Homework 2

Printed: January 27, 2020

Instructions. Turn in solution of one **Stats** problem and one **Math** problem You can talk to other people about how to solve the exercises, but do not share written solutions. Be sure to state each exercise before solving it!

Problem 1 (Stats). If X has cdf F, and continuous density f, compute the cumulative distribution function of X^2 and differentiate to find the density. Apply this formula to standard normal distribution (Example 1.2.5) to determine the so called *chi-squared* density with one degree of freedom.

Solution:

$$F_{X^2}(x) = P(X^2 \le x) = \begin{cases} 0 & x < 0\\ \int_{-\sqrt{x}}^0 f(y)dy + \int_0^{\sqrt{x}} f(y)dy & x > 0 \end{cases}$$

Since f is continuous, from calculus we know that this expression is differentiable at any x < 0 and at any x > 0, so the denisty g of X^2 is

$$g(x) = \begin{cases} 0 & x < 0\\ 2020^3 & x = 0\\ \frac{1}{2\sqrt{x}} \left(f(\sqrt{x}) + f(-\sqrt{x}) \right) & x > 0 \end{cases}$$

When $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ this formula (with the arbitrary value of 2020³ replaced by 0 for convenience) gives

$$f(x) = \begin{cases} 0 & x \le 0\\ \frac{e^{-x/2}}{\sqrt{2\pi}\sqrt{x}} & x > 0 \end{cases}$$

Problem 2 (Stats). On $\Omega = (0, 1)$, with Borel σ -field and Lebesgue measure, construct a random variable with cumulative distribution function

$$F(x) = \begin{cases} \frac{1+e^{-1/x}}{2} & x \ge 0\\ \frac{e^x}{3} & x < 0 \end{cases}$$

Note: Although a good guess might work, I'd prefer a systematic solution that follows the method from the proof of Theorem 1.2.2 in the book.

Solution:

$$\{x \in \mathbb{R} : F(x) < \omega\} = \begin{cases} (-\infty, \ln(3\omega)) & \omega < 1/3 \\ (-\infty, 0) & \omega \in [\frac{1}{3}, \frac{1}{2}] \\ (-\infty, -1/\ln(2\omega - 1)) & \omega > 1/2 \end{cases}$$
So

$$X(\omega) = \begin{cases} \ln(3\omega) & \omega \le 1/3 \\ 0 & 1/3 \le \omega \le 1/2 \\ \frac{-1}{\ln(2\omega - 1)} & \omega > 1/2 \end{cases}$$

Problem 3 (Math). On $\Omega = (-1, 1)$ with Borel σ -field \mathcal{B} , let $X(\omega) = \omega^2$, which of the following subsets of Ω are in $\sigma(X)$:

- (i) $A_1 = (\frac{1}{4}, \frac{1}{2}) \not\subset \sigma(X)$. If $\omega \in X^{-1}(U)$ then $-\omega \in X^{-1}(U)$ so $\sigma(X)$ can only include symmetric intervals.
- (ii) $A_2 = \{0\} \left[\subset \sigma(X) \text{ as } \{0\} = X^{-1}(\{0\}) \right]$
- (iii) $A_3 = \{\frac{1}{2}\} (\not \subset \sigma(X) \text{ as } X^{-1}(\{\frac{1}{4}\}) = \{-\frac{1}{2}, \frac{1}{2}\})$
- (iv) $A_4 = \left(-\frac{1}{4}, \frac{1}{4}\right) \subset \sigma(X) \text{ as } \left(-\frac{1}{4}, \frac{1}{4}\right) = X^{-1}([0, \frac{1}{16}))$

(v) $A_4 = (-\frac{1}{4}, \frac{1}{2}) (\not \subset \sigma(X))$

(Give *some* justification, but no formal proof is required.)

Problem 4 (Math). On $\Omega = (-1, 1)$ with Borel σ -field \mathcal{B} , consider the following random variables:

- (1) $X_1(\omega) = \omega^2$
- (2) $X_2(\omega) = \cos(\pi\omega)$
- (3) $X_3(\omega) = \sin(\pi\omega)$
- (4) $X_4(\omega) = \omega$

Denote by $\sigma(X_j)$ their σ -fields. Decide which of the 6 pairs of σ -fields are different, which are the same. For those that are different give a set that is in one of them but not in the other. (Give *some* justification, but no formal proof is required.)

pairs	$\sigma(X_2)$	$\sigma(X_3)$	$\sigma(X_4)$
$\sigma(X_1)$	same	different	different
$\sigma(X_2)$	same	different	different
$\sigma(X_3)$		same	same

Solution: $\sigma(X_2) \subset \sigma(X_1)$ because $X_2(\omega) = \cos(\pi\omega) = \sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n} \omega^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n} X_1^n}{(2n)!}$ is a continuous function of X_1 . $\sigma(X_1) \subset \sigma(X_2)$ because $X_1 = (\arccos(X_2)/\pi)^2$. This is because for $\alpha \in (-\pi, \pi)$ arccos $\cos(\alpha) = |\alpha|$ and $|\omega|^2 = \omega^2$. $\sigma(X_3) = \sigma(X_4) = \mathcal{B}((-1, 1))$, because both functions are strictly increasing on (-1, 1), so any interval $(-1, a) \subset (\Omega)$ can be produced as an inverse image of an appropriate interval in \mathbb{R} , and intervals (-1, a) generate $\mathcal{B}((-1, 1))$. Clearly, $\sigma(X_1) \subset \mathcal{B} = \sigma(X_3) = \sigma(X_4)$ but $\sigma(X_1)$ is not equal to the entire \mathcal{B} . For example, Borel set (0, 1) is not in $\sigma(X_1)$ because it cannot be written as $X_1^{-1}(U)$ as it lacks reflection symmetry. For any U, if $\omega \in X_1^{-1}(U)$ then $-\omega \in X_1^{-1}(U)$ and (0, 1) does not have this symmetry.

Optional/saved for later use

Problem 5. Referring to Example 1.2.7, prove that Lebesque measure of the Cantor set $C \subset [0, 1]$ is 0.

Hint: $C = \bigcap_{n=1}^{\infty} C_n$ with $C_n = C_{n-1} \setminus U_n$ where $C_0 = [0,1]$ and in the n-th step we subtract the union U_n of (how many?) intervals of length $\frac{1}{3^n}$

Problem 6. Use Exercise 1.4.2 on page 24 of the book (not calculus!) to show that $\int_{\mathbb{R}} x^2 \lambda(dx) = \infty$, $\int_{[1,\infty)} \frac{1}{x} \lambda(dx) = \infty$ and $\int_{[1,\infty)} \frac{1}{x^2} \lambda(dx) < \infty$.