Exercises for applications of matrix diagonalization

1. Use matrix diagonalization to solve the recursion

$$y_{n+1} = 5y_n - 6y_{n-1}, \quad y_0 = 2, y_1 = 5$$

Answer: $y_n = 2^n + 3^n$

2. Use matrix diagonalization to solve the differential equation

$$y'' = 5y' - 6y$$
, $y(0) = 2$, $y'(0) = 5$

Answer: $y(t) = e^{2t} + e^{3t}$

3. Use matrix diagonalization to solve the vector recursion

$$x_{n+1} = -x_n + y_n$$

$$y_{n+1} = x_n - y_n$$

$$x_0 = 0$$

$$y_0 = 2$$

Answer: for n>0, $x_n = -(-2)^n$, $y_n = (-2)^n$

4. Use matrix diagonalization to solve the system of differential equations

$$u' = -u + v$$

$$v' = u - v$$

$$u(0) = 0$$

$$v(0) = 2$$

Answer: $u(t) = 1 - e^{-2t}$, $v(t) = 1 + e^{-2t}$