Homework 3

Printed: February 7, 2020

Instructions. You can talk to other people about how to solve the exercises, but do not share written solutions. Be sure to state each exercise before solving it!

Comments:

- If it helps, you may restrict your solution only to the case of probability measures, $\mu(\Omega) = 1$
- If you do not feel like proving the formula from Problem 2, you can instead show how to use it to solve Problem 4.

Problem 1 (Exercise 1.4.1). Show that if $f \ge 0$ and $\int f d\mu = 0$ then f = 0 a.e. *Hints:*

- (i) Use the inequalities from Section 1.4 of the book.
- (ii) Measure μ is continuous from above (Theorem 1.1.1) and

$$\{\omega: f(\omega) > 0\} = \bigcup_{\varepsilon \in \mathbb{Q}, \varepsilon > 0} \{\omega: f(\omega) \ge \varepsilon\} = \bigcup_{n \in \mathbb{N}} \{\omega: f(\omega) \ge \frac{1}{n}\}$$

Solution: We use the assumption $f \ge 0$ twice in the proof. First use: $f \mathbb{1}_{f \ge 1/n} \le f$ so

$$\mu(f \ge 1/n) = \int 1_{f \ge 1/n} d\mu \le \int nf 1_{f \ge 1/n} d\mu = n \int f 1_{f \ge 1/n} d\mu \le n \int f d\mu = 0$$

and hence $\mu(f > 0) = \lim_{n \to \infty} \mu(f \ge 1/n) = 0$. Second use: $\mu(f < 0) = 0$, so $\mu(f \ne 0) = \mu(f > 0) + \mu(f < 0) = 0$

Problem 2 (Exercise 1.4.2). For $f \ge 0$ and

$$\Omega_{n,m} = \left\{ \omega \in \Omega : \frac{m}{2^n} \le f(\omega) < \frac{m+1}{2^n} \right\}$$

show that

(*)

$$\lim_{n \to \infty} \sum_{m=1}^{\infty} \frac{m}{2^n} \mu(\Omega_{n,m}) \nearrow \int f d\mu$$

Hint: Try using Lemma 1.4.4 with

$$E_n = \bigcup_{m=1}^{(n+1)2^n} \Omega_{n,m}$$

(For infinite μ , you'd need to consider cases! If you want to avoid them, assume $\mu(\Omega) = 1$ for this problem).

Solution: Lets solve this question using material from Section 1.5. Consider non-negative functions $g_n = \sum_{m=0}^{\infty} \frac{m}{2^n} 1_{\Omega_{m,n}}$. Then $0 \le g_n \le f \le g_n + 1/2^n$ and $g_n \le g_{n+1}$ so $g_n \nearrow f$. By monotone convergence theorem, $\int g_n d\mu \nearrow \int f d\mu$. It remains to observe that $\int g_n d\mu = \lim_{M \to \infty} \int \sum_{m=0}^{M} \frac{m}{2^n} 1_{\Omega_{m,n}} d\mu = \sum_{m=0}^{\infty} \frac{m}{2^n} \mu(\Omega_{m,n})$.

Problem 3. On probability space $\Omega = (0,1)$ with Borel σ -field and Lebesgue measure λ , compute $\mathbb{E}(X) := \int X(\omega) d\lambda$ for $X(\omega) = \min\{\omega, \frac{1}{2}\}$

- (a) Using calculus/probability (with integration as in calculus).
- (b) Using Exercise 1.4.2 on page 24 of the book. *Hint: In this case,* $\Omega_{n,m}$ defined in (*) above is just an interval!

Solution: For (a), $E(X) = \int_0^{1/2} x dx + \int_{1/2}^1 1/2 dx = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$ For (b), we use sumation formula $0 + 1 + 2 + \dots + M = M(M+1)/2$. We get $E(X) = \lim_{n \to \infty} \sum_{m=0}^{2^{n-1}} \frac{m}{2^n} \times \frac{1}{2^n} + \frac{1}{2} \times \frac{1}{2} = \frac{2^{n-1}(2^{n-1}+1)/2}{4^n} + \frac{1}{4} = \frac{4^n + 2 \times 2^n}{8 \times 4^n} + \frac{1}{4} \to \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$

Optional

Problem 4. Use definition or Exercise 1.4.2 on page 24 of the book (not calculus!) to show that $\int_{[1,\infty)} \frac{1}{x} dx = \infty$ and $\int_{[1,\infty)} \frac{1}{x^2} dx < \infty$.

Hint: Notation $\int_{[1,\infty)} \frac{1}{x} dx$ means $\int f d\lambda$ with respect to the Lebesgue measure λ on $(\mathbb{R}, \mathcal{B})$ for

$$f(x) = \begin{cases} \frac{1}{x} & x \ge 1\\ 0 & x < 1 \end{cases}$$

(Similar notation $\int_1^\infty \frac{dx}{x}$ would denote improper Riemann integral, and the answer would be the same, but we want to practice the Lebesgue integral here.)

Solution: Comparing functions, we have $\frac{1}{x}1_{[1,\infty)}(x) \ge \sum_{n=1}^{\infty} \frac{1}{n+1}1_{[n,n+1)}(x)$. So the integrals compare: $\int_{[1,\infty)} \frac{1}{x} dx \ge \int_{[1,\infty)} \sum_{n=1}^{\infty} \frac{1}{n+1}1_{[n,n+1)} dx = \lim_{M\to\infty} \int_{[1,\infty)} \sum_{n=1}^{M} \frac{1}{n+1}1_{[n,n+1)} dx = \lim_{M\to\infty} \sum_{n=1}^{M} \frac{1}{n+1} \sum_{n=1}^{\infty} \frac{1}{n+1} = \infty$ For the second porblems, we compare $\frac{1}{x^2}1_{x\ge 1} \le \sum_{n=1}^{\infty} \frac{1}{n^2}1_{[n,n+1)}(x)$ so $\int_{[1,\infty)} \frac{1}{x^2} dx \le \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} < 1 + \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 + \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n+1}) = 2 < \infty$