The Conditional Central Limit Theorem For a Superlinear Process

> Michael Woodroofe The University of Michigan

Collaborators: Dalibor Volny and Ou Zhao

Outline

- Superlinear Processes
- The Theorem and Examples
- Some Background
- About the Proof

Super-linear Processes

Notation • J is a countable set

- $F_j, j \in J$ are DFs with mean 0 and unit variance
- $\xi_{i,j} \sim F_j, i \in \mathbb{Z}, j \in J$, are independent.
- $c_{i,j}$, are square summable.

Then

$$X_k = \sum_{j \in J} \sum_{i \in \mathbb{Z}} c_{i,j} \xi_{k-i,j}$$

is a **super-linear process**. Let

$$S_n = X_1 + \dots + X_n.$$

Herndorff's Theorem

(1984, Ann. Stat.)

There is a strongly mixing super-linear process for which,

$$E(X_i X_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

and

$$\liminf_{n \to \infty} P\left[S_n = 0\right] \ge \frac{1}{2}.$$

In the Proof:

- $\xi_{i,j}$ have large values for large j
- $c_{i,j}$ have finite range and $\sum_{i \in \mathbb{Z}} c_{i,j} = 0$ for each j

Causal Processes

If $c_{i,j} = 0$ for i < 0, then

$$X_k = \sum_{j \in J} \sum_{i=0}^{\infty} c_{i,j} \xi_{k-i,j},$$

and the process is said to **causal**. Let

$$b_{n,j} = c_{0,j} + \dots + c_{n,j},$$

$$\bar{b}_{n,j} = (b_{n,1} + \dots + b_{n,n})/n,$$

$$\mathbf{b}_n = (b_{n,j} : J \in J) \in \ell^2(J) \quad \text{and} \quad \bar{\mathbf{b}}_n = (\bar{b}_{n,j} : J \in J).$$

Then

$$S_n = \sum_{j \in J} \sum_{i \le 0} [b_{n-i,j} - b_{-i,j}] \xi_{i,j} + \sum_{j \in J} \sum_{i=1}^n b_{n-i,j} \xi_{i,j}.$$

Let

$$\mathcal{F}_k = \sigma\{\xi_{i,j} : i \le k, \ j \in J\}.$$

Conditional Normality

Suppose that

$$\sigma_n^2 := E(S_n^2) \to \infty$$

and let

$$\Phi_n(\omega; z) = P\left[\frac{S_n}{\sigma_n} \le z | \mathcal{F}_0\right](\omega).$$

Then the **conditional central limit theorem** holds if $\Phi_n \Rightarrow^p \Phi$, the standard normal DF.

Note: $\cdots X_{-1}, X_0, X_1, \cdots$ can be any adapted stationary sequence with mean 0 and finite variance.

Linear Processes

From WW (2004, AP)

Known Result: For a causal linear process $(J = \{0\})$, the CCLThm holds iff

$$\sum_{i=0}^{\infty} [b_{i+n} - b_i]^2 = o[\sum_{i=1}^{n} b_i^2],$$

where $b_i = b_{i,0}$, etc.

Note: Condition on the coefficients

The Theorem

Theorem. For a causal super-linear process, the conditional central theorem holds iff

$$\sum_{j \in J} \sum_{i=0}^{\infty} [b_{n+i,j} - b_{i,j}]^2 = o(n \|\bar{\mathbf{b}}_n\|^2), \qquad (s)$$

and

$$L_{n}^{*}(\epsilon) = \frac{1}{\|\bar{\mathbf{b}}_{n}\|^{2}} \sum_{j \in J} \bar{b}_{n,j}^{2} \int_{|\bar{b}_{n,j}z| > \epsilon} \|\bar{\mathbf{b}}_{n}\| \sqrt{n}} z^{2} F_{j}\{dz\} \to 0 \qquad (\text{lf})$$

for each $\epsilon > 0$.

Notes 1. Recall $b_{n,j} = c_{0,j} + \cdots + c_{n,j}$, etc. \cdots .

2. Interplay in (lf).

Example

If F_j assigns mass 2^{-j-1} to $\pm 2^j$ and $1-2^{-j}$ to 0 for $j \ge 1$, then the CCLThm holds iff

$$\lim_{n \to \infty} \sum_{2^j |\bar{b}_{n,j}| > \epsilon \|\bar{\mathbf{b}}_n\| \sqrt{n}} \frac{b_{n,j}^2}{\|\bar{\mathbf{b}}_n\|^2} = 0$$

for all $\epsilon > 0$.

