Homework 10 Choose 2 questions of your interest

Printed: April 3, 2020

Instructions. You can talk to other people about how to solve the exercises, but do not share written solutions. Be sure to state each exercise before solving it!

Notation: All random variables are defined on a probability space (Ω, \mathcal{F}, P) . $X_n \xrightarrow{P} X$ denotes convergence in probability, $X_n \xrightarrow{\mathcal{D}} X$ denotes convergence in distribution.

Problem 1. Let X be a Poisson random variable with parameter λ . That is, $P(X = k) = e^{-\lambda} \lambda^k / k!$, k = 0, 1, ...Compute the characteristic function $\varphi_{\lambda}(t)$ of $(X - \lambda)/\sqrt{\lambda}$ and find its limit as $\lambda \to \infty$. *Hint: Recall Taylor polynomial bounds*

(1)
$$|e^{ix} - 1| \leq \min\{|x|, 2\}$$

(2)
$$|e^{ix} - (1+ix)| \leq \min\{\frac{1}{2}x^2, 2|x|\}$$

(3)
$$|e^{ix} - (1 + ix - \frac{1}{2}x^2)| \le \min\{\frac{1}{6}|x|^3, x^2\}$$

Problem 2. Suppose X_1, X_2, \ldots are i.i.d. with $P(X = \pm 1) = 1/2$. Let $S_n = X_1 + \cdots + X_n$. Compute the characteristic function of $\frac{1}{\sqrt{n}}S_n$ and find its limit as $n \to \infty$. *Hint: L'Hospital rule should be applicable.*

Problem 3. Suppose U_n are uniform on (-n, n). Compute the characteristic function $\varphi_n(t)$ and find its limit as $n \to \infty$.

Problem 4. Suppose X, Y are independent exponential (i.e. with density e^{-x} for x > 0). Compute the characteristic function of X - Y.

Problem 5. Suppose $X_n \xrightarrow{\mathcal{D}} X$ and $a_n \to a, b_n \to b$. Use characteristic functions to show that $a_n X_n + b_n \to aX + b$. **Problem 6.** Suppose $X_n \xrightarrow{\mathcal{D}} X$, $Y_n \xrightarrow{\mathcal{D}} Y$ and each pair (X_n, Y_n) consists of independent random variables (on some probability space Ω_n). Show that $X_n + Y_n \xrightarrow{\mathcal{D}} S$ where the law of S is the convolution of the laws of X and

Problem 7. Show that

Y.

$$P(X = a) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt$$