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Facts to use
@(t) = Eexp(itX)

e For standard normal distribution ¢(t) = e~t"/2

e The following are equivalent:
- X, B X
— pn(t) = p(t) for all t € R.

e If X is square integrable with mean zero and variance o2 then

ot) — (1 = )| < Bmin{ X P, (1)) 1)

Proof: ¢(t) = Ee~®X . This relies on two integral identities applied to # = ¢tX(w) under the integral:
e — (14 iz — L;)‘ — |4 ¥ (@ — s)2eiods| < 2] e — (1 4 iz — %2)( = [y (@=s)(e* —1)ds| <2* O

Last time we used inequality |z} — 25| < n|z1 — 22| complex numbers of modulus at most 1 which we now
generalize.

Lemma 1. If z1,...,2m and wy,...,w,, are complex numbers of modulus at most 1 then
m
|zl...zm—w1...wm\§Z|zk—wk| (2)
k=1

Proof. Write the left hand side of (2) as a telescoping sum:

21 Zm — WY .o Wiy =21+ Zm — W122 « .. Zm+W129 ... Zy — WIW2. . . Zm

e WW e W12, — WLWS .. Wiy,

m
= E w1 ... wk,l(zk — ’LL'k;)Zk+1 e Zm
k=1



1 Lindeberg’s theorem

Lindeberg’s theorem
For each n we have a triangular array of random variables that are independent in each row

X1,1 X120 5 X1y
X2.1, X222, .. » X2 1y
Xp,10 Xn,20 0 s Xnrp

and we set S, = Xp,1 + -+ Xn,r,. We assume that random variables are square-integrable with mean zero, and we use the
notation

Tn
E(Xn,k) = 07 U%k = E(Xyzz,k)z 337. = Z U?zk (3)
k=1

Definition 2 (The Lindeberg condition). We say that the Lindeberg condition holds if

Tn

1
v lim—E / X2,dP=0 4
e>0 o S% = Xk |>eom nk ( )

Remark 3 (Important Observation). Under the Lindeberg condition, we have

2
. o
lim max sz =0 (5)
n—o0 k<r, Sy
Proof.
2 = X2, dP + X2 dP <es? + X2 dpP
Onk = nk nk S Es, nk
[ Xnk|<esn [ Xnk|>esn | Xnk|>esn
So
2
o 1
max LQ’C <et+ max/ Xﬁde
k<rn s7 Sy k<ra [ Xnk|>esn
1 &
<et ) X2,.dP
s
n 1/ Xnkl>esn

O

Theorem 4 (Lindeberg CLT). Suppose that for each n the sequence X1 ... X, is independent with mean
zero. If the Lindeberg condition holds for all € > 0 then S, /s, Lz

Ezample 5 (Suppose X1, X, ..., are iid mean m variance o2 > 0. Then S, = ﬁ Sore i (X —m) 2, Z.).

Triangular array: X, ; = Xﬁam and s, = 1.

e The Lindeberg condition is

1 X —m)?
lim ,Z/ wdp
n—>OOTLk:1 | X —m|>eo\/n g

1

n—oo o | X1—m|>eo\/n

by Lebesgue dominated convergence theorem.



Proof of Lindeberg CLT 1
Without loss of generality we may assume that s2 =1 so that Y ;" 02, = 1.

e Denote p,; = E(e®X»*). By (1) we have

1 .
Pk (t) — (1= 5t200) | < B (min{[t Xk, [ X |})

< / [t X i |2dP + / [t X, |?dP
| X nk|<e | X nr|>e

<t / X2, dP +t? / X2,dP < t3co?, + 12 / X2,dP  (6)
IXnk‘dPSE ‘Xnk|>€ |Xnk‘>6

e Using (2), ‘ |21 00 2m — w1 W] <Y |2k — wi] ‘we see that for n large enough so that 1t%02, < 1

Tn

¢s,(t) — H(l — 3t%00))

k=1

Tn

Tn
<et’ ol 4+t Z/ X2,.dpP
k=1 k=1" | Xnk|>e

Proof of Lindeberg CLT II
Since € > 0 is arbitrary and ¢ € R is fixed, this shows that

Tn
- 2 2
dim (s, (1) = [J(1 = 3t%00,)| =0
k=1
It remains to verify that lim, ‘679/2 e O %tQJ%k)’ =0.

