
Homework 8
6 questions due when classes resume

Printed: March 30, 2020

Instructions. Solve the following (*) problems. You can talk to other people about how to solve the exercises,
but do not share written solutions. Be sure to state each exercise before solving it!

Notation: All random variables are defined on a probability space (Ω,F , P ). Xn
P−→ X denotes convergence

in probability, Xn
D−→ X denotes convergence in distribution.

Two prelim-like questions.

Problem 1 (*). Suppose {Xn} are independent with mean 0 and finite variances V ar(Xn) = n+1
n . Let Sn =∑n

k=1 akX1X2 . . . Xk. Adapt the proof of Kolmogorov’s maximal inequality to show that

P ( max
1≤k≤n

|Sk| ≥ t) ≤
∑n

k=1(k + 1)a2k
t2

Problem 2 (*). Problem 3 from Homework 7, corrected Suppose X1, X2, . . . , Xn, . . . are independent exponen-

tial1 random variables with parameters λn → λ > 0. Modify the proof of the law of large numbers (which one?)
to show that

1

n
(X1 + · · ·+Xn)→ 1/λ with probability one

You can use ”standard properties” of exponential random variables without proof. Hints: most proofs of SLLN
can be adapted to this setting. But some details may vary or need adjustment.

1Recall that Xn is exponential with parameter λn > 0 if P (Xn > t) = e−λnt for t ≥ 0
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Solution: The limit value in this problem was mis-stated so as written the conclusion is false for all λ
except λ = 1.
Here is the proof with correct limit and missing positivity assumption. If λn → λ > 0 then

(i) 1
λn

is a bounded sequence as it converges to 1/λ.

(ii) 1
n

∑n
j=1

1
λj
→ 1

λ as averages of convergent sequences converge.

Denote Sn = X1 + · · ·+Xn. Then | 1nSn −
1
λ | ≤

1
n(Sn −E(Sn))|+ | 1n

∑n
j=1

1
λj
− λ|, so we only need to

show that 1
n(Sn − E(Sn))→ 0 with probability one. This can be proved in many ways:

(a) Since V ar(Sn) =
∑n

k=1
1
λ2k
≤ Mn, we can use Borel-Cantelli to deduce that 1

k2
(S2
k − E(Sk2)) → 0

with probability one. So 1
k2
Sk2 → 1

λ , and then use the usual trick S(k−1)2 ≤ Sn ≤ S2
k . (Note that

to apply this technique we need to go back to the original un-centered sums!)
(b) One can compute a bound for the 4-th moments of the sum of independent centered random

variables Xk − E(Xk). In this approach, we get 1
n(Sn − E(Sn))→ 0 with probability one directly

from Borel-Cantelli Lemma.
(c) One can use Kronecker’s Lemma and Kolmogorov’s one-series theorem:

∞∑
n=1

1

n2
V ar(Xn) =

∞∑
n=1

1

n2λ2n
<∞

so the series
∑∞

n=1
1
n(Xn − E(Xn)) converges with probability one. This is probably the simplest

proof for this question!!!

Lets compute exponential moments using extra parameter t > 0 to be chosen later:

P (| 1
n

(Sn−E(Sn))| > ε) = P (exp t|Sn−E(Sn)| > etεn) ≤ e−tεnE exp t|Sn−E(Sn)| ≤ e−tεnE exp t|Sn−S̃n|

Now e|x| ≤ ex + e−x, so E exp t|Sn − E(Sn)| ≤ E exp t(Sn − E(Sn)) + E exp t(E(Sn)) − Sn) =∏n
k=1E exp t(Xk − E(Xk)) +

∏n
k=1E exp t(EXk −Xk). This reduces the calculation to a single expo-

nential random variable X with parameter λ:

Eet(X−E(X)) = λe−t/λ
∫ ∞
0

etxe−λxdx =
λe−t/λ

λ− t

and similarly Ee−t(X−E(X)) = λet/λ

λ+t . To show that
∑

n P (| 1n(Sn−E(Sn))| > ε) <∞, lets apply the root

test. Noting that for non-negative sequences limn→∞
n
√
an + bn = max{limn→∞ n

√
an, limn→∞

n
√
bn} we

have lim supn→∞ log n

√
P (| 1n(Sn − E(Sn))| > ε) ≤ −tε− t/λ+ ln λ

λ−t . Value t = ελ/(1 + ελ) minimizes

this expression, and we get

lim sup
n→∞

log
n

√
P (| 1

n
(Sn − E(Sn))| > ε) ≤ −ε+ ln(1 + ελ) < 0

So almost sure convergence follows from Borel-Cantelli Lemma.

Convergence of series — turn in only 2 starred problems (*) (You may replace them with non-
starred problems from the same group, if you really have to).

