1. Tail integration add-on from 2019 Notes

1.1. Tail integration formula. If $X \ge 0$ then

(T)
$$E(X) = \int_0^\infty P(X > x) dx = \int_0^\infty P(X \ge x) dx$$

First Proof. For simple random variables this is just a picture. For general X, take simple $X_n \nearrow X$. Noting that $I_{X_n>t} \nearrow I_{X>t}$ we get $P(X_n>t) \nearrow P(X>t)$, the result follows from the monotone convergence theorem applied to $f_n(t) = P(X_n>t)$.

Second Proof. Formula (T) and its various generalizations are easy to derive from Fubini's theorem. Lets get a more general version of the formula. If $X \ge 0$ and $p \ge 1$ then $X^p = \int_0^X pt^{p-1}dt = \int_0^\infty pt^{p-1}I_{t < X}dt$ so

$$(T+) \qquad E(X^p) = \int_{\Omega} \int pt^{p-1} I_{t < X} dt dP(\omega) = \int_{0}^{\infty} \int_{\Omega} pt^{p-1} I_{t < X} dP(\omega) dt = p \int_{0}^{\infty} t^{p-1} P(X > t) dt$$

This formula holds true also in the non-integrable case - both sides are then ∞ . Formula (T) is of course case p = 1 of (T+).