To do so, we apply the previous proof to the triangular array Z, , = o, 12, of independent normal
random variables. Note that

- 4242 2
P57, (1) = He Fom/2 = e=t'/2
k=1
We only need to verify the Lindeberg condition for {Z,,}.
Proof of Lindeberg CLT III

/ Z2,.dP = o2, / 22 f(x)dx
| Znk|>e lx|>e/0onk

So for € > 0 we estimate (recall that >, 02, = 1)

Tn

Z/ Z2,.dP < Z afbk/ 22 f(2)dx
k=11 Znk|>e k=1 \

z|>e/onk

< max/ 2 f(z)dx
1<k<r, |z|>e/onk

= / 2?2 f(x)dx
‘$|>E/ maxyg Onk

The right hand side goes to zero as n — oo, because by maxi<x<r, onr — 0 by (5). QED



2 Lyapunov’s theorem
Lyapunov’s theorem

Theorem 6. Suppose that for each n the sequence Xp1 ... Xy, is independent with mean zero. If the
Lyapunov’s condition

Tn

lim 2+5 > EIX T = (7)

n—o0 Sn el

holds for some § > 0, then Sy /sy Ny

Proof. We use the following bound to verify Lindeberg’s condition:

2 246
) NI U o) N T
nk|>5§n 6 S nk‘>59n

J
§ : 2495
s 5 2495 Eank‘
’VL k=1

O

Corollary 7. Suppose X}, are independent with mean zero, variance 0% and that sup,, E|X3|?T? < co. Then

Sn/vn 202
Proof. Let C' = sup,, E|X|**°. WLOG ¢ > 0. Then s,, = oy/n and 52% S B(1Xk]?H) <

Cn _
= S2+6p146/2
ngC;s/z — 0, so Lyapunov’s condition is satisfied. O

Corollary 8. Suppose X} are independent, uniformly bounded, and have mean zero. If " Var(X,) = oo,
then Sy, /+/ Var(Sy) RN N(0,1).

Proof. Suppose | X,,| < C for a constant C. Then

1< 3 s2  C
EZE|X,L| <Cp=_—-0
nk: n

The end
Lets stop here

o Homework-HodueMondav—two-exercisesfrom-Ch-H-of the notes.
e There is also a sizeable list of exercises from past prelims
e Things to do on Friday:

— CLT without Lindeberg condition, when normalization is not by variance

— Multivariate characteristic functions and multivariate normal distribution.

Thank you

Normal approximation without Lindeberg condition



3 Normal approximation without Lindeberg condition

Asymptotic normality may hold without Lindeberg condition:
e Normalization might be different that the variance. In fact, the variance might be infinite!
A basic remedy for issues with the variance is Slutsky’s theorem.

— Truncation makes variances finite: X = XkI|Xk‘§an + Xk[\Xk\>an

— We use CLT fOl" truncated Ir.v. i 22:1 Xk;Ile‘Saﬂ 2> N(O, 1) (triangular array)

— Then we show that the difference i SRy XkI|X, ) >an Py

— Then Sp /sn is asymptotically normal by Slutsky’s theorem.

e Independence might not hold

A basic remedy for sums of dependent random variables is to rewrite it as sum of independent random
variables, with a negligible correction.

Normalizations that do not use the variance
Ezxample 9. Let X1, X2,... be independent random variables with the distribution (k > 2)

Pr(X;, = =1)=1/4,
Pr(X, = k%) =1/k?
Pr(Xy = 0)=1/2—-1/k>

Let Sn = Z"+1 X Then E(X)) = 1 and E(X?) = % + k% so s2 = én (2n? —3n+4) ~ n®/3. One can check that
(Sn —n)/sn Lo

Because with a ”proper normalization” and without any centering, we have Sy /\/n o, Z/v/2. To see this, note that
Yy, = Xl x|, <1 areiid. with mean 0, variance l so their partial sums satisfy CLT.

Since P(Yy # Xj) = 1/k? is a convergent series, by the first Borel Cantelli Lemma ‘f S (Ve = Xp)| < L\f‘ — 0 with
probability one.
Ezample 10 (A good project for the final?). Suppose X}, are independent with the distribution
1 with probability 1/2 — pj
X, = -1 with probability 1/2 — py
2 with probability pg
—k?  with probability py

and Sn, = >.p_; Xp. It is ”clear” that if > pi < oo then Sn/v/n 2, N(0,02) for any 6. Tt is "clear” that if 6 = 0 then
Sn/v/n N N(0,1) for any choice of py, < 1/2.

So it is natural to ask what assumptions on 6 and pg will imply asymptotic normality. In paricular,

e What are the ”optimal” restrictions on py, if # < 0?7 (Say, if 6 = —1, to ease the calculations)

e Can one "do better” than ) pp < oo if 8 > 0?7 (Say, if € = 1, to ease the calculations)

CLT without independence

Example 11. Suppose &, are ii.d. with mean zero and variance o

> 0. Show that the sums of moving
averages X = %ﬂ ng@n &; satisfy the Central Limit Theorem.

Proof. Write S, = >0, Xg. We will show that —=S,, 2> N(0,02).

Vn
n k+m n+m nAj n
Z ZEJ—Z&' > w2 &+ R
k=1 ji=k j=1 k=1V(j—m) j=1
B m+1 nam n+m+1—j _

By CLT for i.i.d random variables, ﬁ 27:1 &5 2, N(0,1). So we only need to look more carefully at
Since E(R2) < 2m?02?, we see that R, /v/n L5050 by Slutsky’s theorem we get CLT. |



Ezxample 12 (A good project for the ﬁnal?). Suppose & are i.i.d. with mean zero and variance 1. Do ” geometric moving
averages”

k
Xp=> ¢&_;
=0

satisfy the CLT when |q| < 1? That is, with S, = > _; X} do we have (Sp — an)/bn 2, N(0,1) for appropriate normalizing
constants an, by,? And if so, how does b, depend on the ¢?

