STAT 7032 Probability CLT part

Wlodek Bryc

Created: Friday, Jan 2, 2014 Printed: April 15, 2020 File: Grad-Prob-2020-slides.TEX

Facts to use $\varphi(t) = E \exp(itX)$

For standard normal distribution $\varphi(t) = e^{-t^2/2}$

The following are equivalent:

$$X_n \xrightarrow{\mathcal{D}} X \varphi_n(t) \to \varphi(t) \text{ for all } t \in \mathbb{R}.$$

• If X is square integrable with mean zero and variance σ^2 then

$$\left| \varphi(t) - (1 - \frac{\sigma^2 t^2}{2}) \right| \le E(\min\{\frac{1}{6}|tX|^3, (tX)^2\})$$
 (1)

Proof: $\varphi(t) = Ee^{-itX}$.

This relies on two integral identities applied to $x = tX(\omega)$ under the integral: $\left|e^{ix} - (1 + ix - \frac{x^2}{2})\right| = \left|\frac{i}{2}\int_0^x (x - s)^2 e^{is} ds\right| \le \frac{|x^3|}{6}$ $\left|e^{ix} - (1 + ix - \frac{x^2}{2})\right| = \left|\int_0^x (x - s)(e^{is} - 1)ds\right| \le x^2$ Last time we used inequality $|z_1^n - z_2^n| \le n|z_1 - z_2|$ complex numbers of modulus at most 1 which we now generalize.

Lemma

If z_1, \ldots, z_m and w_1, \ldots, w_m are complex numbers of modulus at most 1 then

$$|z_1 \dots z_m - w_1 \dots w_m| \leq \sum_{k=1}^m |z_k - w_k|$$
(2)

Proof.

Write the left hand side of (2) as a telescoping sum:

$$z_{1} \dots z_{m} - w_{1} \dots w_{m} = z_{1} \dots z_{m} - w_{1} z_{2} \dots z_{m} + w_{1} z_{2} \dots z_{m} - w_{1} w_{2} \dots z_{m}$$

$$\dots + w_{1} w_{2} \dots w_{m-1} z_{m} - w_{1} w_{2} \dots w_{m}$$

$$= \sum_{k=1}^{m} w_{1} \dots w_{k-1} (z_{k} - w_{k}) z_{k+1} \dots z_{m}$$

Lindeberg's theorem

For each \overline{n} we have a triangular array of random variables that are independent in each row

and we set $S_n = X_{n,1} + \cdots + X_{n,r_n}$. We assume that random variables are square-integrable with mean zero, and we use the notation

$$E(X_{n,k}) = 0, \ \sigma_{nk}^2 = E(X_{n,k}^2), \ s_n^2 = \sum_{k=1}^{r_n} \sigma_{nk}^2$$
(3)

Definition (The Lindeberg condition)

We say that the Lindeberg condition holds if

$$\forall_{\varepsilon>0} \lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk}| > \varepsilon s_n} X_{nk}^2 dP = 0$$
(4)

Remark (Important Observation)

Under the Lindeberg condition, we have

$$\lim_{n \to \infty} \max_{k \le r_n} \frac{\sigma_{nk}^2}{s_n^2} = 0$$
 (5)

Proof.

$$\sigma_{nk}^{2} = \int_{|X_{nk}| \le \varepsilon s_{n}} X_{nk}^{2} dP + \int_{|X_{nk}| > \varepsilon s_{n}} X_{nk}^{2} dP \le \varepsilon s_{n}^{2} + \int_{|X_{nk}| > \varepsilon s_{n}} X_{nk}^{2} dP$$

So

$$\begin{split} \max_{k \leq r_n} \frac{\sigma_{nk}^2}{s_n^2} \leq \varepsilon + \frac{1}{s_n^2} \max_{k \leq r_n} \int_{|X_{nk}| > \varepsilon s_n} X_{nk}^2 dP \\ \leq \varepsilon + \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk}| > \varepsilon s_n} X_{nk}^2 dP \end{split}$$

Theorem (Lindeberg CLT)

Suppose that for each n the sequence $X_{n1} \dots X_{n,r_n}$ is independent with mean zero. If the Lindeberg condition holds for all $\varepsilon > 0$ then $S_n/s_n \xrightarrow{\mathcal{D}} Z$.

Example (Suppose $X_1, X_2, ...,$ are iid mean *m* variance $\sigma^2 > 0$. Then $S_n = \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^n (X_k - m) \xrightarrow{\mathcal{D}} Z$.)

• Triangular array: $X_{n,k} = \frac{X_k - m}{\sqrt{n\sigma}}$ and $s_n = 1$.

The Lindeberg condition is

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \int_{|X_k - m| > \varepsilon \sigma \sqrt{n}} \frac{(X_k - m)^2}{\sigma^2} dP$$
$$= \lim_{n \to \infty} \frac{1}{\sigma^2} \int_{|X_1 - m| > \varepsilon \sigma \sqrt{n}} (X_1 - m)^2 dP = 0$$

by Lebesgue dominated convergence theorem.

