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Facts to use
ϕ(t) = E exp(itX)

• For standard normal distribution ϕ(t) = e−t
2/2

• The following are equivalent:

– Xn
D−→ X

– ϕn(t)→ ϕ(t) for all t ∈ R.

• If X is square integrable with mean zero and variance σ2 then∣∣∣ϕ(t)− (1− σ2t2

2 )
∣∣∣ ≤ E(min{1

6
|tX|3, (tX)2}) (1)

Proof: ϕ(t) = Ee−itX . This relies on two integral identities applied to x = tX(ω) under the integral:∣∣∣eix − (1 + ix− x2

2 )
∣∣∣ =

∣∣ i
2

∫ x
0

(x− s)2eisds
∣∣ ≤ |x3|

6

∣∣∣eix − (1 + ix− x2

2 )
∣∣∣ =

∣∣∫ x
0

(x− s)(eis − 1)ds
∣∣ ≤ x2

Last time we used inequality |zn1 − zn2 | ≤ n|z1− z2| complex numbers of modulus at most 1 which we now
generalize.

Lemma 1. If z1, . . . , zm and w1, . . . , wm are complex numbers of modulus at most 1 then

|z1 . . . zm − w1 . . . wm| ≤
m∑
k=1

|zk − wk| (2)

Proof. Write the left hand side of (2) as a telescoping sum:

z1 . . . zm − w1 . . . wm = z1 . . . zm − w1z2 . . . zm+w1z2 . . . zm − w1w2. . . zm

· · ·+ w1w2 . . . wm−1zm − w1w2 . . . wm

=

m∑
k=1

w1 . . . wk−1(zk − wk)zk+1 . . . zm
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1 Lindeberg’s theorem

Lindeberg’s theorem
For each n we have a triangular array of random variables that are independent in each row

X1,1, X1,2, . . . , X1,r1

X2,1, X2,2, . . . , X2,r2

.

.

.

Xn,1, Xn,2, . . . , Xn,rn

.

.

.

and we set Sn = Xn,1 + · · ·+Xn,rn . We assume that random variables are square-integrable with mean zero, and we use the
notation

E(Xn,k) = 0, σ2
nk = E(X2

n,k), s2n =

rn∑
k=1

σ2
nk (3)

Definition 2 (The Lindeberg condition). We say that the Lindeberg condition holds if

∀ε>0 lim
n→∞

1

s2n

rn∑
k=1

∫
|Xnk|>εsn

X2
nkdP = 0 (4)

Remark 3 (Important Observation). Under the Lindeberg condition, we have

lim
n→∞

max
k≤rn

σ2
nk

s2n
= 0 (5)

Proof.

σ2
nk =

∫
|Xnk|≤εsn

X2
nkdP +

∫
|Xnk|>εsn

X2
nkdP ≤ εs2n +

∫
|Xnk|>εsn

X2
nkdP

So

max
k≤rn

σ2
nk

s2n
≤ ε+

1

s2n
max
k≤rn

∫
|Xnk|>εsn

X2
nkdP

≤ ε+
1

s2n

rn∑
k=1

∫
|Xnk|>εsn

X2
nkdP

Theorem 4 (Lindeberg CLT). Suppose that for each n the sequence Xn1 . . . Xn,rn is independent with mean

zero. If the Lindeberg condition holds for all ε > 0 then Sn/sn
D−→ Z.

Example 5 (Suppose X1, X2, . . . , are iid mean m variance σ2 > 0. Then Sn = 1
σ
√
n

∑n
k=1(Xk −m)

D−→ Z.). •
Triangular array: Xn,k = Xk−m√

nσ
and sn = 1.

• The Lindeberg condition is

lim
n→∞

1

n

n∑
k=1

∫
|Xk−m|>εσ

√
n

(Xk −m)2

σ2
dP

= lim
n→∞

1

σ2

∫
|X1−m|>εσ

√
n

(X1 −m)2dP = 0

by Lebesgue dominated convergence theorem.
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Proof of Lindeberg CLT I
Without loss of generality we may assume that s2n = 1 so that

∑rn
k=1 σ

2
nk = 1.

• Denote ϕnk = E(eitXnk). By (1) we have∣∣∣∣ϕnk(t)− (1− 1

2
t2σ2

nk)

∣∣∣∣ ≤ E (min{|tXnk|2, |tXnk|3}
)

≤
∫
|Xnk|≤ε

|tXnk|3dP +

∫
|Xnk|>ε

|tXnk|2dP

≤ t3ε
∫
|Xnk|dP≤ε

X2
nkdP + t2

∫
|Xnk|>ε

X2
nkdP ≤ t3εσ2

nk + t2
∫
|Xnk|>ε

X2
nkdP (6)

• Using (2), |z1 . . . zm − w1 . . . wm| ≤
∑m
k=1 |zk − wk| we see that for n large enough so that 1

2 t
2σ2
nk < 1

∣∣∣∣∣ϕSn(t)−
rn∏
k=1

(1− 1
2 t

2σ2
nk)

∣∣∣∣∣
≤ εt3

rn∑
k=1

σ2
nk + t2

rn∑
k=1

∫
|Xnk|>ε

X2
nkdP

Proof of Lindeberg CLT II
Since ε > 0 is arbitrary and t ∈ R is fixed, this shows that

lim
n→∞

∣∣∣∣∣ϕSn(t)−
rn∏
k=1

(1− 1
2 t

2σ2
nk)

∣∣∣∣∣ = 0

It remains to verify that limn→∞

∣∣∣e−t2/2 −∏rn
k=1(1− 1

2 t
2σ2
nk)
∣∣∣ = 0.

