
Chapter 11

The Central Limit
Theorem

Printed: April 13, 2020

1. Sums of independent identically distributed
random variables

Denote by Z the ”standard normal random variable” with density 1√
2π
e−x

2/2.

Lemma 11.1. EeitZ = e−t
2/2

Proof. We use the same calculation as for the moment generating function:∫ ∞
−∞

exp(itx− 1

2
x2)dx = e−t

2/2

∫ ∞
−∞

exp(−1

2
(x− it)2)dx =

√
2π

Note that e−z
2/2 is an analytic function so

∮
γ e
−z2/2dz = 0 over any closed path. So∫ A

−A
exp−(x− it)2/2dx−

∫ A

−A
e−x

2/2dx+

∫ it

0
exp(−(A− is)2/2)ds−

∫ it

0
exp(−(−A− is)2/2)ds = 0

�

Theorem 11.2 (CLT for i.i.d.). Suppose {Xn} is i.i.d. with mean m and variance 0 < σ2 <∞.
Let Sn = X1 + · · ·+Xn. Then

Sn − nm
σ
√
n

D−→ Z

This is one of the special cases of the Lindeberg theorem and the proof uses characteristic functions.

Note that ϕSn/
√
n(t) = e−t

2/2 when Xj are independent N(0, 1).
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122 11. The Central Limit Theorem

In general, ϕSn/
√
n(t) is a complex number. For example, when Xn are exponential with pa-

rameter λ = 1, the conclusion says that

ϕSn/
√
n(t) =

e−it
√
n(

1− i t√
n

)n → e−t
2/2

which is not so obvious to see. On the other hand, characteristic function in Exercise 10.5 on page
119 is real and the limit can be found using calculus:

ϕSn/
√
n(t) = cosn(t/

√
n)→ e−t

2/2.

Here is a simple inequality that will suffice for the proof in the general case.

Lemma 11.3. If z1, . . . , zm and w1, . . . , wm are complex numbers of modulus at most 1 then

(11.1) |z1 . . . zm − w1 . . . wm| ≤
m∑
k=1

|zk − wk|

Proof. Write the left hand side of (11.1) as a telescoping sum:

z1 . . . zm − w1 . . . wm =
m∑
k=1

z1 . . . zk−1(zk − wk)wk+1 . . . wm

�

(Omitted in 2020)

Example 11.1. We show how to complete the proof for the exponential distribution.∣∣∣∣∣∣ e−it
√
n(

1− i t√
n

)n − e−t2/2
∣∣∣∣∣∣ =

∣∣∣∣∣
(
e−it/

√
n

1− i t√
n

)n
− (e−t

2/(2n))n

∣∣∣∣∣ ≤ n
∣∣∣∣∣ e−it/

√
n

1− i t√
n

− e−t
2/(2n)

∣∣∣∣∣
= n

∣∣∣∣∣1− it/
√
n+ t2/(2n) + it3/(6n

√
n)− . . .

1− i t√
n

− 1 + t2/(2n)− t4/(6n2) + . . .

∣∣∣∣∣
= n

∣∣∣∣(1−
it
√
n
−
t2

2n
−

it3

6n
√
n

+ . . .

)(
1 + i

t
√
n
−
t2

n
+ . . .

)
− 1 +

t2

2n
−

t4

6n2
+ . . .

∣∣∣∣
= n

∣∣∣∣(1− t2

n
+
t2

2n
+ i

t3

6n
√
n
− · · · − 1 +

t2

2n
−

t4

6n2
+ . . .

∣∣∣∣ ≤ n C(t)

n
√
n
→ 0.

Proof of Theorem 11.2. Without loss of generality we may assume m = 0 and σ = 1. We have

ϕSn/
√
n(t) = ϕX(t/

√
n)n. For a fixed t ∈ R choose n large enough so that 1 − t2

2n > −1. For such

n, we can apply (11.1) with zk = ϕX(t/
√
n) and wk = 1− t2

2n . We get∣∣∣ϕSn/√n(t)−
(

1− t2

2n

)n∣∣∣ ≤ n ∣∣∣∣ϕX(t/
√
n)− 1− t2

2n

∣∣∣∣ ≤ t2Emin

{
|t||X|3√

n
,X2

}
Noting that limn→∞min{|t||X|3/

√
n,X2} = 0, by dominated convergence theorem (the integrand

is dominated by the integrable function X2) we have Emin
{
|t||X|3√

n
, X2

}
→ 0 as n→∞. So

lim
n→∞

∣∣∣∣ϕSn/√n(t)−
(

1− t2

2n

)n∣∣∣∣ = 0.
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It remains to notice that (1− t2

2n)n → e−t
2/2. �

Remark 11.4. IfXn
D−→ Z then the cumulative distribution functions converge uniformly: supn |P (Xn ≤

x)− P (Z ≤ x)| → 0.

Example 11.2 ( Normal approximation to Binomial). If Xn is Bin(n, p) and p is fixed then

P ( 1
nXn < p+ x/

√
n)→ P (Z ≤ x

√
p(1− p) as n→∞.

Example 11.3 ( Normal approximation to Poisson). If Xλ is Poiss and p is fixed then (Xλ −
λ)/
√
λ
D−→ Z as λ→∞. (Strictly speaking, the CLT gives only convergence of (Xλn−λn)/

√
nλ

D−→
Z as n→∞.)

