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Preface

The present manuscript is a revised edition of the text that appeared first
in the year 2007. It adheres to the the SOA Syllabus October June 2020.
The book is designed mainly to help students prepare for the Probability
Exam (known as Exam P/1), the first actuarial examination administered
by the Society of Actuaries. This examination tests a student’s knowledge
of the fundamental probability tools for quantitatively assessing risk. A
thorough command of calculus is assumed. However, the text will include
the mathematical background needed throughout the book.
Users are encouraged to access the online site of the Society of Actuaries
www.soa.org for up-to-date information about the exam.
The present version includes in many cases in depth discussions in terms of
proofs which the reader can omit. For this reason, the book is suitable for a
one or two- semester course in undergraduate probability theory.
Users of the book who are preparing for the exam are strongly encouraged
to work out all the problems in the book. Make sure you can come out with
the solutions on your own without any outside reference. This will enhance
your chances in performing well on the exam.
The book covers all the sample problems from previous exams made available
by SOA. Such problems will be indicated by the symbol ‡.
Answer keys to text problems are found at the end of the book. Mock exams
are included as well. Attempt these exams after finishing all the chapters
of the book. Take these exams under the same circumstances as the actual
exam.
The prsent version of the book is made possible by a grant support from
Arkansas Tech University.
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ii PREFACE

Finally, this manuscript can be used for personal use or class use, but not
for commercial purposes. If you find any errors, I would appreciate hearing
from you: mfinan@atu.edu

All the best.

Marcel B. Finan
Russellville, AR
August, 2020
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Chapter 1

Set Theory Prerequisite

Two approaches of the concept of probability will be introduced later in the
book: The classical probability and the experimental probability. The former
approach is developed using the foundation of set theory, and a quick review
of the theory is in order. Readers familiar with the basics of set theory such
as set builder notation, Venn diagrams, and the basic operations on sets,
(unions, intersections, and complements) can skip this chapter.
Set is the most basic term in mathematics. Some synonyms of a set are
class or collection. In this chapter, we introduce the concept of a set and its
various operations and then study the properties of these operations.
Throughout this book, we assume that the reader is familiar with the fol-
lowing number systems and the algebraic operations and properties of such
systems:
• The set of all positive integers

N = {1, 2, 3, · · · }.
• the set of whole Numbers

W = {0, 1, 2, 3, · · · }.
• The set of all integers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.
• The set of all rational numbers

Q = {a
b

: a, b ∈ Z with b 6= 0}.

• The set R of all real numbers.
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6 CHAPTER 1. SET THEORY PREREQUISITE

1.1 Some Basic Definitions

We define a set as a collection of well-defined objects (called elements or
members) such that for any given object one can assert without dispute
that either the object is in the set or not but not both. Sets are usually will
be represented by upper case letters. When an object x belongs to a set A,
we write x ∈ A, otherwise, we use the notation x 6∈ A. Also, we mention here
that the members of a set can be sets themselves.

Example 1.1.1
Which of the following is a set.
(a) The collection of good movies.
(b) The collection of men 65 years of age in a certain city.

Solution.
(a) Answering a question about whether a movie is good or not may be sub-
ject to dispute, the collection of good movies is not a well-defined set.
(b) This collection is a well-defined set since a man is either 65 years old or
not

Next, we introduce a couple of set representations. The first one is to list,
without repetition, the elements of the set. For example, if A is the solution
set to the equation x2 − 4 = 0 then A = {−2, 2}. The order of how elements
of a set appear is irrelevant. We refer to this type of representation as the
tabular form
The other way to represent a set is to describe a property that characterizes
the elements of the set. This is known as the set-builder representation of
a set. For example, the set A above can be written as A = {x|x is an integer
satisfying x2 − 4 = 0}. The symbol | stands for the statement ”such as ”‘.
We define the empty set, denoted by ∅, to be the set with no elements. A
set which is not empty is called a non-empty set.

Example 1.1.2
List the elements of the following sets.
(a) A = {x|x is a real number such that x2 = 1}.
(b) B = {x|x is an integer such that x2 − 3 = 0}.

Solution.
(a) The real solutions to the equation x2 = 1 are ±1. Thus, A = {−1, 1}.
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(b) Since the only solutions to the given equation are −
√

3 and
√

3 and both
are not integers, the set in question is the empty set. That is, B = ∅

Example 1.1.3
Use a property characterizing the members of the following sets.
(a) A = {a, e, i, o, u}.
(b) B = {1, 3, 5, 7, 9}.

Solution.
(a) A = {x|x is a vowel of the English alphabet}.
(b) B = {n|n ∈ N is odd and less than 10 }

The first arithmetic operation involving sets that we consider is the equality
of two sets. Two sets A and B are said to be equal if and only if they contain
the same elements. We write A = B. For non-equal sets we write A 6= B. In
this case, there is at least one element in one set which is not in the other
set.