To do so, we apply the previous proof to the triangular array Zn,k = σn,kZk of independent normal
random variables. Note that

ϕ∑rn
k=1 Znk

(t) =

rn∏
k=1

e−t
2σ2
nk/2 = e−t

2/2

We only need to verify the Lindeberg condition for {Znk}.

Proof of Lindeberg CLT III ∫
|Znk|>ε

Z2
nkdP = σ2

nk

∫
|x|>ε/σnk

x2f(x)dx

So for ε > 0 we estimate (recall that
∑
k σ

2
nk = 1)

rn∑
k=1

∫
|Znk|>ε

Z2
nkdP ≤

rn∑
k=1

σ2
nk

∫
|x|>ε/σnk

x2f(x)dx

≤ max
1≤k≤rn

∫
|x|>ε/σnk

x2f(x)dx

=

∫
|x|>ε/maxk σnk

x2f(x)dx

The right hand side goes to zero as n→∞, because by max1≤k≤rn σnk → 0 by (5). QED
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2 Lyapunov’s theorem

Lyapunov’s theorem

Theorem 6. Suppose that for each n the sequence Xn1 . . . Xn,rn is independent with mean zero. If the
Lyapunov’s condition

lim
n→∞

1

s2+δn

rn∑
k=1

E|Xnk|2+δ = 0 (7)

holds for some δ > 0, then Sn/sn
D−→ Z

Proof. We use the following bound to verify Lindeberg’s condition:

1

s2n

rn∑
k=1

∫
|Xnk|>εsn

X2
nkdP ≤

1

εδs2+δn

rn∑
k=1

∫
|Xnk|>εsn

|Xnk|2+δdP

≤ 1

εδs2+δn

rn∑
k=1

E|Xnk|2+δ

Corollary 7. Suppose Xk are independent with mean zero, variance σ2 and that supk E|Xk|2+δ <∞. Then

Sn/
√
n
D−→ σZ.

Proof. Let C = supk E|Xk|2+δ. WLOG σ > 0. Then sn = σ
√
n and 1

s2+δ
n

∑n
k=1E(|Xk|2+δ) ≤ Cn

σ2+δn1+δ/2 =
C

σ2+δnδ/2 → 0, so Lyapunov’s condition is satisfied.

Corollary 8. Suppose Xk are independent, uniformly bounded, and have mean zero. If
∑
n Var(Xn) =∞,

then Sn/
√

Var(Sn)
D−→ N(0, 1).

Proof. Suppose |Xn| ≤ C for a constant C. Then

1

s3n

n∑
k=1

E|Xn|3 ≤ C
s2n
s3n

=
C

sn
→ 0

The end
Lets stop here

• Homework 11, due Monday - two exercises from Ch 11 of the notes.

• There is also a sizeable list of exercises from past prelims

• Things to do on Friday:

– CLT without Lindeberg condition, when normalization is not by variance

– Multivariate characteristic functions and multivariate normal distribution.

Thank you

Normal approximation without Lindeberg condition
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3 Normal approximation without Lindeberg condition

Asymptotic normality may hold without Lindeberg condition:

• Normalization might be different that the variance. In fact, the variance might be infinite!

A basic remedy for issues with the variance is Slutsky’s theorem.

– Truncation makes variances finite: Xk = XkI|Xk|≤an +XkI|Xk|>an

– We use CLT for truncated r.v. 1
sn

∑n
k=1XkI|Xk|≤an

D−→ N(0, 1) (triangular array)

– Then we show that the difference 1
sn

∑n
k=1 XkI|Xk|>an

P−−→ 0.

– Then Sn/sn is asymptotically normal by Slutsky’s theorem.

• Independence might not hold

A basic remedy for sums of dependent random variables is to rewrite it as sum of independent random
variables, with a negligible correction.

Normalizations that do not use the variance
Example 9. Let X1, X2, . . . be independent random variables with the distribution (k ≥ 2)

Pr(Xk = ±1) = 1/4,

Pr(Xk = k2) = 1/k2,

Pr(Xk = 0) = 1/2− 1/k2.

Let Sn =
∑n+1
k=2 Xk. Then E(Xk) = 1 and E(X2

k) = 1
2

+ k2 so s2n = 1
6
n
(
2n2 − 3n+ 4

)
∼ n3/3. One can check that

(Sn − n)/sn
P−→ 0.

Because with a ”proper normalization” and without any centering, we have Sn/
√
n
D−→ Z/

√
2. To see this, note that

Yk = XkI|X|k ≤ 1 are i.i.d. with mean 0, variance 1
2

so their partial sums satisfy CLT.

Since P (Yk 6= Xk) = 1/k2 is a convergent series, by the first Borel Cantelli Lemma | 1√
n

∑n
k=1(Yk −Xk)| ≤ |Σ|√

n
→ 0 with

probability one.

Example 10 (A good project for the final?). Suppose Xk are independent with the distribution

Xk =


1 with probability 1/2− pk
−1 with probability 1/2− pk
kθ with probability pk
−kθ with probability pk

and Sn =
∑n
k=1 Xk. It is ”clear” that if

∑
pk < ∞ then Sn/

√
n
D−→ N(0, σ2) for any θ. It is ”clear” that if θ = 0 then

Sn/
√
n
D−→ N(0, 1) for any choice of pk < 1/2.