Random normalizations

Ezample 13. Suppose X1, Xo, ..., are i.i.d. with mean 0 and variance ¢2 > 0. Then
k=1 Xk
V k=1 XE
converges in distribution to N(0,1). To see this, write

ZZ=1 Xk _ o « ZZ=1 Xk
NOIE CIERVES SIS A

and note that the first factor converges to 1 with probability one. To apply Slutsky’s theorem, we now need to do some more
work that is similar to some old exercises.
Writing Zn, = ﬁ we check that (Zn — 1)Spn /Vo2n -5 0. Choose arbitrary € > 0, K > 0. Then limsupp_y o0 P(1Zn — 1| - |Sn|/Vo2n >
n ~“k=1"k

e) < limsup,,_yo0 P(|Sn|/V o2n > K) + lim SuUpp_soo P(|1Zn — 1| > e/K) < K% Since K is arbitrarily large, the limit it 0.

CLT without second moments

Exercise 1 (Exercise 11.5 from the notes). Suppose X}, are independent and have density —= for |@| > 1. Show that

Pk — N(0,1).

mlog 1
Hint: Verify that Lyapunov’s condition (7) holds with § = 1 for truncated random variables.

Let Yy = XpI|x, |<m Then E(Ypp) =0 by symmetry. Next we compute the variances

2 T
B(Y2,) = 2/1 2yde == /1 dr = 210g /n = logn.

Therefore s2 = S_| E(Y,2,) = nlogn. To verify Lyapunov’s condition (7) we compute E(|Y,|3) = 2[1‘/5 lde = 2¢/n. This gives

1 . 2ny/n 2
3
= E E(|[Y,il®) = = 3/2 — 0
Sp k=1 n/m log ny/Tog n (log n)
By Lyapunov’s theorem (Theorem 6), we see that
1 m D
_ E Yo — N(0,1).

Vvnlogn p—7

. 1 n _ 1 n P _ _ _ o [0 1 _
To finish the proof, we need to show that VAT SRoq Yok T SR_q X} — 0. We show Lj-convergence. E|Yy,, — Xj| = 2jﬁz;§dm =2/Vn
s0
n n

> Yk

El——— [
Vvnlogn p—1 Vnlogn k2=:1

— 0

B|Xp = Ynpl <

n
Xp| < —— 3
Vvnlogn p—1 Viog n

Exercise 2 (A good project for the final?). Suppose X, are i.i.d. with density ﬁ for |z| > 1. Show that

Sn

Tt N(0,1) using one of the other truncations from the hint for Exercise 11.5 in the notes.

Limit Theorems in R* This is based on [Billingsley, Section 29].
April 24, 2020
4 The basic theorems

Notation

o If X : O — RF is measurable, then X is called a random vector. X is also called a k-variate random variable, as
X = (X1,...,Xk). We will also write X as column vectors.



e Recall that a probability distribution of X is a probability measure u on Borel subsets of R¥ defined by u(U) = P({w :
X(w) € U}).

e Recall that a (joint) cumulative distribution function of X = (X1, ..., X») is a function F : R* — [0, 1] such that

F(z1,...,zx) = P(X1 <z1,..., X < xp)
e From 7m — A theorem we know that F' determines uniquely u. In particular, if
x] Ty
F(a’lw-wzk):/ / Fyr, - yk)dyr .. dyg
— 00 — 00

then p(U) = [, f(y1,-- -, yx)dy1 - - - dyg.

Let X, : © — RF be a sequence of random vectors.

Definition 14. We say that X,, converges in distribution to X if for every bounded continuous function f : R¥ — R the
sequence of numbers E(f(X,,)) converges to Ef(X).

We will write X, 2) X if py, is the law of X,, we will also write uy, 3) 1; the same notation in the language of cumulative

distribution functions is F, —» F’; the latter can be defined as Fj, (x) 2, F(x) for all points of continuity of F, but it is simpler
to use Definition 14.

Proposition 15. If X, 2. X and g:RF = R™ is a continuous function then g(X) 2, 9(X)
For example, if (X, Yy) N (Z1,Z2) then X2 +Y;2 N z2+ Z2.

Proof. Denoting by Y, = g(Xy,), we see that for any bounded continuous function f : R™ — R, f(Yy,) is a bounded continuous
function f o g of X,,. O

Definition 16. The sequence of measures p,, on RF is tight if for every ¢ > 0 there exists a compact set
K C R¥ such that p,(K) > 1 — ¢ for all n.

