The Conditional Central Limit Question For Superlinear Processes

Michael Woodroofe Coauthors: Dalibor Volny and Ou Zhao

Let \mathbb{Z} denote the integers and J a countable set; let F_j , $j \in J$, be distribution functions with means 0 and unit variances; let $\xi_{i,j}$, $i \in \mathbb{Z}$, $j \in J$, be independent random variables defined on a probability space (Ω, \mathcal{A}, P) ; and suppose $\xi_{i,j} \sim F_j$ are identically distributed for each j. Next let $c_{i,j}$ be a square summable array and consider processes of the form

$$X_{k} = \sum_{j \in J} \sum_{i=0}^{\infty} c_{i,j} \xi_{k-i,j} = \sum_{j \in J} \sum_{i \le k} c_{k-i,j} \xi_{i,j}.$$
 (1)

Here X_k converges w.p.1 and in $L^2(P)$ by the Three Series Theorem and defines a strictly stationary process. We will call X_k a superlinear process, as it is the sum (superposition) of linear processes. Let \mathcal{F}_0 be the sigma algebra generated by $\xi_{i,j}$, $i \leq 0, j \in J, S_n =$ $X_1 + \cdots + X_n, \ \sigma_n^2 = E(S_n^2)$, suppose that $\sigma_n \to \infty$, and let F_n be a regular conditional distribution function for S_n/σ_n given \mathcal{F}_0 ,

$$F_n(\omega; z) = P[\frac{S_n}{\sigma_n} \le z | \mathcal{F}_0](\omega).$$

Necessary and sufficient conditions are given for the convergence in probability of F_n to the standard normal distribution Φ . The conditions resemble the Lindeberg Feller Conditions and involve an interesting interplay between the coefficients $c_{i,j}$ and the distribution functions F_j .