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Facts to use
ϕ(t) = E exp(itX )

I For standard normal distribution ϕ(t) = e−t
2/2

I The following are equivalent:

I Xn
D−→ X

I ϕn(t)→ ϕ(t) for all t ∈ R.

I If X is square integrable with mean zero and variance σ2 then∣∣∣ϕ(t)− (1− σ2t2

2 )
∣∣∣ ≤ E (min{1

6
|tX |3, (tX )2}) (1)

Proof: ϕ(t) = Ee−itX .

This relies on two integral identities applied to x = tX (ω) under

the integral:
∣∣∣e ix − (1 + ix − x2

2 )
∣∣∣ =

∣∣ i
2

∫ x
0 (x − s)2e isds

∣∣ ≤ |x3|6∣∣∣e ix − (1 + ix − x2

2 )
∣∣∣ =

∣∣∫ x
0 (x − s)(e is − 1)ds

∣∣ ≤ x2



Last time we used inequality |zn1 − zn2 | ≤ n|z1 − z2| complex
numbers of modulus at most 1 which we now generalize.

Lemma
If z1, . . . , zm and w1, . . . ,wm are complex numbers of modulus at
most 1 then

|z1 . . . zm − w1 . . .wm| ≤
m∑

k=1

|zk − wk | (2)

Proof.
Write the left hand side of (2) as a telescoping sum:

z1 . . . zm−w1 . . .wm = z1 . . . zm−w1z2 . . . zm+w1z2 . . . zm−w1w2. . . zm

· · ·+ w1w2 . . .wm−1zm − w1w2 . . .wm

=
m∑

k=1

w1 . . .wk−1(zk − wk)zk+1 . . . zm



Lindeberg’s theorem
For each n we have a triangular array of random variables that are independent
in each row

X1,1, X1,2, . . . , X1,r1

X2,1, X2,2, . . . , X2,r2

.

.

.

Xn,1, Xn,2, . . . , Xn,rn

.

.

.

and we set Sn = Xn,1 + · · ·+ Xn,rn . We assume that random variables are
square-integrable with mean zero, and we use the notation

E(Xn,k) = 0, σ2
nk = E(X 2

n,k), s
2
n =

rn∑
k=1

σ2
nk (3)

Definition (The Lindeberg condition)

We say that the Lindeberg condition holds if

∀ε>0 lim
n→∞

1

s2n

rn∑
k=1

∫
|Xnk |>εsn

X 2
nkdP = 0 (4)



Remark (Important Observation)

Under the Lindeberg condition, we have

lim
n→∞

max
k≤rn

σ2nk
s2n

= 0 (5)

Proof.

σ2nk =

∫
|Xnk |≤εsn

X 2
nkdP +

∫
|Xnk |>εsn

X 2
nkdP ≤ εs2n +

∫
|Xnk |>εsn

X 2
nkdP

So

max
k≤rn

σ2nk
s2n
≤ ε+

1

s2n
max
k≤rn

∫
|Xnk |>εsn

X 2
nkdP

≤ ε+
1

s2n

rn∑
k=1

∫
|Xnk |>εsn

X 2
nkdP



Theorem (Lindeberg CLT)

Suppose that for each n the sequence Xn1 . . .Xn,rn is independent
with mean zero. If the Lindeberg condition holds for all ε > 0 then

Sn/sn
D−→ Z.

Example (Suppose X1,X2, . . . , are iid mean m variance

σ2 > 0. Then Sn = 1
σ
√
n

∑n
k=1(Xk −m)

D−→ Z .)

I Triangular array: Xn,k = Xk−m√
nσ

and sn = 1.

I The Lindeberg condition is

lim
n→∞

1

n

n∑
k=1

∫
|Xk−m|>εσ

√
n

(Xk −m)2

σ2
dP

= lim
n→∞

1

σ2

∫
|X1−m|>εσ

√
n
(X1 −m)2dP = 0

by Lebesgue dominated convergence theorem.



Proof of Lindeberg CLT I
Without loss of generality we may assume that s2n = 1 so that∑rn

k=1 σ
2
nk = 1.