Necessary Conditions From WW (2004, AP)

Notation: • Let $\cdots X_{-1}, X_0, X_1, \cdots$ be any adapted stationary sequence with mean 0 and finite variance; and let $\|\cdot\|$ be the norm in $L^2(P)$.

• Recall that $\sigma_n^2 = ||S_n||^2 \to \infty$.

Proposition. If the conditional central limit theorem holds, then

$$||E(S_n|\mathcal{F}_0)||^2 = o(\sigma_n^2);$$
 (*)

and if (*) holds, then

$$\sigma_n^2 = n\ell(n),$$

where ℓ is slowly varying.

Martingale Approximations From WW (2004, AP)

For each $n \ge 1$, let $M_{n,k}$, $k = 0, 1, 2, \cdots$ be a martingale adapted to \mathcal{F}_k . Then M_{nk} is a **martingale approximation** iff

$$\max_{k \le n} \|S_k - M_{n,k}\| = o(\sigma_n^2).$$

Write

$$D_{n,k} = M_{n,k} - M_{n,k-1}.$$

Martingale Approximations Continued

Theorem

$$||E(S_n|\mathcal{F}_0)||^2 = o(\sigma_n^2)$$
 (*)

iff there is a martingale approximation M_{nk} with stationary increments in which case $\sigma_n^2 \sim nE(D_{n,1}^2)$ and $\ell(n) \sim E(D_{n,1}^2)$.

From the Proof. In the proof,

$$D_{n,1} = \frac{1}{n} \sum_{k=1}^{n} \left[E(S_k | \mathcal{F}_1) - E(S_k | \mathcal{F}_0) \right].$$

Necessary and Sufficient Conditions From WW (2004, AP)

Theorem The CCLThm holds iff \exists a martingale approximation for which

$$\frac{1}{\sigma_n^2} \sum_{k=1}^n E(D_{nk}^2 | \mathcal{F}_{k-1}) \to^p 1 \tag{S}$$

$$L_n(\epsilon) := \frac{1}{\sigma_n^2} \sum_{k=1}^n E(D_{nk}^2 \mathbf{1}_{\{|D_{nk}| \ge \epsilon \sigma_n\}} | \mathcal{F}_{k-1}) \to^p 0 \qquad (LF)$$

for all $\epsilon > 0$.

The Theorem

Restated

Theorem. For a causal super-linear process, the conditional central theorem holds iff

$$\sum_{j \in J} \sum_{i=0}^{\infty} [b_{n+i,j} - b_{i,j}]^2 = o(n \|\bar{\mathbf{b}}_n\|^2), \qquad (s)$$

and

$$L_{n}^{*}(\epsilon) = \frac{1}{\|\bar{\mathbf{b}}_{n}\|^{2}} \sum_{j \in J} \bar{b}_{n,j}^{2} \int_{|\bar{b}_{n,j}z| > \epsilon} \|\bar{\mathbf{b}}_{n}\|_{\sqrt{n}} z^{2} F_{j}\{dz\} \to 0 \qquad (lf)$$

for each $\epsilon > 0$.

From the Proof

Some Algebra

$$S_{n} = \sum_{j \in J} \sum_{i \leq 0} [b_{n-i,j} - b_{-i,j}] \xi_{i,j} + \sum_{j \in J} \sum_{i=1}^{n} b_{n-i,j} \xi_{i,j},$$

$$\sigma_{n}^{2} = \sum_{j \in J} \left[\sum_{i=0}^{\infty} [b_{n+i,j} - b_{i,j}]^{2} + \sum_{j \in J} \sum_{i=1}^{n} b_{n,n-i}^{2} \right],$$

$$E(S_{n} | \mathcal{F}_{0}) = \sum_{j \in J} \sum_{i \leq 0} [b_{n-i,j} - b_{-i,j}] \xi_{i,j},$$

$$\|E(S_{n} | \mathcal{F}_{0})\|^{2} = \sum_{j \in J} \sum_{i=0}^{\infty} [b_{n+i,j} - b_{i,j}]^{2},$$

So, (*) iff (s)

