
1. Integration add-on from 2019 Notes

Of special interest are cumulative distribution functions such that F (x) =
∫ x
−∞ f(y)dy where f(y) ≥ 0 is called the

density function, i.e. a non-negative measurable and integrable function that integrates to 1. (We do not assume
continuity! Improper Riemann integrals are OK here.)

Proposition 1.0.1. If random variable X is integrable and has cumulative distribution function F (x) =
∫ x
−∞ f(y)dy

then

(1) E[X] =

∫
R
xf(x)dx.

To prove this, we consider separately X+ and X−.

We decompose X = X+−X− and approximate ψn(X
+) ↑ X+ with ψn(x) = (k− 1)/2n on ((k− 1)/2n, k/2n],

ψn(x) = 0 for x < 0, compare (??). Then

E(ψn(X
+)) =

n2n∑
k=1

k − 1

2n

(
F (

k

2n
)− F (k − 1

2n
)

)
=

∫
R
ψn(x)f(x)dx.

Taking the limit, by monotone convergence theorem (see Remark ??) we get E(X+) =
∫
R x

+f(x)dx and hence
E(X) =

∫
R(x

+ − x−)f(x)dx =
∫
R xf(x)dx

Example 1.0.2. Uniform density U [a, b] is f(x) = 1
b−aI[a,b](x). The mean and the variance are m = (a + b)/2,

σ2 = (b− 1)2/12

Example 1.0.3. Exponential distribution: F (x) =

{
1− e−x x > 0

0 x ≤ 0
. The density is f(x) = e−xI[0,∞)(x). The

mean and the variance are m = 1, σ2 = 1.

Example 1.0.4. Standard normal density: f(x) = 1√
2π
e−x

2/2. The mean and the variance are m = 0 and σ2 = 1.

1.0.1. Multivariate densities. Similar approximation argument shows that if µ(dx) = f(x)dx has the density with
respect to Lebesgue measure on Rk then

E[g(X1, . . . , Xk)] =

∫
Rk

g(x)f(x)dx

In particular, cov(X1, X2) =
∫
R2(x−m1)(y −m2)f(x1, x2)dx1dx2

Example 1.0.5. Uniform distribution on a disk: f(x, y) =

{
1
π x2 + y2 ≤ 1

0 x2 + y2 > 1