So it is natural to ask what assumptions on θ and pk will imply asymptotic normality. In paricular,

• What are the ”optimal” restrictions on pk if θ < 0? (Say, if θ = −1, to ease the calculations)

• Can one ”do better” than
∑
pk <∞ if θ > 0? (Say, if θ = 1, to ease the calculations)

CLT without independence

Example 11. Suppose ξk are i.i.d. with mean zero and variance σ2 > 0. Show that the sums of moving
averages Xk = 1

m+1

∑k+m
j=k ξj satisfy the Central Limit Theorem.

Proof. Write Sn =
∑n
k=1Xk. We will show that 1√

n
Sn

D−→ N(0, σ2).

Sn =

n∑
k=1

1
m+1

k+m∑
j=k

ξj =

n+m∑
j=1

ξj

n∧j∑
k=1∨(j−m)

1
m+1

=

n∑
j=1

ξj +Rn.

Rn = −
m∑
j=1

m+ 1− j
m+ 1

ξj +

n+m∑
j=n+1

n+m+ 1− j
m+ 1

ξj

By CLT for i.i.d random variables, 1
σ
√
n

∑n
j=1 ξj

D−→ N(0, 1). So we only need to look more carefully at

Since E(R2
n) ≤ 2m2σ2, we see that Rn/

√
n

P−→ 0 so by Slutsky’s theorem we get CLT.
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Example 12 (A good project for the final?). Suppose ξk are i.i.d. with mean zero and variance 1. Do ”geometric moving
averages”

Xk =
k∑
j=0

qjξk−j

satisfy the CLT when |q| < 1? That is, with Sn =
∑n
k=1Xk do we have (Sn − an)/bn

D−→ N(0, 1) for appropriate normalizing
constants an, bn? And if so, how does bn depend on the q?

Random normalizations

Example 13. Suppose X1, X2, . . . , are i.i.d. with mean 0 and variance σ2 > 0. Then∑n
k=1Xk√∑n
k=1X

2
k

converges in distribution to N(0, 1). To see this, write∑n
k=1Xk√∑n
k=1 X

2
k

=
σ√

1
n

∑n
k=1 X

2
k

×
∑n
k=1Xk

σ
√
n

and note that the first factor converges to 1 with probability one. To apply Slutsky’s theorem, we now need to do some more
work that is similar to some old exercises.

Writing Zn = σ√
1
n

∑n
k=1

X2
k

, we check that (Zn − 1)Sn/
√
σ2n

P−−→ 0. Choose arbitrary ε > 0, K > 0. Then lim supn→∞ P (|Zn − 1| · |Sn|/
√
σ2n >

ε) ≤ lim supn→∞ P (|Sn|/
√
σ2n > K) + lim supn→∞ P (|Zn − 1| > ε/K) ≤ 1

K2 . Since K is arbitrarily large, the limit it 0.

CLT without second moments

Exercise 1 (Exercise 11.5 from the notes). Suppose Xk are independent and have density 1
|x|3

for |x| > 1. Show that
Sn√
n logn

→ N(0, 1).

Hint: Verify that Lyapunov’s condition (7) holds with δ = 1 for truncated random variables.

Solution

Let Ynk = XkI|Xk|≤
√
n. Then E(Ynk) = 0 by symmetry. Next we compute the variances

E(Y
2
nk) = 2

∫ √n
1

x2

x3 dx == 2

∫ √n
1

dx
x

= 2 log
√
n = logn

Therefore s2n =
∑n
k=1 E(Y 2

nk) = n logn. To verify Lyapunov’s condition (7) we compute E(|Ynk|
3) = 2

∫√n
1 1dx = 2

√
n. This gives

1

s3n

n∑
k=1

E(|Ynk|
3
) =

2n
√
n

n
√
n logn

√
logn

=
2

(logn)3/2
→ 0

By Lyapunov’s theorem (Theorem 6), we see that

1
√
n logn

n∑
k=1

Ynk
D−−→ N(0, 1).

To finish the proof, we need to show that 1√
n logn

∑n
k=1 Ynk−

1√
n logn

∑n
k=1 Xk

P−−→ 0. We show L1-convergence. E|Ykn−Xk| = 2
∫∞√
n
x 1
x3 dx = 2/

√
n

so

E

∣∣∣∣∣∣
1

√
n logn

n∑
k=1

Ynk −
1

√
n logn

n∑
k=1

Xk

∣∣∣∣∣∣ ≤
1

√
n logn

n∑
k=1

E|Xk − Ynk| ≤
2

√
logn

→ 0

Exercise 2 (A good project for the final?). Suppose Xk are i.i.d. with density 1
|x|3 for |x| > 1. Show that

Sn√
n logn

→ N(0, 1) using one of the other truncations from the hint for Exercise 11.5 in the notes.

Limit Theorems in Rk This is based on [Billingsley, Section 29].

April 24, 2020

4 The basic theorems

Notation

• If X : Ω → Rk is measurable, then X is called a random vector. X is also called a k-variate random variable, as
X = (X1, . . . , Xk). We will also write X as column vectors.
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• Recall that a probability distribution of X is a probability measure µ on Borel subsets of Rk defined by µ(U) = P ({ω :
X(ω) ∈ U}).

