MATH 6012 Exam-1-2019 Answer: Key

1. Find the cosine of the angle between vectors $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ if $\vec{u} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.

Answer:
$$\vec{s} = \vec{u} + \vec{v} = \begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}$$
 and $\vec{d} = \vec{u} - \vec{v} = \begin{bmatrix} 0\\-1\\0\\-1 \end{bmatrix}$ so

$$\cos \theta = \frac{\vec{s} \cdot d}{\|\vec{s}\| \times \|\vec{d}\|} = \frac{-2}{\sqrt{10}\sqrt{2}} = -\sqrt{5}/5$$

The angle is obtuse, with $\theta \approx 2.03444$ radians, i.e., about 116.565°.

2. Use the definition to show that functions $g_1(x) = 1, g_2(x) = x, g_3(x) = x(e^x + e^{-x})$ are linearly independent.

Answer: Suppose

Printed: October 7, 2019

 $c_1g_1 + c_2g_2 + c_3g_3 = 0$ for all real x. (*)

Our goal is to show that this implies $c_1 = c_2 = c_3 = 0$.

Routine solution: Denote by f(x) the left hand side of (*). Then $f(0) = c_1 = 0$, $f'(0) = c_2 + 2c_3 = 0$, f''(0) = 0, $f'''(0) = 6c_3 = 0$. This gives a system of 4 equations for 3 unknown coefficients c_1, c_2, c_3 :

$$c_1 = 0$$

 $c_2 + 2c_3 = 0$
 $0 = 0$
 $6c_3 = 0$

Clearly, all $c_j = 0$.

In summary, we showed that if (*) holds then we must have $c_0 = c_1 = c_2 = c_3 = 0$, i.e. the functions are linearly independent.

There are numerous other solutions. An ad-hoc method: Evaluating (*) expression at x = 0 we get $c_1 = 0$, as $g_2(0) = g_3(0) = 0$.

So (*) becomes $c_2g_2 + c_3g_3 = 0$, i.e.

$$c_2 x + c_3 x (e^x + e^{-x}) = 0$$

Dividing by x, we get

$$c_2 + c_3(e^x + e^{-x}) = 0 \tag{(**)}$$

Differentiating (**) at x = 1 we get $c_3(e - \frac{1}{e}) = 0$, so $c_3 = 0$. Inserting this back into (**) we see that $c_2 = 0$, too.

Name _

3. Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \end{bmatrix}$ is row equivalent to matrix $B = \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. Use this information to find a basis (and the dimension) for the null space $Null(A) = \{\vec{x} : A\vec{x} = \vec{0}\}.$

Answer: Equation $A\vec{x} = \vec{0}$ is equivalent to $B\vec{x} = \vec{0}$, and B is in echelon form, so we can read out the solution. Basic variables are x_1, x_2 . Free variables are $x_3 = u, x_4 = s, x_5 = t$. We get

$\begin{bmatrix} x_1 \end{bmatrix}$		u+2s+3t		1		$\begin{bmatrix} 2 \end{bmatrix}$		3]
x_2		-2u - 3s - 4t		-2		-3		-4
x_3	=	u	= u	1	+s	0	+t	0
x_4		8		0		1		0
x_5		t		0		0		1

So the solution set is the span of 3 linearly independent vectors in \mathbb{R}^5 :

	1		2		3
_	-2		-3		-4
	1	,	0	,	0
	0		1		0
	0		0		1
	$\frac{1}{0}$,	$ \begin{array}{c} -3 \\ 0 \\ 1 \\ 0 \end{array} $,	$\begin{bmatrix} -2\\ 0\\ 0\\ 1 \end{bmatrix}$

The dimension of the Null(A) is 3.

4. Consider the following basis $\mathcal{B} = \langle 1, 1 - t, (1 - t)^2 \rangle$ of the vector space \mathcal{P}_2 of quadratic polynomials. (You do not need to check that this is a basis of \mathcal{P}_2)

(a) Which polynomial p has coordinates $Rep_{\mathcal{B}}(p) = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}$? Simplify your answer.

Answer: From the definition of coordinates, we have $p(t) = 3 + 2(1-t) + (1-t)^2 = 6 - 4t + t^2$

(b) What are the coordinates of the monomial t^2 in basis \mathcal{B} ? **Answer:** $t^2 = (t - 1 + 1)^2 = (t - 1)^2 + 2(t - 1) + 1 = (t - 1)^2 - 2(1 - t) + 1$ so the coordinates are $[t^2]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

- 5. Suppose $V = span\{1, \cos x, \sin x\}$ and $W = span\{1, x, \cos x, \sin x\}$. Let $S: V \to W$ be a mapping which to a function f(x) assigns its definite integral, the function $g(x) = \int_0^x f(t)dt$. Without checking you can assume that S is a linear mapping and that the above sets of functions are linearly independent, so they form respective bases of the spaces V and W.
 - (a) Find the matrix representation of S with respect to the above bases. Answer:

$$\int_{0}^{x} 1dt = x, \int_{0}^{x} \cos tdt = \sin x, \int_{0}^{x} \sin tdt = 1 - \cos x$$

So the columns of the matrix representation are the expansions of these functions in the second basis, i.e.

0		0		1
1		0		0
0	,	0	,	-1
0		1		0
		L+_		L 0 _

(b) Is S one-to-one? Justify your answer. Answer: #1: Yes, the columns of A are linearly independent - this is easier seen after swapping the last two! Answer: #2: If $\int_0^x f(t)dt = \int_0^x g(t)dt$ and f, g are continuous then by differentiation we get f = g. So yes, it is one-to-one

(c) Is S onto? Justify your answer. Answer: #1: No, the domensions do not match. The dimension of range of S can be at most 3. Answer: #2: If $f(x) = a + b \cos x + c \sin x$ then $S(f)(x) = ax + b \sin x + c - c \cos x$ so the range of range of S is span of functions $x, \sin x, \cos x - 1$ and is three dimensional, not the four dimensional space W.

6. Find the inverse of
$$A = \begin{bmatrix} 1 & b & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
 for arbitrary $b \in \mathbb{R}$.
Answer: $A^{-1} = \begin{pmatrix} 1 & -b & 2b - 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$