I Denote ϕnk = E (e itXnk ). By (1) we have∣∣∣∣ϕnk(t)− (1− 1

2
t2σ2nk)

∣∣∣∣ ≤ E
(
min{|tXnk |2, |tXnk |3}

)
≤
∫
|Xnk |≤ε

|tXnk |3dP +

∫
|Xnk |>ε

|tXnk |2dP

≤ t3ε

∫
|Xnk |dP≤ε

X 2
nkdP+t2

∫
|Xnk |>ε

X 2
nkdP ≤ t3εσ2nk+t2

∫
|Xnk |>ε

X 2
nkdP

(6)

I Using (2), |z1 . . . zm − w1 . . .wm| ≤
∑m

k=1 |zk − wk | we see

that for n large enough so that 1
2 t

2σ2nk < 1∣∣∣∣∣ϕSn(t)−
rn∏

k=1

(1− 1
2 t

2σ2nk)

∣∣∣∣∣
≤ εt3

rn∑
k=1

σ2nk + t2
rn∑

k=1

∫
|Xnk |>ε

X 2
nkdP



Proof of Lindeberg CLT II

Since ε > 0 is arbitrary and t ∈ R is fixed, this shows that

lim
n→∞

∣∣∣∣∣ϕSn(t)−
rn∏

k=1

(1− 1
2 t

2σ2nk)

∣∣∣∣∣ = 0

It remains to verify that limn→∞

∣∣∣e−t2/2 −∏rn
k=1(1− 1

2 t
2σ2nk)

∣∣∣ = 0.

To do so, we apply the previous proof to the triangular array
Zn,k = σn,kZk of independent normal random variables. Note that

ϕ∑rn
k=1 Znk

(t) =
rn∏

k=1

e−t
2σ2

nk/2 = e−t
2/2

We only need to verify the Lindeberg condition for {Znk}.



Proof of Lindeberg CLT III

∫
|Znk |>ε

Z 2
nkdP = σ2nk

∫
|x |>ε/σnk

x2f (x)dx

So for ε > 0 we estimate (recall that
∑

k σ
2
nk = 1)

rn∑
k=1

∫
|Znk |>ε

Z 2
nkdP ≤

rn∑
k=1

σ2nk

∫
|x |>ε/σnk

x2f (x)dx

≤ max
1≤k≤rn

∫
|x |>ε/σnk

x2f (x)dx

=

∫
|x |>ε/maxk σnk

x2f (x)dx

The right hand side goes to zero as n→∞, because by
max1≤k≤rn σnk → 0 by (5). QED



Lyapunov’s theorem

Theorem
Suppose that for each n the sequence Xn1 . . .Xn,rn is independent
with mean zero. If the Lyapunov’s condition

lim
n→∞

1

s2+δn

rn∑
k=1

E |Xnk |2+δ = 0 (7)

holds for some δ > 0, then Sn/sn
D−→ Z

Proof.
We use the following bound to verify Lindeberg’s condition:

1

s2n

rn∑
k=1

∫
|Xnk |>εsn

X 2
nkdP ≤

1

εδs2+δn

rn∑
k=1

∫
|Xnk |>εsn

|Xnk |2+δdP

≤ 1

εδs2+δn

rn∑
k=1

E |Xnk |2+δ



Corollary

Suppose Xk are independent with mean zero, variance σ2 and that

supk E |Xk |2+δ <∞. Then Sn/
√
n
D−→ σZ.

Proof.
Let C = supk E |Xk |2+δ. WLOG σ > 0. Then sn = σ

√
n and

1
s2+δn

∑n
k=1 E (|Xk |2+δ) ≤ Cn

σ2+δn1+δ/2
= C

σ2+δnδ/2
→ 0, so Lyapunov’s

condition is satisfied.

Corollary

Suppose Xk are independent, uniformly bounded, and have mean

zero. If
∑

n Var(Xn) =∞, then Sn/
√
Var(Sn)

D−→ N(0, 1).

Proof.
Suppose |Xn| ≤ C for a constant C . Then

1

s3n

n∑
k=1

E |Xn|3 ≤ C
s2n
s3n

=
C

sn
→ 0



The end
Lets stop here

I Homework 11, due Monday - two exercises from Ch 11 of the
notes.

I There is also a sizeable list of exercises from past prelims
I Things to do on Friday:

I CLT without Lindeberg condition, when normalization is not
by variance

I Multivariate characteristic functions and multivariate normal
distribution.

Thank you
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