• Recall that a (joint) cumulative distribution function of X = (X1, . . . , Xn) is a function F : Rk → [0, 1] such that

F (x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk)

• From π − λ theorem we know that F determines uniquely µ. In particular, if

F (x1, . . . , xk) =

∫ x1

−∞
· · ·
∫ xk

−∞
f(y1, . . . , yk)dy1 . . . dyk

then µ(U) =
∫
U f(y1, . . . , yk)dy1 . . . dyk.

Let Xn : Ω→ Rk be a sequence of random vectors.

Definition 14. We say that Xn converges in distribution to X if for every bounded continuous function f : Rk → R the
sequence of numbers E(f(Xn)) converges to Ef(X).

We will write Xn
D−→ X; if µn is the law of Xn we will also write µn

D−→ µ; the same notation in the language of cumulative

distribution functions is Fn
D−→ F ; the latter can be defined as Fn(x)

D−→ F (x) for all points of continuity of F , but it is simpler
to use Definition 14.

Proposition 15. If Xn
D−→ X and g : Rk → Rm is a continuous function then g(Xn)

D−→ g(X)

For example, if (Xn, Yn)
D−→ (Z1, Z2) then X2

n + Y 2
n
D−→ Z2

1 + Z2
2 .

Proof. Denoting by Yn = g(Xn), we see that for any bounded continuous function f : Rm → R, f(Yn) is a bounded continuous
function f ◦ g of Xn.

Definition 16. The sequence of measures µn on Rk is tight if for every ε > 0 there exists a compact set
K ⊂ Rk such that µn(K) ≥ 1− ε for all n.

Theorem 17. If µn is a tight sequence of probability measures then there exists µ and a subsequence nk

such that µnk
D−→ µ

Proof. The detailed proof is omitted. Omitted in 2020

Corollary 18. If {µn} is a tight sequence of probability measures on Borel subsets of Rk and if each

convergent subsequence has the same limit µ, then µn
D−→ µ

The end
Lets stop here

• Things to do on Monday:

– Multivariate characteristic functions and multivariate normal distribution.

Thank you

5 Multivariate characteristic function

Multivariate characteristic function and multivariate normal distribution
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Multivariate characteristic function
Recall the dot-product x · y := x′y =

∑k
j=1 xjyj .

• The multivariate characteristic function ϕ : Rk → C is

ϕ(t) = E exp(it ·X) (8)

• This is also written as ϕ(t1, . . . , tk) = E exp(
∑k
j=1 itjXj).

• The inversion formula shows how to determine µ(U) for a rectangle U = (a1, b1]×(a2, b2]×· · ·×(ak, bk]
such that µ(∂U) = 0:

µ(U) = lim
T→∞

1

(2π)k

∫ T

−T
· · ·
∫ T

−T

k∏
j=1

e−iakjtj − e−ibjtj
itj

ϕ(t1, . . . , tk)dt1 . . . dtk (9)

• Thus the characteristic function determines the probability measure µ uniquely.

Corollary 19 (Cramer-Wold device I). The law of X is uniquely determined by the univariate laws t ·X =∑k
j=1 tjXj.

Corollary 20. X,Y are independent iff ϕX,Y (s, t) = ϕX(s)ϕY (t)

Example 21. If X,Y are independent normal with the same variance then X + Y and X − Y are independent normal. Indeed,
WLOG we assume that means are zero and variances are one. ϕX+Y,X−Y (s, t) = Eeis(X+Y )+it(X−Y ) = Eei(t+s)X+i(s−t)Y =

ϕX(s + t)ϕY (s − t) = exp((t + s)2/2 + (s − t)2/2) = exp((t2 + s2 + 2ts)/2 + (s2 + t2 − 2st)/2) = es
2
et

2
. This matches

ϕX+Y (s)ϕX−Y (t) as ϕX±Y (s) = es
2/2es

2/2 = es
2
.

Theorem 22 (Bernstein (1941)). If X, Y are independent and X + Y,X − Y are independent, then X, Y are normal

Kac M. ”On a characterization of the normal distribution,” American Journal of Mathematics. 1939. 61. pp. 726—728.

Theorem 23 (Cramer-Wold device II). Xn
D−→ Y iff ϕn(t)→ ϕ(t) for all t ∈ Rk.

Note that this means that Xn
D−→ Y iff for all t1, . . . , tk univariate random variables converge,

∑
tjXj(n)

D−→∑
tjYj

Corollary 24. If Z1, . . . Zm are independent normal, A is an k ×m matrix and X = AZ then
∑k
j=1 tjXj

is (univariate) normal.

Proof. Lets simplify the calculations by assuming Zj are standard normal. The characteristic function of S =
∑
j tjXj is

ϕ(s) = E exp(is(t ·X)) = E exp(is(t ·AZ)) = E exp(is(A′t) · Z)

=

k∏
i=1

e−s
2[AT t]2i /2 = e−s

2‖A′t‖2/2

So S is N(0, σ2) with variance σ2 = ‖A′t‖2

The generalization of this property is the ”cleanest” definition of the mutlivariate normal distribution.

6 Multivariate normal distribution

Multivariate normal distribution N(m,Σ)

Definition 25. X is multivariate normal if there is a vector m and a positive-definite matrix Σ such that its characteristic
function is

ϕ(t) = exp
(
it′m− 1

2
t′Σt

)
(*)

8



(How do we know that (*) n is a characteristic function?) By differentiation ∂
∂tj

and ∂2

∂ti∂tj
, the parameters N(m,Σ) get natural interpretation:

EX = m and Σi,j = cov(Xi,Xj) so Σ = E(XX′) −mm′.

