One more version of Quiz 3

1. Find a basis and the dimension for the following subspace V of $\mathcal{M}_{2\times 2}$:

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \quad a+b+c+d = 0 \right\}$$

Answer: Since a = -b - c - d we see that if $A \in V$ then

$$A = \begin{bmatrix} -b - c - d & b \\ c & d \end{bmatrix} = b \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

and this representation is unique. This gives a basis

$$\mathcal{B} = \left\langle \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle$$

Other solutions are possible, but they alsways have 3 vectors so the dimension is 3.

Is identity matrix I_2 in V? Is vector $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ in V? Is polynomial x^2 in V? Is function $\sin \pi x$ in V? **Answer:** None are in V. Only the first question "makes sense"!

2. Suppose that $T: \mathcal{M}_{2\times 2} \to \mathcal{P}_2$ is a linear map which to a matrix A assigns quadrtic polynomial

$$p(x) = \begin{bmatrix} 1 & x \end{bmatrix} \times A \times \begin{bmatrix} 1 \\ x \end{bmatrix}$$

(a) Confirm (i.e., convince yourself!) that this is linear map. Answer: This is for your own satisfaction!

However, I will write an explicit formula which can be used to verify linearity and which is used several times below.

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $p = T(A)$, then $p(x) = a + (b+c)x + dx^2$.

(b) Find the matrix representation of T, using the standard basis of $\mathcal{M}_{2\times 2}$ and the standard basis of \mathcal{P}_2 . Answer: The standard basis of $\mathcal{M}_{2\times 2}$ is

$$\mathcal{B} = \left\langle \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle$$

The order here is arbitrary but needs to be fixed for the solution. The actual answer depends on this order!

The standard basis of \mathcal{P}_2 is $\mathcal{C} = \langle 1, x, x^2 \rangle$. Again, the answer depend on the order in which we write these monomials, and it might be different if we take $\langle x^2, x, 1 \rangle$ as a basis. Because of that you need to specify the order before you write down your solution. My answer is with respect to bases \mathcal{B} and \mathcal{C} written above.

There are two steps to find the matrix: compute polynomials that correspond to matrices in \mathcal{B} , and then expand the answers in basis \mathcal{C} . Both steps are straightforward: First, the calculation,

$$T\left(\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}\right) = 1, \quad T\left(\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}\right) = x, \quad T\left(\begin{bmatrix}0 & 0\\ 1 & 0\end{bmatrix}\right) = x, \quad T\left(\begin{bmatrix}0 & 0\\ 0 & 1\end{bmatrix}\right) = x^{2}$$

The second step is to expand these polynomials in basis \mathcal{C} .

$$Rep_{\mathcal{C}}(1) = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, Rep_{\mathcal{C}}(x) = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, Rep_{\mathcal{C}}(x^2) = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

This gives the columns of the matrix we seek:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(Can you explain why we have four columns, not three?)

There are other more ad-hoc ways of getting this answer. The solution I wrote up is the "routine" solution that works for all vector spaces.

(c) Find a basis for Range(T), and determine the rank(T). Is polynomial x^2 in Range(T)? **Answer: #1: Lets use matrix representation:** Since A has pivot in every row, T is onto. So the range of T is the entire codoman \mathcal{P}_2 , with basis C. The rank of T is 3. **Answer: #2: Lets guess that** T **is onto and then prove it from the definition.** Given a polynomial $p = a + bx + cx^2$, we can find many matrices A such that T(A) = p. For example, $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ or $A = \begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$ works. So T is onto, and we also see that T is not one-to-one, because I've shown two different matrices A that are mapped to the same polynomial p. (d) Find a basis for the null space Null(T) and its dimension.