Theorem 17. If u, is a tight sequence of probability measures then there exists p and a subsequence ny
such that fin, 2, I

Proof. The detailed proof is omitted. O
Corollary 18. If {u,} is a tight sequence of probability measures on Borel subsets of R* and if each

convergent subsequence has the same limit u, then py, KN I

The end
Lets stop here

e Things to do on Monday:

— Multivariate characteristic functions and multivariate normal distribution.

Thank you

5 Multivariate characteristic function

Multivariate characteristic function and multivariate normal distribution



Multivariate characteristic function
Recall the dot-product x -y := x'y = 25:1 Y-

e The multivariate characteristic function ¢ : R¥ — C is

©o(t) = Eexp(it - X) (8)

This is also written as ¢(t1,...,t5) = Eexp(Z?zl it; X;).

e The inversion formula shows how to determine p(U) for a rectangle U = (a1, b1] x (az, ba] X - - - X (ay, bg]
such that u(0U) = 0:

e~ targty _

1 T T k e—ibjt;
U)= lim —— [ - ——— oty tg)dty .. dE 9
wU) = Jlim oo /7T /7TJ131 it et k)di .- by ©)

e Thus the characteristic function determines the probability measure p uniquely.

Corollary 19 (Cramer-Wold device I). The law of X is uniquely determined by the univariate laws t - X =
k

2i=1ti X5

Corollary 20. X,Y are independent iff ox v (s,t) = ox(s)py(t)

Ezample 21. 1f X,Y are independent normal with the same variance then X +Y and X — Y are independent normal. Indeed,

WLOG we assume that means are zero and variances are one. x4y, x—vy (s, t) = Eets(X+Y)+it(X=Y) — Fei(t+s)X+i(s—t)Y —

ex(s +)py(s —t) = exp((t + 8)2/2 + (s — 1)2/2) = exp((t? + s2 + 2ts)/2 + (s + 12 — 2st)/2) = es’et”.  This matches
2 2 2

Pox 1y (s)px—v(t) as pxiy(s) = e /2e /2 = e,

Theorem 22 (Bernstein (1941)). If X, Y are independent and X + Y, X — Y are independent, then X,Y are normal

[ Kac M. 7On a characterization of the normal distribution,” American Journal of Mathematics. 1939. 61. pp. 726—728. [

Theorem 23 (Cramer-Wold device II). X,, 2oy iff on (t) — @(t) for all t € R”.

Note that this means that X,, Py iff for all t1,...,t, univariate random variables converge, > t; X;(n) o,

> tY;

Corollary 24. If Zy,...Z,, are independent normal, A is an k X m matriz and X = AZ then 2?21 ;X
is (univariate) normal.

Proof. Lets simplify the calculations by assuming Z; are standard normal. The characteristic function of S = Zj t; X is
p(s) = Eexp(is(t - X)) = Fexp(is(t - AZ)) = Eexp(is(A't) - Z)

YT e PIATE2 /2 _ -2 A2/

k
e

7

So S is N(0,02) with variance o2 = ||A’t||? O

1

The generalization of this property is the ”cleanest” definition of the mutlivariate normal distribution.

6 Multivariate normal distribution

Multivariate normal distribution N(m, )

Definition 25. X is multivariate normal if there is a vector m and a positive-definite matrix ¥ such that its characteristic
function is
o(t) = exp (it'm — 1t'St) *)



2
(How do we know that (*) n is a characteristic function?) By differentiation % and 6ta6f~’ the parameters N(m, X) get natural interpretation:
J K}

EX = m and 5, ; = cov(Xj, Xj) so £ = E(XX’) — mm’.

Definition 26. X is multivariate normal if there is a vector m an m X k matrix A and a sequence Z1, ..., Zy of independent
standard normal random variables such that X = m + AZ

2 Te12
Note that previous slide says @/ x . (s) = e~ IIA"t11“/2 shows that X has characteristic function (*) and t - X has variance
o2 = ||A't)2 = (A't) - (A't) =t/AAt = t'5¢
If m = 0 then EXX’ = EAZZ'A’ = AE(ZZ')A’ = AA' =%

Definition 27. X is multivariate normal if for every t € R* the univariate random variable X = X - t is normal N(u, 0?) for
some p = u(t) € R and 02 = o2(t) > 0.

Multivariate normal distribution N(m,X)

Remark 28. If X is normal N(m,Y), then X — m s centered normal N(0,%). In the sequel, to simplify notation we only
discuss centered case.

Here is the fourth definition:

Definition 29 (half-definition). X is N (0, X) if it has density

f(x) = S — exp (—

X - (E_lx))
(2n)k/24/det T

2
We are not going to use this definition!

Remark 30. Denoting by ai the columns of A, we have X = Zle Zjaj. This is the universal feature of Gaussian
vectors, even in infinite-dimensional vector spaces — they all can be written as linear combinations of deterministic vectors
with independent real-valued "noises” as coefficients. For example, the random “vector” (Wi)o<i<1 with values in the vector

space C[0,1] of continuous functions on [0,1] can be written as Wy = Y724 Z;g;(t) with deterministic functions g;(t) =
TIH sin((24 + 1)7t).