Definition 26. X is multivariate normal if there is a vector m an m× k matrix A and a sequence Z1, . . . , Zm of independent
standard normal random variables such that X = m + AZ

Note that previous slide says ϕ
t′(X−m)

(s) = e−s
2‖A′t‖2/2 shows that X has characteristic function (*) and t ·X has variance

σ
2

= ‖A′t‖2 = (A
′
t) · (A′t) = t

′
AA
′
t = t

′
Σt

If m = 0 then EXX′ = EAZZ′A′ = AE(ZZ′)A′ = AA′ = Σ

Definition 27. X is multivariate normal if for every t ∈ Rk the univariate random variable X = X · t is normal N(µ, σ2) for
some µ = µ(t) ∈ R and σ2 = σ2(t) ≥ 0.

Multivariate normal distribution N(m,Σ)

Remark 28. If X is normal N(m,Σ), then X −m is centered normal N(0,Σ). In the sequel, to simplify notation we only
discuss centered case.

Here is the fourth definition:

Definition 29 (half-definition). X is N(0,Σ) if it has density

f(x) =
1

(2π)k/2
√

det Σ
exp

(
−

x · (Σ−1x)

2

)
We are not going to use this definition!

Remark 30. Denoting by ak the columns of A, we have X =
∑k
j=1 Zjaj . This is the universal feature of Gaussian

vectors, even in infinite-dimensional vector spaces – they all can be written as linear combinations of deterministic vectors
with independent real-valued ”noises” as coefficients. For example, the random “vector” (Wt)0≤t≤1 with values in the vector
space C[0, 1] of continuous functions on [0, 1] can be written as Wt =

∑∞
k=1 Zjgj(t) with deterministic functions gj(t) =

1
2j+1

sin((2j + 1)πt).

Example: bivariate N(0,Σ)

• Write X =

[
X1

X2

]
. WLOG assume E(X1) = E(X2) = 0 and E(X2

1 ) = E(X2
2 ) = 1. Then there is just one free parameter:

correlation coefficient ρ = E(X1X2).

• Σ =

[
1 ρ
ρ 1

]
is non-negative definite for any |ρ| ≤ 1 and ϕ(s, t) = e−s

2/2−t2/2−ρst is a characteristic function of a random

variable X = (X1, X2) with univariate N(0,1) laws, with correlation E(X1X2) = − ∂2

∂s∂t
ϕ(s, t)|s=t=0 = ρ.

• If Z1, Z2 are independent N(0, 1) then

X1 = Z1, X2 = ρZ1 +
√

1− ρ2Z2 (10)

will have exactly the same second moments, and the same characteristic function.

• Since det Σ = 1− ρ2, when ρ2 6= 1 the matrix is invertible and the resulting bivariate normal density is

f(x, y) =
1

2π
√

1− ρ2
exp

(
−
x2 + y2 − 2ρxy

2(1− ρ2)

)
• From (10) we also see that X2 − ρX1 is independent of X1 and has variance 1− ρ2. In particular if ρ = 0 then X1, X2

are independent.

Remark 31. The covariance matrix Σ = AA′ is unique but the representation X = AZ is not unique. For example
independent pair

X =

[
Z1

Z2

]
=

[
1 0
0 1

]
×
[
Z1

Z2

]
can also be represented as

X =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
Z1

Z2

]
because Z1 −Z2 and Z1 +Z2 are independent normal random variables of variance 2 and X̃ =

[
(Z1 + Z2)/

√
2

(Z1 − Z2)/
√

2

]
has the same

law as X. This implies non-uniqueness for all other representations.

9



Normal distributions on octonions
(I do not know the answer for octonions)

Example 32 (Good project for the final?). Suppose Z1, Z2, Z3, Z4 be independent normal random variables.
Let ZC = Z1 + iZ2 be a complect random variable and ZQ = Z1 + iZ2 + jZ3 +kZ4 be a quaternionic random
variable.

• Show that

EZn1 =

{
n!

2n/2(n/2)!
if n is even

0

• What is the formula for E(ZnC) and for E(ZmC Z̄nC) for m,n = 0, 1, 2, . . . ?

• What is the formula for E(ZnQ) and for E(ZmQ Z̄nQ) for m,n = 0, 1, 2, . . .

These are questions about gaussian random matrices ZC =

[
Z1 Z2

−Z2 Z1

]
and ZQ =

[
ZC Z̃C
−Z̃TC ZTC

]
=


Z1 Z2 Z3 Z4
−Z2 Z1 −Z4 Z3
−Z3 Z4 Z1 −Z2
−Z4 −Z3 Z2 Z1



The end
Lets stop here

• Things to do on Wednesday:

– Multivariate central limit theorem.

– Examples

– Final Exam projects

Thank you

Mutlivariate CLT and applications

Recall from previous lectures

• The multivariate characteristic function ϕ(t) = E exp(it ·X)

• This is also written as ϕ(t) = E exp(it′X).

• This is also written as ϕ(t1, . . . , tk) = E exp(
∑k
j=1 itjXj).

Theorem 33 (Cramer-Wold device II). Xn
D−→ Y iff ϕn(t)→ ϕ(t) for all t ∈ Rk.

Note that this means that Xn
D−→ Y iff for all t1, . . . , tk univariate random variables converge,

∑
tjXj(n)

D−→∑
tjYj

Definition 34. X is multivariate normal if there is a vector m and a positive-definite matrix Σ such that
its characteristic function is ϕ(t) = exp

(
it′m− 1

2t′Σt
)
.