(Omitted in 2020)

2. General form of a limit theorem

The general problem of convergence in distribution can be stated as follows: Given a sequence Zn of random variables, find
normalizing constants an, bn and a limiting distribution/random variable Z such that (Zn − bn)/an → Z.

In Example 9.1, Zn is a maximum, an = 1, bn = logn.

In Theorem 11.2, Zn is the sum, the normalizing constants are bn = E(Sn) and an =
√
V ar(Sn), and we will make the

same choice for sums of independent random variables in the next section. However, finding an appropriate normalization

for CLT may be not obvious or easy, see Section 5.

One may wonder how much flexibility do we have in the choice of the normalizing constants an, bn

Theorem 11.5 (Convergence of types). Suppose Xn
D−→ X and anXn + bn

D−→ Y for some an > 0, bn ∈ R, and both
X,Y are non-degenerate. Then an → a > 0 and bn → b and in particular Y has the same law as aX + b.

So if (Zn− bn)/an → Z and (Zn− b′n)/a′n → Z′ then (Zn− b′n)/a′n = an
a′n

((Zn − bn)/an) + (bn− b′n)/a′n, which means

that an/a′n → a > 0 and (bn − b′n)/a′n → b. So a′n = an/a, b′n = bn − b
a
an and Z′ = aZ + b.

(Omitted in 2020)

Proof.
�� ��To be written... �

It is clear that independence alone is not sufficient for the CLT.

3. Lindeberg’s theorem

The setting is of sums of triangular arrays: For each n we have a family of independent random
variables

Xn,1, . . . , Xn,rn

and we set Sn = Xn,1 + · · ·+Xn,rn .

For Theorem 11.2, the triangular array can be Xn,k = Xk−m
σ
√
n

. Or one can take Xn,k = Xk−m
σ ...

Through this section we assume that random variables are square-integrable with mean zero,
and we use the notation

(11.2) E(Xn,k) = 0, σ2
nk = E(X2

n,k), s
2
n =

rn∑
k=1

σ2
nk
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Definion 11.1 (The Lindeberg condition). We say that the Lindeberg condition holds if

(11.3) lim
n→∞

1

s2
n

rn∑
k=1

∫
|Xnk|>εsn

X2
nkdP = 0 for all ε > 0

(Note that strict inequality
∫
|Xnk|>εsn X

2
nkdP can be replaced by

∫
|Xnk|≥εsn X

2
nkdP and the

resulting condition is the same.)

Remark 11.6. Under the Lindeberg condition, we have

(11.4) lim
n→∞

max
k≤rn

σ2
nk

s2
n

= 0

Indeed,

σ2
nk =

∫
|Xnk|≤εsn

X2
nkdP +

∫
|Xnk|>εsn

X2
nkdP ≤ εs2

n +

∫
|Xnk|>εsn

X2
nkdP

So

max
k≤rn

σ2
nk

s2
n

≤ ε+
1

s2
n

max
k≤rn

∫
|Xnk|>εsn

X2
nkdP ≤ ε+

1

s2
n

rn∑
k=1

∫
|Xnk|>εsn

X2
nkdP

Theorem 11.7 (Lindeberg CLT). Suppose that for each n the sequence Xn1 . . . Xn,rn is inde-

pendent with mean zero. If the Lindeberg condition holds for all ε > 0 then Sn/sn
D−→ Z.

Example 11.4 (Proof of Theorem 11.2). In the setting of Theorem 11.2, we have Xn,k = Xk−m
σ

and sn =
√
n. The Lindeberg condition is

lim
n→∞

1

n

n∑
k=1

∫
|Xk−m|>εσ

√
n

(Xk −m)2

σ2
dP = lim

n→∞

1

σ2

∫
|X1−m|>εσ

√
n
(X1 −m)2 = 0

by Lebesgue dominated convergence theorem, say. (Or by Corollary 6.12 on page 71.)

Proof. Without loss of generality we may assume that s2
n = 1 so that

∑rn
k=1 σ

2
nk = 1. Denote

ϕnk = E(eitXnk). From (10.13) we have

(11.5)

∣∣∣∣ϕnk(t)− (1− 1

2
t2σ2

nk)

∣∣∣∣ ≤ E (min{|tXnk|2, |tXnk|3}
)

≤
∫
|Xnk|<ε

|tXnk|3dP +

∫
|Xnk|≥ε

|tXnk|2dP ≤ t3εσ2
nk + t2

∫
|Xnk|≥ε

X2
nkdP

Using (11.1), we see that

(11.6)

∣∣∣∣∣ϕSn(t)−
n∏
k=1

(1− 1

2
t2σ2

nk)

∣∣∣∣∣ ≤ εt3
n∑
k=1

σ2
nk + t2

n∑
k=1

∫
|Xnk|>ε

|X2
nkdP

This shows that

lim
n→∞

∣∣∣∣∣ϕSn(t)−
n∏
k=1

(1− 1
2 t

2σ2
nk)

∣∣∣∣∣ = 0
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It remains to verify that limn→∞

∣∣∣e−t2/2 −∏n
k=1(1− 1

2 t
2σ2
nk)
∣∣∣ = 0.