Example: bivariate N(0,X)

X1
X2
correlation coefficient p = E(X1X2).

o Write X = [ ] WLOG assume E(X1) = E(X2) = 0 and E(X?) = E(X2) = 1. Then there is just one free parameter:

2 2
e == B P} is non-negative definite for any |p| < 1 and @(s,t) = e~ /27t7/2=pst j5 5 characteristic function of a random

1
variable X = (X1, X2) with univariate N(0,1) laws, with correlation E(X1X2) = —%¢(S,t)\s:t:0 =p.

o If Z1,Z5 are independent N(0, 1) then

X1 =21, X2=pZ1+\/l—p222 (10)
will have exactly the same second moments, and the same characteristic function.
e Since det X = 1 — p?, when p? # 1 the matrix is invertible and the resulting bivariate normal density is
1 ( x2+y2—2pwy)
———exp
2my/1 — p? 2(1 — p?)
e From (10) we also see that X2 — pX is independent of X7 and has variance 1 — p?. In particular if p = 0 then X7, X2
are independent.

flz,y) =

Remark 31. The covariance matriz ¥ = AA’ is unique but the representation X = AZ is not unique. For example
independent pair
{Z] (1 o0 Z1
=[5 -l <)
X — 1/vV2  1/vV2] [z
T l1V2 —1/V2] |22

because Z1 — Za and Z1 + Zz are independent normal random variables of variance 2 and X = {(Zl + ZQ)/\/ﬂ has the same
(Z1 — Z2)/V2

can also be represented as

law as X. This implies non-uniqueness for all other representations.



Normal distributions on octonions
(I do not know the answer for octonions)

Ezample 32 (Good project for the final?). Suppose Z1, Zs, Z3, Z4 be independent normal random variables.
Let Z¢c = Z1 +1iZ5 be a complect random variable and Zg = Z1 +iZ>+ jZ3 +kZ4 be a quaternionic random
variable.

e Show that

EZ" = W”L/Q)' if n is even
"o

e What is the formula for E(Z2) and for E(ZRZ%) for m,n =0,1,2,...7
e What is the formula for E(Zg) and for IE(ZEZ&) for m,n=0,1,2,...

VAR

_ Z Zg Z3
; ; ; — _[z Ze| _ |-z z -z
These are questions about gaussian random matrices Z¢ = {_ 7 21] and zq = [*Zc ZH - [é 722113 24
The end
Lets stop here
e Things to do on Wednesday:
— Multivariate central limit theorem.
— Examples
— Final Exam projects
Thank you
Mutlivariate CLT and applications
Recall from previous lectures
e The multivariate characteristic function ¢(t) = Eexp(it - X)
e This is also written as ¢(t) = Eexp(it'X).
e This is also written as o(t1,...,tx) = Eexp(X:;L1 it; X;).
Theorem 33 (Cramer-Wold device II). X,, Dy iff on(t) — @(t) for all t € R”.
Note that this means that X,, Ly Y iff for all t1,...,t, univariate random variables converge, > t; X, (n) EEN

> tY;

Definition 34. X is multivariate normal if there is a vector m and a positive-definite matrix 3 such that
its characteristic function is ¢(t) = exp (it'm — $t'St).

Equivalently, X = m + AZ, where AA’ = X. Without loss of generality we can assume A is a square
matrix.

Equivalently, X = m + Zle U;Z;, where Z; are i.i.d. N(0,1) and ¥ = Z?:l ;7

e

10

Z4

Z



7 The CLT

The CLT

Theorem 35. Let X,, = (Xy1,...,Xnk) be independent random wvectors with the same distribution and
finite second moments. Denote m = EXy, and S, = X1 4+ ---+ X,,. Then

(S, —nm)/vn >Y

where Y is a centered normal distribution with the covariance matriz ¥ = E(X, X/ ) — mm’'.

The notation is N(0,X). Note that this is inconsistent with the univariate notation N(u, o) which for consistency with the

multivariate case should be replaced by N(u,o?).

Proof. Without loss of generality we can assume m = 0. Let t € R*. Then X, := t'X,, are univariate i.i.d.
variables with mean zero and variance o2 = E(t'X,,)? = E(t/X,X/,t) = t'E(X,,X/,)t = t'St. By CLT for
iid. case, we have S, /v/n 202z

Y = (Y3,...,Y;) has multivariate normal distribution with covariance ¥, then t'Y is univariate normal
with the same variance 0%. So we showed that t'S,,/y/n Ly /Y for all t € RF. This ends the proof by

Theorem 33 (Cramer-Wold device).
O

Ezxample 36. Suppose &, ni are i.i.d with mean zero variance one. Then ﬁ(zzzl N> 2o (M + E1)) N
N0, [ 3])

Indeed, random vector Xy = S has covariance matrix ¥ = bl

’ A 12

Si

Since Y p_, Xi = { S"} + [ 5(,)4 , this is not anything impressive, as [ ] has the required covariance
n n

Zy
Z1 + Z

matrix.