Equivalently, X = m + AZ, where AA′ = Σ. Without loss of generality we can assume A is a square
matrix.

Equivalently, X = m +
∑k
j=1 ~vjZj , where Zj are i.i.d. N(0, 1) and Σ =

∑k
j=1 ~vj~v

′
j .

10



7 The CLT

The CLT

Theorem 35. Let Xn = (Xn1, . . . , Xnk) be independent random vectors with the same distribution and
finite second moments. Denote m = EXk and Sn = X1 + · · ·+ Xn. Then

(Sn − nm)/
√
n
D−→ Y

where Y is a centered normal distribution with the covariance matrix Σ = E(XnX′n)−mm′.

The notation is N(0,Σ). Note that this is inconsistent with the univariate notation N(µ, σ) which for consistency with the

multivariate case should be replaced by N(µ, σ2).

Proof. Without loss of generality we can assume m = 0. Let t ∈ Rk. Then Xn := t′Xn are univariate i.i.d.
variables with mean zero and variance σ2 = E(t′Xn)2 = E(t′XnX′nt) = t′E(XnX′n)t = t′Σt. By CLT for

i.i.d. case, we have Sn/
√
n
D−→ σZ.

If Y = (Y1, . . . , Yk) has multivariate normal distribution with covariance Σ, then t′Y is univariate normal

with the same variance σ2. So we showed that t′Sn/
√
n
D−→ t′Y for all t ∈ Rk. This ends the proof by

Theorem 33 (Cramer-Wold device).

Example 36. Suppose ξk, ηk are i.i.d with mean zero variance one. Then 1√
n

(
∑n
k=1 ηk,

∑n
k=1(ηk + ξk))

D−→
N(0,

[
1 1
1 2

]
).

Indeed, random vector Xk =

[
ξk

ξk + ηk

]
has covariance matrix Σ =

[
1 1
1 2

]
Since

∑n
k=1 Xk =

[
Sηn
Sηn

]
+

[
0
Sξn

]
, this is not anything impressive, as

[
Z1

Z1 + Z2

]
has the required covariance

matrix.

7.1 Application: Chi-Squared test for multinomial distribution

Application
Chi-Squared test for multinomial distribution

• A multinomial experiment has k outcomes with probabilities p1, . . . , pk > 0.

• A multinomial random variable (N1, . . . , Nk) lists observed counts per category in n repeats of the multinomial experi-
ment. The expected counts are then Ej = npj .

• The following result is behind the use of the chi-squared statistics in tests of consistency.

Theorem 37.
∑k
j=1

(Nj−Ej)2

Ej

D−→ χ2
k−1 = Z2

1 + · · ·+ Z2
k−1

Lets write this in our language: take i.i.d. vectors P (X = ~ej) = pj and let S(n) =
∑n
j=1 Xj . Then

Theorem 38.
∑k
j=1

(Sj(n)−npj)2

npj

D−→ Z2
1 + · · ·+ Z2

k−1

∑k
j=1

(Sj(n)−npj)2
npj

D−→ Z2
1 + · · ·+ Z2

k−1

Lets prove this for k = 3. Consider independent random vectors Xk that take three values

1
0
0

 ,

0
1
0

 and

0
0
1

 with probabilities

p1, p2, p3. Then Sn is the sum of n independent identically distributed vectors X1, . . . ,Xn. Components of Sn are counts

Clearly, EXk =

p1

p2

p3

. To compute the covariance matrix, write X for Xk. For non-centered vectors, the covariance is

E(XX′)− E(X)E(X′). We have

E(XX′) = p1

[
1
0
0

]
× [1 0 0] + p2

[
0
1
0

]
× [0 1 0] + p3

[
0
0
1

]
× [0 0 1] =

[
p1 0 0
0 p2 0
0 0 p3

]

11



So

Σ = E(XX′)− E(X)E(X′) =

[
p1(1 − p1) −p1p2 −p1p3
−p1p2 p2(1 − p2) −p2p3
−p1p3 −p2p3 p3(1 − p3)

]

Then Sn is the sum of n independent vectors, and the central limit theorem implies that 1√
n

Sn − n

p1

p2

p3

 D−→W. By

Continuity Theorem 15 we have
3∑
j=1

(Sj(n)− npj)2

npj

D
−−→

3∑
j=1

W 2
j

pj

where W = (W1,W2,W3) is multivariate normal with covariance matrix Σ.

W is N(0,Σ)
Note that since

∑k
j=1 Sj(n) = n, the gaussian distribution is degenerate: W1 +W2 +W3 = 0. (No density!)

It remains to show that
∑3
j=1

W2
j

pj
has the same law as Z2

1 +Z2
2 i.e. that it is exponential. To do so, we first note that the

covariance of (Y1, Y2, Y3, ) := (W1/
√
p1,W2/

√
p2,W3/

√
p3) is

ΣY =

 1− p1 −√p1p2 −√p1p3

−√p1p2 1− p2 −√p2p3

−√p1p3 −√p2p3 1− p3

 = I −

√p1√
p2√
p3

× [√p1
√
p2

√
p3
]

Since v1 =

√p1√
p2√
p3

 is a unit vector, we can complete it with two additional vectors v2 =

α1

α2

α3

 and v3 =

β1

β2

β3

 to form an

orthonormal basis {v1,v2,v3} of R3. This can be done in many ways, for example by the Gram-Schmidt orthogonalization to v1,

1
0
0

 ,
0
1
0

. The

specific form of v2,v3 does not enter the proof - we only need to know that v1,v2,v3 are orthonormal.