To do so, we apply the previous proof to the triangular array σn,kZk of independent normal
random variables. Note that

ϕ∑Znk(t) =

rn∏
k=1

e−t
2σ2
nk/2 = e−t

2/2

We only need to verify the Lindeberg condition for {Znk}:∫
Znk>ε

Z2
nkdP = σ2

nk

∫
|x|>ε/σnk

x2f(x)dx

So
rn∑
k=1

∫
Znk>ε

Z2
nkdP ≤

rn∑
k=1

σ2
nk

∫
|x|>ε/σnk

x2f(x)dx ≤ max
1≤k≤rn

∫
|x|>ε/σnk

x2f(x)dx ≤
∫
|x|>ε/maxk σnk

x2f(x)dx

The right hand side goes to zero as n→∞, because by max1≤k≤rn σnk → 0 by (11.4). �

4. Lyapunov’s theorem

Theorem 11.8. Suppose that for each n the sequence Xn1 . . . Xn,rn is independent with mean
zero. If the Lyapunov’s condition

(11.7) lim
n→∞

1

s2+δ
n

n∑
k=1

E|Xnk|2+δ = 0

holds for some δ > 0, then Sn/sn
D−→ Z

Proof. We use the following bound to verify Lindeberg’s condition:

1

s2
n

rn∑
k=1

∫
|Xnk|>εsn

X2
nkdP ≤

1

εδs2+δ
n

rn∑
k=1

∫
|Xnk|>εsn

|Xnk|2+δdP ≤ 1

εδs2+δ
n

n∑
k=1

E|Xnk|2+δ

�

Corollary 11.9. Suppose Xk are independent with mean zero, variance σ2 and that

supk E|Xk|2+δ <∞. Then Sn/
√
n
D−→ σZ.

Proof. Let C = supk E|Xk|2+δ Then sn =
√
n and 1

s2+δn

∑n
k=1E(|Xk|2+δ) ≤ C/nδ/2 → 0, so

Lyapunov’s condition is satisfied. �

Corollary 11.10. Suppose Xk are independent, uniformly bounded, and have mean zero. If∑
n Var(Xn) =∞, then Sn/

√
Var(Sn)

D−→ N(0, 1).
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Proof. Suppose |Xn| ≤ C for a constant C. Then

1

s3
n

n∑
k=1

E|Xn|3 ≤ C
s2
n

s3
n

=
C

sn
→ 0

�

5. Normal approximation without Lindeberg
condition

One basic idea is truncation: Xn = XnI|Xn|≤an+XnI|Xn|>an . One wants to show that 1
sn

∑
XkI|Xk|≤an →

Z and that 1
sn

∑
XkI|Xk|>an

P−→ 0. Then Sn/sn is asymptotically normal by Slutski’s theorem.

Example 11.5. Let X1, X2, . . . be independent random variables with the distribution (k ≥ 1)

Pr(Xk = ±1) = 1/4,

Pr(Xk = kk) = 1/4k,

Pr(Xk = 0) = 1/2− 1/4k.

Then σ2
k = 1

2 +
(
k
4

)k
and sn ≥ nn/4n. But Sn/sn

D−→ 0 and in fact we have Sn/
√
n
D−→ Z/

√
2. To see

this, note that Yk = XkI|X|k ≤ 1 are independent with mean 0, variance 1
2 and P (Yk 6= Xk) = 1/4k

so by the first Borel Cantelli Lemma (Theorem 3.8) | 1√
n

∑n
k=1(Yk−Xk)| ≤ U√

n
→ 0 with probability

one.

It is sometimes convenient to use Corollary 9.5 (Exercise 9.2) combined with the law of large
numbers. This is how one needs to proceed in Exercise 11.2.

Example 11.6. Suppose X1, X2, . . . , are i.i.d. with mean 0 and variance σ2 > 0. Then

∑n
k=1Xk√∑n
k=1X

2
k

converges in distribution to N(0, 1). To see this, write

∑n
k=1Xk√∑n
k=1X

2
k

=
σ√

1
n

∑n
k=1X

2
k

×
∑n

k=1Xk

σ
√
n

and note that the first factor converges to 1 with probability one.
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Required Exercises

Exercise 11.1. Suppose ank is an array of numbers such that
∑n

k=1 a
2
nk = 1 and max1≤k≤n |ank| →

0. Let Xj be i.i.d. with mean zero and variance 1. Show that
∑n

k=1 ankXk
D−→ Z.

Exercise 11.2. Suppose that X1, X2, . . . are i.i.d., E(X1) = 1, Var(X2
1 ) = σ2 < ∞. Let X̄n =

1
n

∑n
j=1Xj . Show that for all k > 0

√
n
(
X̄k
n − 1

)
D−→ N(0, kσ)

as n→∞.

Exercise 11.3. Suppose X1, X2, . . . are independent, Xk = ±1 with probability 1
2(1 − k−2) and

Xk = ±k with probability 1
2k
−2. Let Sn =

∑n
k=1Xk

(i) Show that Sn/
√
n
D−→ N(0, 1)

(ii) Is the Lindeberg condition satisfied?