Problem 3 (*). Suppose {Xn} are independent identically distributed with mean 0 and finite variance. Show
that the series

∑∞
n=1

1
nXnXn+1 converges almost surely.
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Solution: Let Yn = 1
nXnXn+1. Then E(Yn) = 0 and E(Y 2

n ) = σ4/n2. Since Y1, Y3, . . . , Y2n+2, . . .
are independent and Y2, Y4, . . . , Y2n, . . . are independent, by Theorem ?? both series

∑∞
k=0 Y2k+1 and∑∞

k=1 Y2k converge with probability one. If the first series converges on Ω1 and the second converges
on Ω2, then the sum of both series converges on (Ω1 ∩ Ω2, and this is the set of probability one:
PΩ1 ∩ Ω2) = 1− P (Ω′1 ∪ Ω′2) ≥ 1− P (Ω′1)− P (Ω′2) = 1.
Let Sn =

∑n
k=1 Yk. The above argument shows that partial sums

∑n
k=0(Y2k+1 + Y2k+2) = S2n+2

converge to some (random) limit S. To prove convergence of the series, we need to show more: we
need to show that all partial sums Sn converge to the same limit. To complete the proof, we note
that Sn = S2m or Sn = S2m+1 = S2m + Y2m+1. To complete the proof, we prove that S2m+1 → S
by showing that Y2n+1 → 0 with probability one. The latter follows from convergence of the series.

Or from Borel-Cantelli: P (|Yn| > ε) ≤ σ4

ε2n2 so
∑

n P (|Yn| > ε) < ∞. (Hence for any ε > 0 we have
P (|Yn| > ε i.o.) = 0.)

Problem 4. Suppose Xn are independent identically distributed integrable with symmetric distribution: X1 has
the same law as −X1. Prove that the series

∑
n

1
nXn converges with probability one. Hint: Apply Kolmogorov’s

Three Series Theorem.'
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Solution: We verify condition (??) with c = 1.∑
n

P

(
|Xn|
n

> 1

)
=
∑
n

P (|X1| > n) ≤
∫ ∞
0

P (|X| > t)dt = E|X| <∞

By symmetry, E(XnI|Xn|≤n) = 0, so the second series converges. The verification of the last condition
is based on Fubini’s theorem as in the proof of Kolmogorov’s SLLN. This proof uses the fact that∑

n≥x
1
n2 ∼ C/x for x > 1, which is re-proved within the argument.∑

n

1

n2
E(X2

nI|Xn|≤n) = E(
∑
n

1

n2
X2
nI|Xn|≤n)

= E

X2
∑
n≥|X|

1

n2

 ≤ E(X2I|X|≤1) + E

(
X2I|X|>1

∫ |X|
1

du

u2

)

= E(X2I|X|≤1) + E

(
X2I|X|<1(

1

|X|
− 1)

)
≤ E(X2I|X|≤1) + E

(
X2 1

|X|

)
≤ 1 + E|X| <∞

Problem 5 (*). Suppose Z1, Z2, . . . are independent normal random variables with E(Zn) = 0 and E(Z2
n) = n.

For what θ > 0 the series
∑∞

n=1
Zn

(n2+n+1)θ
converges?

Problem 6. Suppose X1, X2, . . . are independent random variables such that

P (Xn = n) = 1/(2n), P (Xn = 0) = 1/2− 1/n, P (Xn = −1) = 1/(2n)

Use the three series theorem to determine for what values of θ the series
∑∞

n=1
Xn
nθ

converges.

Convergence in distribution — turn in only 2 starred problems (*) (You may replace them with
non-starred problems from the same group, if you really have to).

Problem 7. Suppose P (Xn = k) = 1/n for k = 1, 2, . . . , n. Show that 1
nXn

D−→ X.�
�

�

Solution: Indeed, Fn(x) = [nx + 1]/n → x. Note however that P ( 1

nXn ∈ V ) may fail to converge to
λ(V ) for some Borel sets V ∈ B.

Problem 8. Suppose {Xk} are independent exponential. Show that max1≤k≤nXk− lnn
D−→ Y and determine the

limiting distribution.
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Solution: Indeed, P (max1≤k≤nXk − lnn ≤ x) = P (max1≤k≤nXk ≤ x + lnn) = P (X1 ≤ x + lnn)n =

(1− e−x lnn)n = (1− e−x

n )n → e−e
−x

Problem 9 (*). Suppose {Xk} are independent uniform U(0, 1) random variables. Show that

n min
1≤k≤n

Xk
D−→ Y

and determine the law od Y .

Problem 10 (*). Suppose Xn has density fn(x) = 1 + cos(2πnx) on [0, 1]. Prove that Xn
D−→ X (and determine

the law of X).