ΣY = I − v1v
′
1

To complete the proof we write I = v1v′1 + v2v′2 + v3v′3 as these are orthogonal eigenvectors of I with λ = 1. (Or, because

x = v1v′1x + v2v′2x + v3v′3x as v′jx = x · vj are the coefficients of expansion of x in orthonormal basis {v1, v2, v3} of R3.)

Therefore,
ΣY = v2v′2 + v3v′3

We now notice that ΣY is the covariance of another multivariate normal random variable Z = v2Z2 + v3Z3 where Z2, Z3 are
independent real-valued N(0, 1). Indeed,

EZZ′ =
3∑

i,j=2

viv
′
jE(ZiZj) =

3∑
i=2

viv
′
i = v2v′2 + v3v′3

Therefore, vector Y has the same distribution as Z, and the square of its length Y 2
1 +Y 2

2 +Y 2
3 has the same distribution as

‖Z‖2 = ‖v2Z2 + v3Z3‖2 = ‖v2Z2‖2 + ‖v3Z3‖2 = Z2
2 + Z2

3

(recall that v2 and v3 are orthogonal unit vectors).

Remark 39 (Good project for the final?). It is clear that this proof generalizes to all k.

The distribution of Z2
1 + · · ·+Z2

k−1 is Gamma with parameters α = (k− 1)/2 and β = 2, known in statistics as chi-squared

distribution with k − 1 degrees of freedom. To see that Z2
2 + Z2

3 is indeed chi-squared with two-degrees of freedom (i.e.,
exponential), we can determine the cumulative distribution function by computing 1− F (u):

P (Z2
2 + Z2

3 > u) =
1

2π

∫
x2+y2>u

e−(x2+y2)/2dxdy

=
1

2π

∫ 2π

0

∫
r>
√
u
e−r

2/2rdrdθ = e−u/2

To compute the density of Z2
1 , differentiate F

Z2
1

(x) = 1√
2pi

∫√x
−
√
x
e−z

2/2dz. These are cases m = 2 and m = 1 of the formula from Wikipedia:

f(x; m) =


x
m
2
−1

e
− x

2

2
m
2 Γ

(
m
2

) , x > 0;

0, otherwise.
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Example 40 (Good project for Final). Suppose ξj , ηj , γj are i.i.d. mean zero variance 1. Construct the
following vectors:

Xj =

ξj − ηjηj − γj
γj − ξj


Let Sn = X1 + · · ·+ Xn. Show that 1

n‖Sn‖
2 D−→ Y , and determine the density of Y .

Exercise 3 (Mutlivariate Slutsky’s Thm). Suppose that R2k-valued random variables (Xn,Yn) are such that Xn
D−−→ X and Yn

P−−→ 0 (that is, limn→∞ P (‖Yn‖ >
ε) = 0 for all ε > 0).

Prove that Xn + Yn
D−−→ X

The end
Lets stop here

• Things to do on Friday:

– Questions?

– Curiosities:

∗ Iserlis theorem (Wick formula).

∗ Wigner matrices

∗ Wishart matrices

– Final Exam projects

Thank you

Additional topics

Today’s plan

• Q&A

• Joint moments of multivariate normal distribution

• Random matrices

Prevalence of bell-shaped data
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Prevalence of bell-shaped data

Prevalence of bell-shaped data
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Theorem 41 (Isserlis (1918), Wick (1950)). If X is N(0,Σ) then

E(X1X2 . . . Xk) =
∑

π∈P2(k)

∏
{i,j}∈π

E(XiXj)

Here P2(n) is the set of pair partions of {1, . . . , k}. For example, there are three pair partitions for {1, 2, 3, 4}: 1 2 3 4

1 2 3 4 1 2 3 4

π1 = {{1, 2}, {3, 4}}, π2 = {{1, 4}, {2, 3}}, π3 = {{1, 3}, {2, 4}}.

So E(X1X2X3X4) = Σ1,2Σ3,4 + Σ1,4Σ2,3 + Σ1,3Σ2,4. In particular,

• If Z is standard normal E(Z4) = 3 because we can apply the theorem to (Z,Z, Z, Z)

15



• If X,Y are jointly normal with variance 1 and correlation ρ then E(X2Y 2) = 1 + 2ρ2 because we can apply the theorem
to (X,X, Y, Y )

• If Z is standard normal then E(Z2n) = 1× 3× 5× · · · × (2n− 1) because there are 2n− 1 choices to pair 1, then 2n− 3 choices to
pair the next element on the list, and so on.

A 102 years ago ...
Isserlis, Biometrika (1918)

16
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Proof of Isserlis formula
E(X1X2 . . . Xk) =

∑
π∈P2(k)

∏
{i,j}∈π E(XiXj)

• Write k = 2n as both sides are zero for odd k. The proof is by induction on n. Note that for k < 2n vector (X1, . . . Xk) is jointly normal with Σk
taken as the appropriate submatrix of Σ.