Exercise 11.4. Suppose X1, X2, . . . are independent random variables with distribution Pr(Xk =
1) = pk and Pr(Xk = 0) = 1− pk. Prove that if

∑
V ar(Xk) =∞ then∑n

k=1(Xk − pk)√∑n
k=1 pk(1− pk)

D−→ N(0, 1).

Exercise 11.5. Suppose Xk are independent and have density 1
|x|3 for |x| > 1. Show that Sn√

n logn
→

N(0, 1).

Hint: Verify that Lyapunov’s condition (11.7) holds with δ = 1 for truncated random variables.
Several different truncations can be used, but technical details differ:

• Yk = XkI|Xk|≤
√
k is a solution in [Billingsley]. To show that 1√

n logn

∑n
k=1(Xk − Yk)

P−→ 0 use

L1-convergence.

• Triangular array Ynk = XkI|Xk|≤
√
n is simpler computationally

• Truncation Yk = XkI|Xk|≤
√
k log k leads to “asymptotically equivalent” sequences.

Exercise 11.6 ( stat). A real estate aggent wishes to estimate the unknown mean sale price of a
house µ which she believes is well described by the distribution which has finite second moment.
She estimates µ by the sample mean X̄n of the i.i.d. sample X1, . . . , Xn, and she estimates the
variance by the expression

S2
n =

1

n− 1

n∑
k=1

(Xk − X̄n)2.

She then uses a formula X̄n ± zαSn/
√
n from Wikpiedia to produce the large sample confidence

interval for µ. To understand why this procedure works, she would like to know that

(X̄n − µ)/Sn
D−→ N(0, 1).

Please supply the proof.

Exercise 11.7 ( stat). A psychologist wishes to estimate parameter λ > 0 of the exponential
distribution, see Example 2.4, by taking the average X̄n of the i.i.d. sample X1, . . . , Xn, and
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defining λ̂n = 1/X̄n. Show that λ̂n is asymptotically normal, i.e. determine an(λ) such that the
α-confidence interval for λ is

λ̂n ± an(λ)zα/2

where zα/2 comes from the normal table P (Z > zα/2) = α/2.

Some previous
prelim problems

Exercise 11.8 (May 2018). Suppose that X1, X2, . . . are independent random variables with dis-
tributions

P (Xk = ±1) =
1

2k
and P (Xk = 0) =

1− k
k

.

Prove that

1√
lnn

n∑
k=1

Xk
D−→ N(0, 1).

Exercise 11.9 (Aug 2017). Let {Xn}n∈N be a collection of independent random variables with

P(Xn = ±n2) =
1

2nβ
and P(Xn = 0) = 1− 1

nβ
, n ∈ N,

where β ∈ (0, 1) is fixed for all n ∈ N. Consider Sn := X1 + · · ·+Xn. Show that

Sn
nγ

D−→ N (0, σ2)

for some σ > 0, γ > 0. Identify σ and γ as functions of β. You may use the formula

n∑
k=1

kθ ∼ nθ+1

θ + 1

for θ > 0, and recall that by an ∼ bn we mean limn→∞ an/bn = 1.

Exercise 11.10 (May 2017). Let {Xn}n∈N be independent random variables with P(Xn = 1) =
1/n = 1− P(Xn = 0). Let Sn := X1 + · · ·+Xn be the partial sum.

(i) Show that

lim
n→∞

ESn
log n

= 1 and lim
n→∞

Var(Sn)

log n
= 1.

(ii) Prove that

Sn − log n√
log n

D−→ N (0, 1)

as n → ∞. Explain which central limit theorem you use. State and verify all the conditions
clearly.

Hint: recall the relation lim
n→∞

∑n
k=1 1/k

log n
= 1.

Exercise 11.11 (May 2016).(a) State Lindeberg–Feller central limit theorem.
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(b) Use Lindeberg–Feller central limit theorem to prove the following. Consider a triangular ar-
ray of random variables {Yn,k}n∈N,k=1,...,n such that for each n, EYn,k = 0, k = 1, . . . , n, and

{Yn,k}k=1,...,n are independent. In addition, with σn := (
∑n

k=1 EY 2
n,k)

1/2, assume that

lim
n→∞

1

σ4
n

n∑
k=1

EY 4
n,k = 0.

Show that
Yn,1 + · · ·+ Yn,n

σn

D−→ N (0, 1).

Exercise 11.12 (Aug 2015). Let {Un}n∈N be a collection of i.i.d. random variables with EUn = 0
and EU2

n = σ2 ∈ (0,∞). Consider random variables {Xn}n∈N defined by Xn = Un + U2n, n ∈ N,
and the partial sum Sn = X1 + · · ·+Xn. Find appropriate constants {an, bn}n∈N such that

Sn − bn
an

D−→ N (0, 1).

Exercise 11.13 (May 2015). Let {Un}n∈N be a collection of i.i.d. random variables distributed
uniformly on interval (0, 1). Consider a triangular array of random variables {Xn,k}k=1,...,n,n∈N
defined as

Xn,k = 1{
√
nUk≤1} −

1√
n
.

Find constants {an, bn}n∈N such that

Xn,1 + · · ·+Xn,n − bn
an

D−→ N (0, 1).

