Homework 4

Printed: February 3, 2020

Instructions. You can talk to other people about how to solve the exercises, but do not share written solutions. Be sure to state each exercise before solving it!

Problem 1. Choose one of the following:

(i) Use Hölder's inequality to prove that

$$\int |f_1 f_2 f_3 f_4| \, d\mu \le \|f_1\|_4 \|f_2\|_4 \|f_3\|_4, \|f_4\|_4$$

(ii) Use Hölder's inequality to show that

$$\mathbb{E}(|XYZ|) \le ||X||_3 ||Y||_3 ||Z||_3$$

Recall convergence in probability:

Definition 1. $X_n \xrightarrow{P} X$ if for every $\varepsilon > 0$ we have $\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0$.

Problem 2 (L_p -convergence implies convergence in probability). Show that if $\lim_{n\to\infty} ||X_n||_p = 0$ for some $p \ge 1$, then $X_n \xrightarrow{P} 0$.

Hint: Markov!

Problem 3. Prove that if $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$ then $X_n + Y_n \xrightarrow{P} X + Y$.

Hint: Use triangle inequality $a + b| \le |a| + |b|$ and ... (a dose of ingenuity?)

Problem 4. If $X_n \to X$ in probability and $X_n \ge 1$. a.e for all n, then $X \ge 1$ a.e. (that is, $P(X \ge 1) = 1$). *Hint: Try proof by contradiction or contrapositive.*

Problem 5. If $X_n \xrightarrow{P} X$ in probability and $X_n \ge 1/100$ a.e. for all n, then $X \ge 0$ a.e. and $\sqrt{X_n} \xrightarrow{P} \sqrt{X}$ in probability.

Hint #1: Of course, we must have $X_n \ge 0$ to write $\sqrt{X_n}$. The assumption $X_n \ge 1/100$ is not really needed but may be helpful for some proofs.

Hint #2: How does one prove that \sqrt{x} is continuous from definition? How does one compute the derivative of \sqrt{x} from definition?

Problem 6. Suppose random variable X has cumulative distribution function

$$F(x) = \begin{cases} 0 & x < 0\\ x/4 & 0 \le x < 1\\ 1 & x \ge 1 \end{cases}$$

Compute $\mathbb{E}(X)$. *Hints:*

- One way to do it is to construct a random variable on $\Omega = (0, 1)$ and integrate the resulting function.
- Another way is to use change of variable formula $\int_{\mathbb{R}} x dF(x)$.

Problem 7. Let $X \ge 0$ with $0 < \mathbb{E}X^2 < \infty$. Use Hölder's inequality to the product $XI\{X > 0\}$ to prove that $P(X > 0) \ge \frac{(\mathbb{E}(X))^2}{\mathbb{E}(X^2)}$.

Problem 8. Prove that if $X_n \xrightarrow{P} X$ and $a \in \mathbb{R}$ then $aX_n \xrightarrow{P} aX$.

Problem 9 (metric for convergence in probability). Define $d(X,Y) = E \frac{|X-Y|}{1+|X-Y|}$.

- (i) Prove that $X_n \xrightarrow{P} X$ iff $d(X_n, X) \to 0$. (Note that this requires two proofs!)
- (ii) Prove that d satisfies triangle inequality $d(X, Z) \le d(X, Y) + d(Y, Z)$ so it is a "metric".