• Case n = 1 is obvious E(X1X2) = Σ12

• Induction step:

E(X1X2 . . . X2n) =
2n∑
j=2

E(X1Xj)E
∏

i6=1,j

Xi

π = {1, j} ∪ π′

• Then look at ∂
∂t1

in E(X1X2 . . . X2n) = (−1)n ∂2n

∂t1...∂t2n
ϕ(t)

∣∣
t=0

(−1)
n ∂2n

∂t1...∂t2n
ϕ(t)

∣∣∣
t=0

= (−1)
n ∂2n−1

∂t2...∂t2n

ψ(t2 . . . , t2n) ∂
∂t1

(e
−

Σ11t
2
1

2
−
∑2n
j=2 Σ1,jt1tj )

∣∣
t1=0

 ∣∣∣
t=0

= (−1)
n ∂2n−1

∂t2...∂t2n

−ψ(t2, . . . , t2n)
2n∑
j=2

Σ1,jtj

 ∣∣
t=0

= (−1)
n−1

2n∑
j=2

Σ1j
∂2n−2

∂t2···6∂tj...∂t2n
∂
∂tj

(
tjψ(t2 . . . , t2n)

) ∣∣
tj=0

∣∣∣
t=0

= (−1)
n−1

2n∑
j=2

Σ1j
∂2n−2

∂t2···6∂tj...∂t2n
(ϕ(t))

∣∣∣
t=0

=
2n∑
j=2

E(X1Xj)E(X2 . . . X̌j . . . X2n)

Wigner matrices

A Wigner matrix is a symmetric random matrix W = 1√
n


Z11 Z12 . . . Z1n
Z12 Z22 . . . Z2n

.

.

.

.

.

.
Z1n Z2n . . . Znn

 where Zij are independent N(0, 1)

random variables.
Clearly, W =

∑
i≤j≤n ZijEij with deterministic matrices Eij .

It turns out that the following holds:

lim
n→∞

1
n

tr(Wk) =

∫ 2

−2
xk

√
4− x2

π
dx in probability, in L1, and almost surely for an infinite array Zij

Wigner was interested in the eigenvalues Λ1, . . . ,Λn of X and empirical spectral distribution Fn(x) = 1
n

#{Λk ≤ x}. The above

shows that (random) moments
∫
xkdFn converge. One can show that this implies Fn

D−→
√

4−x2

π
dx with probability one. The

measure

√
4−x2

π
dx is called Wigner’s semicircle law and plays a role of the standard normal distribution in free probability.

Gaussian random matrices
Consider the set M ≡ Rn(n+1)/2 of all symmetric n× n matrices with inner product 〈A,B〉 = tr(AB). (Does the definition of

normal distribution depend on the inner product?)

〈A,B〉 =
∑n
i=1

∑n
j=1 aijbji =

∑n
i=1 aiibii + 2

∑
i<j aijbij

Definition 42. X is (centered) normal matrix-valued random variable if X =
∑
j ZjAj for some deterministic symmetric

matrices Aj .

The characteristic function of X is ϕ(T ) = Eeitr(TX). So

ϕ(T ) = exp− 1
2

∑
j tr2(TAj)

In particular, we may ask about

ϕ(T ) = e−
1
2

tr(T2). Because Ei,j are an orthogonal basis of M, we can expand

T =

n∑
i=1

tr(TEii)Eii +
∑
i<j

tr(TEij)

tr(E2
ij)

Eij
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T =

n∑
i=1

tr(TEii)Eii +
∑
i<j

tr(TEij)

2
Eij

So ‖T‖2 = tr(T2) =
∑

i tr2(TEii) +
∑

i<j tr2(TEij)/2 This means that we want X =
∑n
i=1 EiiZi +

∑
i<j EijZij/

√
2

X =
1
√

2



√
2Z11 Z12 . . . Z1n
Z12

√
2Z22 . . . Z2n

.

.

.

.

.

.

Z1n Z2n . . .
√

2Znn



Gaussian Orthogonal Ensemble
This is the celebrated Gaussian Orthogonal Ensemble (GOE),

X = 1√
2



√
2Z11 Z12 . . . Z1n
Z12

√
2Z22 . . . Z2n

.

.

.

.

.

.

Z1n Z2n . . .
√

2Znn


which is sometimes confused with the Wigner matrix W of i.i.d N(0, 1) random variables. Up to a scaling, X and W differ

only by an extra factor on the main diagonal.
GOE matrix X arises naturally by symmetrization: with non-symmetric i.i.d. matrix Z = [Zi,j ], we take X = (Z + Z′)/2.
GOE refers to invariance under orthogonal group: X ' UXU ′ for orthogonal matrix U . This property is easy to check

using characteristics function and ”tracial property” tr(AB) = tr(BA).

ϕUXU′ (T ) = E exp itr(TUXU′) = E exp itr(U′TUX) = e−
1
2

tr((U′TU)2) = e−
1
2

tr(U′T2U) = e−
1
2

tr(UU′T2) = e−
1
2

tr(T2) =
ϕX(T )

• GOE matrix x ∈ M, has density f(x) = C exp(− 1
2
tr(x2)) with respect to Lebesgue measure on Rn(n+1)/2

i.e. with respect

to dx11dx12 . . . dx1ndx22dx23 . . . dx2n . . . dxnn.

• Polynomial perturbations fε(x) = Cε exp(− 1
2
tr(x2) + εtr(x4)) preserve orthogonal invariance at the expense of loosing

connection with independence.

• In another direction, one can study random matrices that are constructed from non-normal independent random variables.
For example, in population genetics the SNP data consist of M×N matrices of order M ∼ 103 and N ∼ 106 with entries
that take 3 values {0, 1, 2} and are independent between rows and ”weakly linked” between columns.

The end
Final Exam projects are already posted.

Thank you
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