7.1 Application: Chi-Squared test for multinomial distribution

Application
Chi-Squared test for multinomial distribution
e A multinomial experiment has k outcomes with probabilities p1,...,pg > 0.
e A multinomial random variable (N, ..., Ni) lists observed counts per category in n repeats of the multinomial experi-

ment. The expected counts are then E; = np;.

e The following result is behind the use of the chi-squared statistics in tests of consistency.

Theorem 37. Y°F

2
(N;—Ej)* D, 2
i=1" g,

=X =2+ 2,
Lets write this in our language: take i.i.d. vectors P(X = €;) = p; and let S(n) = 3°7_, X;. Then

(8;(n)—np;)?
np;

Theorem 38. 2?21 LN ZZ4-+ 727

Z§:1(SJ(71+M2>Z12+'”+Z13—1

17 [o 0
Lets prove this for k = 3. Consider independent random vectors X that take three values H , [1] and [o] with probabilities
o] |o 1

p1,p2,p3. Then S, is the sum of n independent identically distributed vectors X1, ..., X,,. Components of Sy, are counts
p1
Clearly, EXy = |[p2|. To compute the covariance matrix, write X for X. For non-centered vectors, the covariance is
p3
E(XX') — E(X)E(X'). We have
, 1 0 0 Py O 0
EXX")=pi|o| x[t o o4+pa|1|x[o 1 o]+p3z|o|x[o o 1]=]0 py 0
o 0 1 0 0 p3

11



So

pr1(1 — p1) —p1P —p1Pp
S = B(XX') - E(X)E(X') = [ pips pa(l-p2)  —pavg ]
—p1P3 —p2pP3 p3(1 — p3)
p1 D
Then S,, is the sum of n independent vectors, and the central limit theorem implies that ﬁ S, —n |p2 — W. By
p3
Continuity Theorem 15 we have
3 3 W2
> 7" e
j=1 Jj=1 Pj

where W = (W1, Wa, W3) is multivariate normal with covariance matrix X.

W is N(0,X)
Note that since Z’Ll Sj(n) = n, the gaussian distribution is degenerate: W1 + Wz + W3 = 0. (No density!)
w2
It remains to show that Z s has the same law as Z2 + Z i.e. that it is exponential. To do so, we first note that the
covariance of (Y1,Y2,Ys,) := (Wl/w/ 1, Wa/\/D2, W3 /\/P3) is
1-p1  —y/P1p2 —/P1P3 VP1

Sy = |—vPip2 1—p2 —peps| =1— |p2| x [P1 P2 /P3]
—v/P1p3  —/p2p3 1—p3 VP3

V/P1 a1 B1
Since vi = |,/p2| is a unit vector, we can complete it with two additional vectors vo = |a2| and vz = |[fB2| to form an
\/P3 as Bs
0
] , H The
0

orthonormal basis {Vl7 V2, V3} Of R?). This can be done in many ways, for example by the Gram-Schmidt orthogonalization to vy, |:

oo~

specific form of va, v3 does not enter the proof - we only need to know that vi,va,v3 are orthonormal.

Yy =I—-wv1v}
To complete the proof we write I = viv] + vav) 4+ v3v} as these are orthogonal eigenvectors of I with A =1. (Or, because
x = vlvllx + v2v’2x + v3véx as v/,

J
Therefore,

x = x - v; are the coefficients of expansion of x in orthonormal basis {v1, vy, vz} of R3.)

! !
Yy = Vavy +v3vy

We now notice that X+ is the covariance of another multivariate normal random variable Z = voZ2 4+ v3Z3 where Z2, Z3 are
independent real-valued N(0,1). Indeed,

3 3
EZ7Z' = Z viv;E(ZiZj) = Zvivé = vavh +v3v}
i,j=2 i=2
Therefore, vector Y has the same distribution as Z, and the square of its length Y12 + Y22 + Y32 has the same distribution as
IZ11? = llvaZ2 + v3Z3||* = |[vaZa|” + Ilv3 Zs|1> = 23 + Z3

(recall that vo and v3 are orthogonal unit vectors).

Remark 39 (Good project for the final?). It is clear that this proof generalizes to all k.

The distribution of Z12 +- 4 Z,%_l is Gamma with parameters o = (k—1)/2 and 8 = 2, known in statistics as chi-squared

distribution with k& — 1 degrees of freedom. To see that Z22 + Zg is indeed chi-squared with two-degrees of freedom (i.e.,
exponential), we can determine the cumulative distribution function by computing 1 — F(u):

1
P(Z3+23 >u) = 5- /2+ . /2 gy
y2>u

27
/ e " /zrdrdﬂ —emu/2
T on >V

2
To compute the density of Z%, differentiate Fo(x) = -1 f‘/; e~?"/2dz. These are cases m = 2 and m = 1 of the formula from Wikipedia:
2 z
m_q _x
x2 teT2
z > 0;
(= m) LB (m
22r (7)
0, otherwise.