Answer: #1: Lets work this out using coordinates: The null space of T consists of 2×3 matrices that are mapped to 0. So their coordinates are mapped to 0 by matrix A. So we solve the equation $A\vec{x} = 0$. Matrix A is in echelon form with free variable x_3 and $x_1 = 0, x_2 = -x_3, x_4 = 0$

equation $A\vec{x} = 0$. Matrix A is in $\begin{bmatrix} 0 \\ t \\ -t \\ 0 \end{bmatrix}$ with arbitrary t.

These are the coordinates in basis \mathcal{B} of all matrices of the form $\begin{bmatrix} 0 & t \\ -t & 0 \end{bmatrix}$.

So the Null space of T is one-dimensional, and is spanned by matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. (This is of course one of many possible bases for the null space.)

Answer: #2: Lets use the definition: For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have $T(A) = a + (b+c)x + dx^2$. So T(A) = 0 iff a = 0, b + c = 0, and d = 0. So $A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix} = a \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ i.e. the null space of T is is spanned by matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. (This is of course one of many possible bases for the null space.)

(e) State whether the map T is onto and whether it is one-to-one. (Justify your answers!) Answer: T is onto but not one-to-one. You need to hunt for justification in the blue text above or below.

Another version of Quiz 3

Г17

1. Find a basis and the dimension for the following subspace V of \mathcal{P}_3 :

$$V = \left\{ p \in \mathcal{P}_3 : \int_0^1 p(x) dx = 0 \right\}$$

• Is identity matrix I_2 in V? **Answer:** No this is not a polynomials

• Is vector
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 in V? Answer: No this is not a polynomials

- Is polynomial x^2 in V? Answer: No, $\int_0^1 x^2 dx = 1/3 \neq 0$
- Is function $\sin \pi x$ in V? **Answer:** No this is not a polynomials

Answer: Lets look at p in the standard coordinates. Write $p(x) = a + bx + cx^2 + dx^3$. Then the condition for $p \in V$ says that $\int_0^1 (a + bx + cx^2 + dx^3) dx = 0$. So a + b/2 + c/3 + d/4 = 0 so a = -b/2 - c/3 - d/4 and $p(x) = b(x - 1/2) + c(x^2 - 1/3) + d(x^3 - 1/4)$

This representation is unique, so a basis for V is $\mathcal{B} = \{x - 1/2, x^2 - 1/3, x^3 - 1/4\}$ and the dimension dim V = 3

There are other bases, like, $\mathcal{B}_1 = \{2x - 1, (x - 1)(3x - 1), (2x - 1)^3\}$

- 2. Suppose that $T : \mathcal{P}_3 \to \mathcal{P}_3$ is the following linear transformation which to a polynomial p assigns polynomial q = T(p) given by q(x) = xp''(x) 2p'(x).
 - (a) Find the matrix representation of T in the standard basis of \mathcal{P}_3 .

Answer: Corrected Wednesday, October 2, 2019 16:48 Compute $T(1) = 0, T(x) = -2, T(x^2) = -2x, T(x^3) = 0$. So the matrix representation of T is $A = \begin{bmatrix} 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

- (b) Find a basis for Range(T), and determine rank(T). Is polynomial (x 2)² in Range(T)?¹
 Answer: The column space of A is the span of the middle two columns. So the range of T is the span of 1, x, i.e. all linear polynomials.
 In particular, (x 2)² is not such a linear combination. So (x 2)² is not in the range of T.
- (c) Find a basis for the null space Null(T) and its dimension.

Answer: If $p = a + bx + cx^2 + dx^3$ then T(p) = 0 iff $\begin{bmatrix} 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = 0$. The first

and last variables are free, and b = c = 0. So Null(T) consists of polynomials $a + dx^3$. A basis of Null(T) is $\langle 1, x^3 \rangle$ and the dimension is 2.

(d) State whether the map T is onto and whether it is one-to-one. (Justify your answers!)

Answer: The map is not onto because the range space is not all of the codomain. The map is not one-to-one because the null space is not trivial.

¹That is, can we seek a quadratic polynomial as a particular solution of the differential equation $xy'' - 2y' = (x - 2)^2$?