More From the Proof

More Algebra: From

$$E(S_n | \mathcal{F}_0) = \sum_{j \in J} \sum_{i \le 0} [b_{n-i,j} - b_{-i,j}] \xi_{i,j}$$

and

$$E(S_n | \mathcal{F}_1) = \sum_{j \in J} \sum_{i \le 1} [b_{n-i,j} - b_{-i,j}] \xi_{i,j},$$

$$D_{n,1} = \sum_{j \in J} \overline{b}_{n,j} \xi_{1,j} \quad \text{and} \quad D_{n,k} = \sum_{j \in J} \overline{b}_{n,j} \xi_{k,j}.$$

The Stability Conditions

From
$$D_{n,k} = \sum_{j \in J} \overline{b}_{n,j} \xi_{k,j}$$
,

$$\sum_{k=1}^{n} E(D_{nk}^2 | \mathcal{F}_{k-1}) = \sum_{k=1}^{n} E(D_{nk}^2) = n \|\bar{\mathbf{b}}_n\|^2.$$

So,

$$\sum_{j \in J} \sum_{i=0}^{\infty} [b_{n+i,j} - b_{i,j}]^2 = o(\|\bar{\mathbf{b}}_n\|^2), \qquad (s)$$

iff

 $\sigma_n^2 \sim n \|\bar{\mathbf{b}}_n\|^2$

iff

$$\frac{1}{\sigma_n^2} \sum_{k=1}^n E(D_{nk}^2) \to^{\mathbf{p}} 1 \tag{S}$$

The Lindeberg Feller Conditions

$$L_{n}^{*}(\epsilon) = \frac{1}{\|\bar{\mathbf{b}}_{n}\|^{2}} \sum_{j \in J} \bar{b}_{n,j}^{2} \int_{|\bar{b}_{n,j}z| > \epsilon} \|\bar{\mathbf{b}}_{n}\| \sqrt{n}} z^{2} F_{j}\{dz\} \to 0 \qquad (lf)$$

and

$$L_n(\epsilon) := \frac{1}{\sigma_n^2} \sum_{k=1}^n E(D_{nk}^2 \mathbf{1}_{\{|D_{nk}| \ge \epsilon \sigma_n\}} | \mathcal{F}_{k-1}) \to^p 0 \qquad (LF)$$

Notes 1. As above

$$L_n(\epsilon) := \frac{1}{\sigma_n^2} \sum_{k=1}^n E(D_{nk}^2 \mathbf{1}_{\{|D_{nk}| \ge \epsilon \sigma_n\}})$$

2. Need to related

$$E[D_{nk}^2 \mathbf{1}_{\{|D_{nk}| \ge c\}}]$$
 to $\sum_{j \in J} \int_{|x| > c} x^2 F_j\{dx\}.$

Some Inequalities

The Baum Katz Inequalities:

$$P[|D_{n,k}| > 3x] \le \left(\frac{\|\bar{\mathbf{b}}_n\|^2}{x^2}\right)^2 + \sum_{j \in J} P[\bar{b}_{n,j}\xi_{k,j}| > x].$$

Integration by Parts.

$$L_n(\epsilon) \le 162 \left(\frac{n \|\bar{\mathbf{b}}_n\|^4}{\epsilon^2 \sigma_n^4}\right) + \frac{18n \|\bar{\mathbf{b}}_n\|^2}{\sigma_n^2} L_n^*(\frac{1}{4}\epsilon).$$

More Inequities

Let $Z_j, j \in J$ be independent with mean 0 and square summable variances b_j^2 ,

$$Y = \sum_{j \in J} Z_j$$
 and $Y_{-j} = \sum_{k \neq j} Z_k$

Then

$$P[Y \ge \frac{1}{2}Z_j | Z_j] = P[Y_{-j} \ge -\frac{1}{2}Z_j | Z_j]$$
$$\ge \frac{Z_j^2}{Z_j^2 + \|\mathbf{b}\|^2}.$$

$$\int_{Z_j > c} Z_j^2 \le \left(1 + \frac{4 \|\mathbf{b}\|^2}{c^2} \right) \int_{c < Z_j \le 2Y} Z_j^2 dP$$
$$\le \left(1 + \frac{4 \|\mathbf{b}\|^2}{c^2} \right) \int_{Y > \frac{1}{2}c} 2Y Z_j dP$$

and

So,

$$\sum_{j \in J} \int_{Z_j > c} Z_j^2 \le 2 \left(1 + \frac{4 \|\mathbf{b}\|^2}{c^2} \right) \int_{Y > \frac{1}{2}c} Y^2 dP$$

Apply to

$$Z_j = \pm \overline{b}_{n,j} \xi_{k,j}$$
 and $Y = \pm D_{n,k}$.