t, ¢)~/? is of ordert—%/2.

4.12 Open Problemd) The situation concerning classical versions of hon-Markovian
g-Gaussian processes is not clear at the moment.

2) Consider a symmetric measyreon R with compact support. Then there exist a
sequence of polynomials(),cn, such thatP, is of degreen and such that these
polynomials are orthogonal with respeciiolet us define a semigroup. on L?(y) by

UtPn = efntpn.

If theseU, are positivity preserving then they constitute the transition operators of a
stationary Markov process, whose stationary distribution is givem Iur g-Ornstein-
Uhlenbeck process is an example of this general construction for the megsiitee
existence of the functar, “explains” the fact that thg-Ornstein-Uhlenbeck semigroup

is positivity preserving from a more general (non-commutative) point of view — note that
although Theorem 2.11 is for dit = dimH’ = 1 a purely commutative statement, its
proof is even in this case definitely non-commutative. Of course, not for all megsures
the semigrouf/; is positivity preserving. But one might wonder whether it is possible

to find for each measure with this property —or at least for some special class of such
measures — some analogous kind of functor. See also [BSp4] for related investigations.
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