Exercise 11.14 (Aug 2014). Let X1, X2, . . . be independent and identically distributed random
variables with

P (Xi = 1) = P (Xi = −1) = 1/2.

Prove that √
3√
n3

n∑
k=1

kXk
D−→ N(0, 1)

(You may use formulas
∑n

j=1 j
2 = 1

6n(n+ 1)(2n+ 1) and
∑n

j=1 j
3 = 1

4n
2(n+ 1)2 without proof.)

Exercise 11.15 (May 2014). Let {Xnk : k = 1, . . . , n, n ∈ N} be a family of independent random
variables satisfying

P

(
Xnk =

k√
n

)
= P

(
Xnk = − k√

n

)
= P (Xnk = 0) = 1/3

Let Sn = Xn1 + · · ·+Xnn. Prove that Sn/sn converges in distribution to a standard normal random
variable for a suitable sequence of real numbers sn.

Some useful identities:
n∑
k=1

k =
1

2
n(n+ 1)

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1)

n∑
k=1

k3 =
1

4
n2(n+ 1)2
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Exercise 11.16 (Aug 2013). Suppose X1, Y1, X2, Y2, . . . , are independent identically distributed
with mean zero and variance 1. For integer n, let

Un =
1

n

 n∑
j=1

Xj

2

+
1

n

 n∑
j=1

Yj

2

.

Prove that limn→∞ P (Un ≤ u) = 1− e−u/2 for u > 0.

Exercise 11.17 (May 2013). Suppose Xn,1, Xn,2, .... are independent random variables centered
at expectations (mean 0) and set s2

n =
∑n

k=1E
(
(Xn,k)

2
)
. Assume for all k that |Xn,k| ≤Mn with

probability 1 and that Mn/sn → 0. Let Yn,i = 3Xn,i +Xn,i+1. Show that

Yn,1 + Yn,2 + ...+ Yn,n
sn

converges in distribution and find the limiting distribution.



Chapter 12

Limit Theorems in Rk

This is based on [Billingsley, Section 29]. Printed: April 13, 2020

1. The basic theorems

If X : Ω→ Rk is measurable, then X is called a random vector. X is also called a k-variate random
variable, as X = (X1, . . . , Xk).

Recall that a probability distribution of X is a probability measure µ on Borel subsets of Rk
defined by µ(U) = P ({ω : X(ω) ∈ U}).

Recall that a (joint) cumulative distribution function of X = (X1, . . . , Xn) is a function F :
Rn → [0, 1] such that

F (x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk)
From π − λ theorem we know that F determines uniquely µ. In particular, if

F (x1, . . . , xk) =

∫ x1

−∞
· · ·
∫ xk

−∞
f(y1, . . . , yk)dy1 . . . dyk

then µ(U) =
∫
U f(y1, . . . , yk)dy1 . . . dyk.

Let Xn : Ω→ Rk be a sequence of random vectors.

Definion 12.1. We say that Xn converges in distribution to X if for every bounded continuous
function f : Rk → R the sequence of numbers E(f(Xn) converges to Ef(X).

We will write Xn
D−→ X; if µn is the law of Xn we will also write µn → D; the same notation

in the language of cumulative distribution functions is Fn
D−→ F ; the latter can be defined as

Fn(x)
D−→ F (x) for all points of continuity of F , but it is simpler to use Definition 12.1.

Proposition 12.1. If Xn
D−→ X and g : Rk → Rm is a continuous function then g(Xn)

D−→ g(X)

For example, if (Xn, Yn)
D−→ (Z1, Z2) then X2

n + Y 2
n
D−→ Z2

1 + Z2
2 .

Proof. Denoting by Yn = g(Xn), we see that for any bounded continuous function f : Rm → R,
f(bYn) is a bounded continuous function f ◦ g of Xn. �
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(Omitted in 2020) The following is a k-dimensional version of Portmanteau Theorem 9.7

Theorem 12.2. For a sequence µn of probability measures on the Borel sets of Rk, the following are equivalent:

(i) µn
D−→ µ

(ii) lim supn→∞ µn(C) ≤ µ(C) for all closed sets C ⊂ Rk.
(iii) lim infn→∞ µn(G) ≤ µ(G) for all open sets G ⊂ Rk.
(iv) limn→∞ µn(A) = µ(A) for all sets A ⊂ Rk such that µ(∂A) = 0

Proof. The detailed proof is omitted. Here are some steps:

• By passing to complements, it is clear that (2) and (3) are equivalent.

• Since the interior A◦ of a set A is its subset, A◦ ⊂ A ⊂ Ā. So µn(A◦) ≤ µn(A) ≤ µn(Ā) and we get

µ(A◦) ≤ lim inf µn(A) ≤ lim supµn(A) ≤ µ(Ā)

Since ∂A = Ā \A◦, we have µ(A◦) = µ(Ā) = µ(A) so it is clear that (2)+(3) imply (4).

• To see how (1) implies (2), fix closed set C ⊂ Rk and consider a bounded continuous function f such that f = 1

on C and f = 0 on Cε = {x ∈ Rk : d(x, C) ≤ ε} Then µn(C) ≤
∫
f(x)µn(dx) →

∫
fµ(dx) ≤ µ(Cε). Since

limε→0 µ(Cε) = µ(
⋂
ε>0 Cε) = µ(C), we get the conclusion.