Proof of Lindeberg CLT I

Without loss of generality we may assume that $s_n^2 = 1$ so that $\sum_{k=1}^{r_n} \sigma_{nk}^2 = 1.$ • Denote $\varphi_{nk} = E(e^{itX_{nk}})$. By (1) we have $\left|\varphi_{nk}(t) - \left(1 - \frac{1}{2}t^2\sigma_{nk}^2\right)\right| \le E\left(\min\{|tX_{nk}|^2, |tX_{nk}|^3\}\right)$ $\leq \int_{|X_{nk}|<\varepsilon} |tX_{nk}|^3 dP + \int_{|X_{nk}|>\varepsilon} |tX_{nk}|^2 dP$ $\leq t^{3}\varepsilon \int_{|X_{nk}|dP \leq \varepsilon} X_{nk}^{2} dP + t^{2} \int_{|X_{nk}| \geq \varepsilon} X_{nk}^{2} dP \leq t^{3}\varepsilon \sigma_{nk}^{2} + t^{2} \int_{|X_{nk}| \leq \varepsilon} X_{nk}^{2} dP$

▶ Using (2), $|z_1 \dots z_m - w_1 \dots w_m| \le \sum_{k=1}^m |z_k - w_k|$ we see that for *n* large enough so that $\frac{1}{2}t^2\sigma_{nk}^2 < 1$

$$\left|\varphi_{S_n}(t) - \prod_{k=1}^{r_n} (1 - \frac{1}{2}t^2\sigma_{nk}^2)\right|$$

Proof of Lindeberg CLT II

Since $\varepsilon > 0$ is arbitrary and $t \in \mathbb{R}$ is fixed, this shows that

$$\lim_{n\to\infty}\left|\varphi_{S_n}(t)-\prod_{k=1}^{r_n}(1-\frac{1}{2}t^2\sigma_{nk}^2)\right|=0$$

It remains to verify that $\lim_{n\to\infty} \left| e^{-t^2/2} - \prod_{k=1}^{r_n} (1 - \frac{1}{2}t^2\sigma_{nk}^2) \right| = 0.$ To do so, we apply the previous proof to the triangular array $Z_{n,k} = \sigma_{n,k}Z_k$ of independent normal random variables. Note that

$$\varphi_{\sum_{k=1}^{r_n} Z_{nk}}(t) = \prod_{k=1}^{r_n} e^{-t^2 \sigma_{nk}^2/2} = e^{-t^2/2}$$

We only need to verify the Lindeberg condition for $\{Z_{nk}\}$.

Proof of Lindeberg CLT III

$$\int_{|Z_{nk}|>\varepsilon} Z_{nk}^2 dP = \sigma_{nk}^2 \int_{|x|>\varepsilon/\sigma_{nk}} x^2 f(x) dx$$

So for $\varepsilon > 0$ we estimate (recall that $\sum_k \sigma_{nk}^2 = 1$)

$$\sum_{k=1}^{r_n} \int_{|Z_{nk}| > \varepsilon} Z_{nk}^2 dP \le \sum_{k=1}^{r_n} \sigma_{nk}^2 \int_{|x| > \varepsilon/\sigma_{nk}} x^2 f(x) dx$$
$$\le \max_{1 \le k \le r_n} \int_{|x| > \varepsilon/\sigma_{nk}} x^2 f(x) dx$$
$$= \int_{|x| > \varepsilon/\max_k \sigma_{nk}} x^2 f(x) dx$$

The right hand side goes to zero as $n \to \infty$, because by $\max_{1 \le k \le r_n} \sigma_{nk} \to 0$ by (5). QED

Lyapunov's theorem

Theorem

Suppose that for each *n* the sequence $X_{n1} \dots X_{n,r_n}$ is independent with mean zero. If the Lyapunov's condition

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{k=1}^{r_n} E|X_{nk}|^{2+\delta} = 0$$
 (7)

holds for some $\delta > 0$, then $S_n/s_n \xrightarrow{\mathcal{D}} Z$

Proof.

We use the following bound to verify Lindeberg's condition:

$$\begin{aligned} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk}| > \varepsilon s_n} X_{nk}^2 dP &\leq \frac{1}{\varepsilon^{\delta} s_n^{2+\delta}} \sum_{k=1}^{r_n} \int_{|X_{nk}| > \varepsilon s_n} |X_{nk}|^{2+\delta} dP \\ &\leq \frac{1}{\varepsilon^{\delta} s_n^{2+\delta}} \sum_{k=1}^{r_n} E|X_{nk}|^{2+\delta} \end{aligned}$$

Corollary

Suppose X_k are independent with mean zero, variance σ^2 and that $\sup_k E|X_k|^{2+\delta} < \infty$. Then $S_n/\sqrt{n} \xrightarrow{\mathcal{D}} \sigma Z$.

Proof.

Let $C = \sup_{k} E|X_{k}|^{2+\delta}$. WLOG $\sigma > 0$. Then $s_{n} = \sigma\sqrt{n}$ and $\frac{1}{s_{n}^{2+\delta}} \sum_{k=1}^{n} E(|X_{k}|^{2+\delta}) \le \frac{Cn}{\sigma^{2+\delta}n^{1+\delta/2}} = \frac{C}{\sigma^{2+\delta}n^{\delta/2}} \to 0$, so Lyapunov's condition is satisfied.

Corollary

Suppose X_k are independent, uniformly bounded, and have mean zero. If $\sum_n Var(X_n) = \infty$, then $S_n / \sqrt{Var(S_n)} \xrightarrow{\mathcal{D}} N(0, 1)$.

Proof.

Suppose $|X_n| \leq C$ for a constant *C*. Then

$$\frac{1}{s_n^3} \sum_{k=1}^n E|X_n|^3 \le C \frac{s_n^2}{s_n^3} = \frac{C}{s_n} \to 0$$

The end

Lets stop here

- Homework 11, due Monday two exercises from Ch 11 of the notes.
- There is also a sizeable list of exercises from past prelims
- Things to do on Friday:
 - CLT without Lindeberg condition, when normalization is not by variance
 - Multivariate characteristic functions and multivariate normal distribution.

Thank you