12



Ezample 40 (Good project for Final). Suppose &;,7;,7; are i.i.d. mean zero variance 1. Construct the
following vectors:

& —nj
Xj=(n =
Vi =&

Let S, = X + -+ 4+ X,,. Show that 1S, L, Y, and determine the density of Y.

Exercise 3 (Mutlivariate Slutsky’s Thm). Suppose that R2K _valued random variables (Xn, Yn) are such that Xy, L X and Yp L 0 (that is, limp 500 P(||Y 0|l >
eg) =0 foralle > 0).

Prove that Xy, + Y 2—» xX

The end
Lets stop here

e Things to do on Friday:

— Questions?

— Curiosities:
 Iserlis theorem (Wick formula).
* Wigner matrices
* Wishart matrices

— Final Exam projects

Thank you
Additional topics

Today’s plan

o Q&A

® Joint moments of multivariate normal distribution

® Random matrices

Prevalence of bell-shaped data

4:10  4:11 50 5 5:2 53 54 S5 56 57 58 59 5:00 5:11 60 6:1  6:2
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Prevalence of bell-shaped data

T 1 1: 1i 1 1 T _-'-q

5/3 5/4 5/5 5/6 5[7 58 5/ 5010 5/11 6/0 6/1 6/2 6/3 6/4 6/5

Prevalence of bell-shaped data

14



Figure 1. SAT Scaled Score Distribution. 1984-88
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SAT Math + Verbal

Theorem 41 (Isserlis (1918), Wick (1950)). If X is N(0,%) then

E(X1Xy... Xy) = Z H E(X:X;)

weP2(k) {i,j}em

Here P2(n) is the set of pair partions of {1,...,k}. For example, there are three pair partitions for {1,2,3,4}: 1284

1 2 3 4 12 3 4

w1 = {{1,2},{3,4}}, ma = {{1,4},{2,3}}, =3 = {{1,3},{2,4}}.
So E(X1X2X3X4) = 21,223,4 + 21,422,3 + 21’322_’4. In particular,

e If Z is standard normal E(Z4) = 3 because we can apply the theorem to (Z, Z, Z, Z)

15



e If X,Y are jointly normal with variance 1 and correlation p then E(X2Y?2) = 1 + 2p? because we can apply the theorem
to (X, X,Y,Y)

e If Z is standard normal then E(Z?™) =1 x 3 X 5 X +++ X (21 — 1) because there are 2n — 1 choices to pair 1, then 2n — 3 choices to
pair the next element on the list, and so on.

A 102 years ago ...
Isserlis, Biometrika (1918)

16



ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT
OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION
IN ANY NUMBER OF VARIABLES.

By L. ISSERLIS, D.Sc.

1. In Biometrika, Vol. XI, Part III, I have shown that for a normal frequency
distribution in four variables, if

Payzt = SS8S {Nyy,; xy2t} /N
x Yzt

denotes the product-moment coefficient of the distribution about the means of the
four variables and q,,,, is the reduced moment, i.e.

Qovet = Payzt/02040,0,
then Govot = TogTas + Tyalar T Taglys ceveevenernennrnsnsernnnne (1).

In this result any two or more variables may be made identical leading to a
variety of results for moment coefficients of distributions containing fewer than
four variahles but of total order four, for example identifying ¢ with  we obtain

Putve = Tyz + 2y Pas covviniriiniiiniininiiiiiineins (2),
and putting y =z =1 =2x we find ¢,« = 3; of course ¢,, = 75, and ¢, is merely B,.
I suggested that (1) was probably capable of generalisation, and I now propose
to prove a general theorem which gives immediately the value of the mixed moment
coefficient of any order in each variable for a normal frequency distribution in any
number of variables.

2. Consider a normal distribution, total population N. Let N, , denote the
frequercy of the group in which the characters differ by z,, @,, ... #, from the mean
values for the whole population and let

P =8 (Nig. 2 ash . BN ..ooennnnnnannen. (3),
denote the moment coefficient of the most general kind about the mean values of
the characters. The corresponding reduced moment will be

Qtigls otn = Pyligh . Bl 1108 O Peiniinieiiniisnniie (4).

Then for normal distributions,
ifnbeodd, q10.n=0 cooviriiririiiiiiiiiiiiainnn, (5),
and if n be even, ¢, =8 (TopTeq oo Tar) coeeereererneennns (6),

where the summation on the right-hand side extends to every possible selection of
n/2 pairs ab, cd, ... hk, that can be formed out of the n suffixes 1, 2, 3, ... n; equa-
tion (1) is thus a particular case of (6).