�

Definion 12.2. The sequence of measures µn on Rk is tight if for every ε > 0 there exists a
compact set K ⊂ Rk such that µn(K) ≥ 1− ε for all n.

Theorem 12.3. If µn is a tight sequence of probability measures then there exists µ and a

subsequence nk such that µnk
D−→ µ

Proof. The detailed proof is omitted.

Here are the main steps in the proof: �

Corollary 12.4. If {µn} is a tight sequence of probability measures on Borel subsets of Rk and if

each convergent subsequence has the same limit µ, then µn
D−→ µ

2. Multivariate characteristic function

Recall the dot-product x ·y := x′y
∑k

j=1 xjyj . The multivariate characteristic function ϕ : Rk → C
is

(12.1) ϕ(t) = E exp(it ·X)

This is also written as ϕ(t1, . . . , tk) = E exp(
∑k

j=1 tjXj).
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The inversion formula shows how to determine µ(U) for a rectangle U = (a1, b1] × (a2, b2] ×
· · · × (ak, bk] such that µ(∂U) = 0:

(12.2) µ(U) = lim
T→∞

1

(2π)k

∫ T

−T
· · ·
∫ T

−T

k∏
j=1

e−iakjtj − e−ibjtj
itj

ϕ(t1, . . . , tk)dt1 . . . dtk

Thus the characteristic function determines the probability measure µ uniquely.

Corollary 12.5 (Cramer-Wold devise). The law of X is uniquely determined by the univariate

laws t ·X =
∑k

j=1 tjXj.

Corollary 12.6. X,Y are independent iff ϕX,Y (s, t) = ϕX(s)ϕY (t)

Theorem 12.7. Xn
D−→ Y iff ϕn(t)→ ϕ(t) for all t ∈ Rk.

Note that this means that Xn
D−→ Y iff

∑
tjXj(n)

D−→
∑
tjYj for all t1, . . . , tk

Example 12.1. If X,Y are independent normal then X + Y and X − Y are independent normal.

Indeed, ϕX+Y,X−Y (s, t) = ϕX(s+t)ϕY (s−t) = exp((t+s)2/2+(s−t)2/2) = es
2
et

2
, and ϕX±Y (s) =

es
2/2es

2/2 = es
2
.

Corollary 12.8. If Z1, . . . Zm are independent normal and X = AZ then
∑

j tjXj is (univariate)
normal.

Proof. Lets simplify the calculations by assuming Zj are standard normal. The characteristic
function of S =

∑
j tjXj is

ϕ(s) = E exp(ist ·X) = E exp(ist ·AZ) = E exp(is(AT t) · Z) =
m∏
i=1

e−s
2[AT t]2i /2 = e−s

2‖AT t‖2/2

�

The generalization of this property is the simplest definition of the mutlivariate normal distri-
bution. Note that

‖AT t‖2 = (AT t) · (AT t) = t′AAT t = t′Σt

3. Multivariate normal distribution�� ��Two equivalent approaches
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Definion 12.3. X is multivariate normal if there is a vector m and a positive-definite matrix
Σ such that its characteristic function is

ϕ(t) = exp
(
im′t− 1

2t′Σt
)

Notation: N(m,Σ). (How do we know that this is a characteristic function? See the proof of
Corollary 12.8!)

We need to show that this is indeed a characteristic function! But if it is, then by differentiation
the parameters have interpretation: EX = m and Σi,j = cov(Xi,Xj).

Remark 12.9. If X is normal N(m,Σ), then X −m is centered normal N(0,Σ). In the sequel,
to simplify notation we only discuss centered case.

The simplest way to define the univariate distribution is to start with a standard normal random

variable Z with density 1√
2π
e−x

2/2, and then define the general normal as the linear function

X = µ+ σZ. It is then easy to work out the density of X and the characteristic function, which is

ϕX(t) = eitµ+ 1
2
σ2t2 .

Exercise 12.1 is worth doing in two ways - using both definitions.

In Rk the role of the standard normal distribution is played by the distribution of Z =
(Z1, . . . , Zk) of i.i.d. N(0, 1) r.v.. Their density is

(12.3) f(x) =
1

(2π)k/2
e−

1
2‖x‖

2

The characteristic function Eeit
′Z is just the product of the individual characteristic functions∏n

j=1 e
−t2j/2 which in vector notation is

ϕZ(y) = e−‖t‖
2/2

Definion 12.4. We will say that X, written as a column vector, has multivariate normal dis-
tribution if X = m + AZ.

Clearly, E(X) = m. In the sequel we will only consider centered multivariate normal distribu-
tion with E(X) = 0.

Remark 12.10. Denoting by ak the columns of A, we have X =
∑k

j=1 Zjaj . This is the universal
feature of Gaussian vectors, even in infinite-dimensional vector spaces – they all can be written as
linear combinations of deterministic vectors with independent real-valued ”noises” as coefficients.
For example, the random “vector” (Wt)0≤t≤1 with values in the vector space C[0, 1] of continuous
functions on [0, 1] can be written as Wt =

∑∞
k=1 Zjgj(t) with deterministic functions gj(t) =

1
2j+1 sin((2j + 1)πt).