Equation (6) is the theorem it is proposed to prove. The value of gtz 4ln
is at once found for given numerical values of the indices I, I, ... I, by writing
down (5) for I, + I, + ... + 1, variables and identifying the values of I, of them with
that of the first and so on. 17



Proof of Isserlis formula
E(X1Xs...Xgk) = Eﬂe%(k) H{i,j}E‘fr E(X;X;)

e Write k = 2n as both sides are zero for odd k. The proof is by induction on n. Note that for k < 2n vector (X1, ... X}) is jointly normal with S
taken as the appropriate submatrix of 3.

e Case n =1 is obvious E(X] Xp) = 19

e Induction step:
2n

E(X1Xg ... Xan) = > E(X1X,)E J] X,
j=2 i#£l,j
m={1,j}ux’
e Then look at =2 in E(X1X Xop) = (—1)" 5020 )|
Dty UX1Xg .. Xop) = a7t ¢ ®le=o
2

Z11t] 2n

n a2n _ n g2n—1 a - ) -5k, Z1,5t1t
D gt oty P = (D Big.. . Ota, | (2 t2n) gy (e ’ )‘11:0 ‘t:o
p2n—1 2n
= (D" g8 mrgy | ~¥02 - tan) 20 P15t | le—o
n j=2
92n—2
— ] .
=(=D Z 215 Fiy- af 0y, Ot; (b2 tam) ‘tj:(’)t=0
2n
— (-1 .L
=(-1) j;zl, 29t g, (P8 o
2n N
= > E(X1X;)E(Xg...Xj...Xap)
j=2
W gner matrices
Z11 Zy12 ... Zin
1 Zi2  Z22 .- Z2n
A Wigner matrix is a symmetric random matrix W = 7| . where Z;; are independent N (0, 1)

Zin  Z2n .- Znn

random variables.
Clearly, W = ZK i<n ZijEij with deterministic matrices Fj;.
It turns out that the following holds:

2 /4_ 2
lim Ltr(WX) =/ kY27
n—oo M

—2 s

dx in probability, in L1, and almost surely for an infinite array Zij

Wigner was interested in the eigenvalues A1, ..., A, of X and empirical spectral distribution F, (z) = l:;f/:{A;C < z}. The above
shows that (random) moments fmden converge. One can show that this implies Fn Vi—a? dx with probability one. The

measure 7V; dx is called Wigner’s semicircle law and plays a role of the standard normal distribution in free probability.

Gaussian random matrices
Consider the set M = R™("*+1)/2 of all symmetric n x n matrices with inner product (A, B) = tr(AB). (Does the definition of

normal distribution depend on the inner product?)

(A, B) =327 37— aigbji = 30701 aasbi + 230, ; aisbi;

Definition 42. X is (centered) normal matrix-valued random variable if X = > 4 Z;A; for some deterministic symmetric
matrices A;.

4 @(T) = exp— 3 tr?(TA;)
The characteristic function of X is ¢(T") = Eettr(TX) S0 In particular, we may ask about

1 2
p(T)=¢€" 2tr(T7) Because E; ; are an orthogonal basis of M, we can expand
tr(TE;)

T= ZtrTEu U+Zt(E) i

1<)

18



@ tr(TE;
T= Z tr(TE;) By + Z %Eu
i=1 i<j

So ||T||? = tr(T2) = 3, tr?(TEy) + g tr?(TE;j)/2 This means that we want X = >0 | F;; Z; + i<y EijZii/V2

V22771, Z12 Zin
L] 212 V2Zy ... Zon
X=
vz :
Z1in Zon S V2Znn

Gaussian Orthogonal Ensemble
This is the celebrated Gaussian Orthogonal Ensemble (GOE),

V2714 Z19 B Zin
Z1o V2Zoo ... Zon
1
x = -1
V2 :
Z1n Zon ... V2Znn

which is sometimes confused with the Wigner matrix W of i.i.d N(0,1) random variables. Up to a scaling, X and W differ
only by an extra factor on the main diagonal.
GOE matrix X arises naturally by symmetrization: with non-symmetric i.i.d. matrix Z = [Z; ;], we take X = (Z + Z')/2.
GOE refers to invariance under orthogonal group: X ~ UXU’ for orthogonal matrix U. This property is easy to check
using characteristics function and ”tracial property” tr(AB) = tr(BA).

puxy (T) = Eexp itr(TUXU’) = Eexpitr(U'TUX) = efétr((U/TU)z) = eiétr(U/TzU) = eiétr(UUlT?) = eiétr(Tz) =
ex(T)
e GOE matrix x € M, has density f(x) = Cexp(fétr(XQ)) with respect to Lebesgue measure on R™*("T1)/2 o with respect
to deyjdeyg ... doypdegadeas . .. degy - - - donn.

e Polynomial perturbations fe(x) = C. exp(—%tr(xQ) + etr(x*)) preserve orthogonal invariance at the expense of loosing
connection with independence.

e In another direction, one can study random matrices that are constructed from non-normal independent random variables.
For example, in population genetics the SNP data consist of M x N matrices of order M ~ 103 and N ~ 10° with entries
that take 3 values {0,1,2} and are independent between rows and ”weakly linked” between columns.

The end
Final Exam projects are already posted.

Thank you
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