Proposition 12.11. The characteristic function of the centered normal distribution is

(12.4) ϕ(t) = exp
(
−1

2t′Σt
)

where Σ is a k × k positive definite matrix.
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Proof. This is just a calculation:

Eeit
′X = Eeit

′AZ = Eei(A
′t)′Z = e−‖A

′t‖2/2 = exp
(
−1

2(A′t)′A′t
)

= exp
(
−1

2t′AA′t
)

= exp
(
−1

2t′Σt
)

�

Remark 12.12. Notice that E(XX′) = E(AZZ′A′) = AE(ZZ′)A′ = AIA′ = Σ is the covariance
matrix of X.

Remark 12.13. From linear algebra, any positive definite matrix Σ = UΛU ′ so each such matrix
can be written as Σ = AA′ with A = UΛ1/2U ′. So ϕ(t) = exp(−1

2t′Σt) is a characteristic function
of X = AZ.

Remark 12.14. If det(Σ) > 0 then det A 6= 0 and (by linear algebra) the inverse A−1 exists. The
density of X is recalculated from (12.3) as follows

f(x) =
1

(2π)k/2 det(A)
e−

1
2‖A

−1x‖2 =
1

(2π)k/2 det(Σ)1/2
e−

1
2x
′Σ−1x

Remark 12.15. Matrix A in the representation X = AZ is not unique, but the covariance matrix
Σ = AA′ is unique. For example

X =

[
Z1

Z2

]
=

[
1 0
0 1

]
×
[
Z1

Z2

]
can also be represented as

X =

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

] [
Z1

Z2

]
(Exercise 12.6)

Example 12.2. Suppose ϕ(s, t) = e−s
2/2−t2/2−ρst. Then

Σ =

[
1 ρ
ρ 1

]
is non-negative definite for any |ρ| ≤ 1 and this is a characteristic function of a random variable

X = (X1, X2) with univariate N(0,1) laws, with correlation E(X1X2) = − ∂2

∂s∂tϕ(s, t)|s=t=0 = ρ. If
Z1, Z2 are independent N(0, 1) then

(12.5) X1 = Z1, X2 = ρZ1 +
√

1− ρ2Z2

will have exactly the same second moments, and the same characteristic function.

Since det Σ = 1 − ρ2, when ρ2 6= 1 the matrix is invertible and the resulting bivariate normal
density is

f(x, y) =
1

2π
√

1− ρ2
exp

(
−x

2 + y2 − 2ρxy

2(1− ρ2)

)
From (12.5) we also see that X2 − ρX1 is independent of X1 and has variance 1− ρ2

4. The CLT
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Theorem 12.16. Let Xn = (Xn1, . . . , Xnk) be independent random vectors with the same dis-
tribution and finite second moments. Denote m = EXk and Sn = X1 + · · ·+ Xn. Then

(Sn − nm)/
√
n
D−→ Y

where Y is a centered normal distribution with the covariance matrix Σ = E(XnX
′
n)−mm′.

The notation is N(0,Σ). Note that this is inconsistent with the univariate notation N(µ, σ) which
for consistency with the multivariate case should be replaced by N(µ, σ2).

Proof. Without loss of generality we can assume m = 0. Let t ∈ Rk. Then Xn := t′Xn are
independent random variables with mean zero and variance σ2 = t′Σt. By Theorem 11.2, we have

Sn/
√
n
D−→ σZ.

If Y = (Y1, . . . , Yk) has multivariate normal distribution with covariance Σ, then t′Y is uni-

variate normal with variance σ2. So we showed that t′Sn/
√
n
D−→ t′Y for all t ∈ Rk. This ends the

proof by Theorem 12.7.

�

Example 12.3. Suppose ξk, ηk are i.i.d with mean zero variance one. Then (
∑n

k=1 ηk,
∑n

k=1(ηk +

ξk)
D−→ (Z1, Z1 + Z2).

Indeed, random vectors Xk =

[
ξk

ξk + ηk

]
has covariance matrix Σ =

[
1 1
1 2

]
and

[
Z1

Z1 + Z2

]
has

the same covariance matrix.

4.1. Application: Chi-Squared test for multinomial distribution. A multinomial experi-
ment has k outcomes with probabilities p1, . . . , pk. A multinomial random variable Sn = (S1(n), . . . , Sk(n))
lists observed counts per category in n repeats of the multinomial experiment.

The following result is behind the use of the chi-squared statistics in tests of consistency.

Theorem 12.17.
∑k

j=1
(Sj(n)−npj)2

npj

D−→ Z2
1 + · · ·+ Z2

k−1

Proof. Lets prove this for k = 3. Consider independent random vectors Xk that take three values1
0
0

 ,

0
1
0

 and

0
0
1

 with probabilities p1, p2, p3. Then Sn is the sum of n independent identically

distributed vectors X1, . . . ,Xn.

Clearly, EXk =

p1

p2

p3

. To compute the covariance matrix, write X for Xk. For non-centered

vectors, the covariance is E(XX′)− E(X)E(X′). We have

E(XX′) = p1

1
0
0

× [1 0 0
]

+ p2

0
1
0

× [0 1 0
]

+ p3

0
0
1

× [0 0 1
]

=

p1 0 0
0 p2 0
0 0 p3


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So

Σ = E(XX′)− E(X)E(X′) =

p1(1− p1) −p1p2 −p1p3

−p1p2 p2(1− p2) −p2p3

−p1p3 −p2p3 p3(1− p3)


Then Sn is the sum of n independent vectors, and the central limit theorem implies that

1√
n

Sn − n

p1

p2

p3

 D−→ X.

In particular, by Proposition 12.1 we have

3∑
j=1

(Sj(n)− npj)2

npj

D−→
3∑
j=1

X2
j

pj

where (X1, X2, X3) is multivariate normal with covariance matrix Σ.

Note that since
∑k

j=1 Sj(n) = n, the gaussian distribution is degenerate: X1 +X2 +X3 = 0.

It remains to show that
∑3

j=1

X2
j

pj
has the same law as Z2

1 + Z2
2 i.e. that it is exponential. To

do so, we first note that the covariance of (Y1, Y2, Y3, ) := (X1/
√
p1, X2/

√
p2, X3/

√
p3) is

ΣY =

 1− p1 −√p1p2 −√p1p3

−√p1p2 1− p2 −√p2p3

−√p1p3 −√p2p3 1− p3

 = I −

√p1√
p2√
p3

× [√p1
√
p2
√
p3

]

Since v1 =

√p1√
p2√
p3

 is a unit vector, we can complete it with two additional vectors v2 =

α1

α2

α3

 and

v3 =

β1

β2

β3

 to form an orthonormal basis {v1,v2,v3} of R3. This can be done in many ways, for

example by the Gram-Schmidt orthogonalization to v1, [100]′, [010]′. However, the specific form of
v2,v3 does not enter the calculation - we only need to know that v2,v3 are orthonormal.

The point is that I = v1v
′
1 + v2v

′
2 + v3v

′
3 as these are orthogonal eigenvectors of I with λ = 1.

(Or, because x = v1v
′
1x + v2v

′
2v2 + v3v

′
3x as v′jx = x · vj are the coefficients of expansion of x in

orthonormal basis {v1,v2,v3} of R3.)

Therefore,

ΣY = v2v
′
2 + v3v

′
3

We now notice that ΣY is the covariance of the multivariate normal random variable Z = v2Z2 +
v3Z3 where Z2, Z3 are independent real-valued N(0, 1). Indeed,

EZZ′ =

3∑
i,j=2

viv
′
jE(ZiZj) =

3∑
i=2

viv
′
i

Therefore, vector [Y1Y2Y3]′ has the same distribution as Z, and Y 2
1 + Y 2

2 + Y 2
3 has the same

distribution as

‖Z‖2 = ‖v2Z2 + v3Z3‖2 = ‖v2Z2‖2 + ‖v3Z3‖2 = Z2
2 + Z2

3

(recall that v2 and v3 are orthogonal unit vectors).

�

Remark 12.18. It is clear that this proof generalizes to all k.
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We note that the distribution of Z2
1 + · · ·+Z2

k−1 is Gamma with parameters α = (k− 1)/2 and
β = 2, which is known under the name of chi-squared distribution with k − 1 degrees of freedom.
To see that Z2

2 + Z2
3 is indeed chi-squared with two-degrees of freedom (i.e., exponential), we can

determine the cumulative distribution function by computing 1− F (u):

P (Z2
2 + Z2

3 > u) =
1

2π

∫
x2+y2>u

e−(x2+y2)/2dxdy =
1

2π

∫ 2π

0

∫
r>
√
u
e−r

2/2rdrdθ = e−u/2

Required Exercises

Exercise 12.1. Suppose X,Y are independent univariate normal random variables. Use Definition
12.3 to verify that each of the following is bivariate normal: X = (X,X), X = (X,Y ), X =
(X + εY,X − εY ).

Exercise 12.2. Suppose that R2k-valued random variables (Xn,Yn) are such that Xn
D−→ X and

Yn
P−→ 0 (that is, limn→∞ P (‖Yn‖ > ε) = 0 for all ε > 0).

Prove that Xn + Yn
D−→ X

Exercise 12.3. Suppose (Xn, Yn) are pairs of independent random variables and Xn
D−→ X, Yn

D−→
Y . Show that (Xn, Yn)

D−→ µ where µ is the product of the laws of X and Y .

Exercise 12.4. Let ξ1, ξ2, . . . be i.i.d. random variables such that E(ξ1) = 0, E(ξ2
1) = 1. For

i = 1, 2, . . . , define R2-valued random variables Xi =

[
ξi
ξi+1

]
and let Sn =

∑n
i=1Xi. Show that

1√
n
Sn

D−→ N(0,Σ)

for a suitable 2× 2 covariance matrix Σ.

Exercise 12.5. Suppose ξj , ηj , γj are i.i.d. mean zero variance 1. Construct the following vectors:

Xj =

ξj − ηjηj − γj
γj − ξj


Let Sn = X1 + · · ·+ Xn. Show that 1

n‖Sn‖
2 D−→ Y . (In fact, Y has gamma density.)

Exercise 12.6. Use the characteristic function to verify that Remark 12.15 indeed gives two
representations of the same normal law.
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