Example 1.1.4
Determine whether each of the following pairs of sets are equal.
(a) {1, 3, 5} and {5, 3, 1}.
(b) {{1}} and {1, {1}}.

Solution.
(a) Since the order of listing elements in a set is irrelevant, {1, 3, 5} =
{5, 3, 1}.
(b) Since one of the sets has exactly one member and the other has two,
{{1}} 6= {1, {1}}

In set theory, the number of elements in a set has a special name. It is
called the cardinality of the set. We write #(A) to denote the cardinality
of the set A. If A has a finite cardinality we say that A is a finite set. Oth-
erwise, it is called infinite. For example, N is an infinite set.
Can two infinite sets have the same cardinality? The answer is yes. If A and
B are two sets (finite or infinite) and there is a bijection from A to B( i.e.,
a one-to-one1 and onto2 function) then the two sets are said to have the

1A function f : A 7−→ B is a one-to-one function if f(m) = f(n) implies m = n,
where m,n ∈ A.

2A function f : A 7−→ B is an onto function if for every b ∈ B, there is an a ∈ A such
that b = f(a).
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same cardinality and we write #(A) = #(B).
If #(A) is either finite or has the same cardinality as N then we say that A
is countable. A set that is not countable is said to be uncountable.

Example 1.1.5
What is the cardinality of each of the following sets?
(a) ∅.
(b) {∅}.
(c) A = {a, {a}, {a, {a}}}.

Solution.
(a) #(∅) = 0.
(b) This is a set consisting of one element ∅. Thus, #({∅}) = 1.
(c) #(A) = 3

Example 1.1.6
(a) Show that the set A = {a1, a2. · · · , an, · · · }, where the a′is are distinct, is
countable.
(b) Let A be the set of all infinite sequences of the digits 0 and 1. Show that
A is uncountable.

Solution.
(a) We first show that the map f : N 7−→ A defined by f(n) = an is one-to-
one. Indeed, if f(n) = f(m) then an = am and this implies n = m. Now, any
member in A is of the form an = f(n) for some n ∈ N. Thus, A is onto. It
follows that A is countable.
(b) We will argue by contradiction3. Suppose that A is countable with el-
ements a1, a2, · · · , where each ai is an infinite sequence of the digits 0 and
1. Let a be the infinite sequence with the first digit of 0 or 1 different from
the first digit of a1, the second digit of 0 or 1 different from the second digit
of a2, · · · , the nth digit is different from the nth digit of an, etc. Thus, a is
an infinite sequence of the digits 0 and 1 which is not in A, a contradiction.
Hence, A is uncountable

3In logic, a proposition is a statement that is either true or false. In the method of proof
by contradiction one assumes that a proposition is false and ran into a contradiction as
one proceeds with the proof making the assumption that the original proposition is false
is impossible. Thus, it must be true.
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Now, let A and B be two sets. We say that A is a subset of B or B a
superset of A, denoted by A ⊆ B, if and only if every element of A is also
an element of B. If there exists an element of A which is not in B, then we
write A 6⊆ B. A universal set U is the collection of all objects in a particular
context or theory. All other sets in that framework constitute subsets of the
universal set.
For any set A we have ∅ ⊆ A ⊆ A. That is, every set has at least two subsets.
Also, keep in mind that the empty set is a subset of any set.

Example 1.1.7
Suppose that A = {2, 4, 6}, B = {2, 6}, and C = {4, 6}. Determine which of
these sets are subsets of which other of these sets.

Solution.
Clearly, B ⊆ A and C ⊆ A

Subsets of a universal set can be represented by circles or closed curves with
a rectangle that represents the universal set. We refer to such pictorial rep-
resentation as a Venn diagram.

Example 1.1.8
Represent A ⊆ B ⊆ C using Venn diagram.

Solution.
The Venn diagram is given in Figure 1.1.1

Figure 1.1.1

Next, let A and B be two sets. We say that A is a proper subset of B,
denoted by A ⊂ B, if A ⊆ B and A 6= B. Thus, to show that A is a proper
subset of B, we must show that every element of A is an element of B and
there is an element of B which is not in A.
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Example 1.1.9
Order the sets of numbers: W,Z,R,Q,N using ⊂ .

Solution.
We have, N ⊂W ⊂ Z ⊂ Q ⊂ R

Example 1.1.10
Determine whether each of the following statements is true or false.
(a) x ∈ {x} (b) {x} ⊆ {x} (c) {x} ∈ {x}
(d) {x} ∈ {{x}} (e) ∅ ⊆ {x} (f) ∅ ∈ {x}.

Solution.
(a) True (b) True (c) False since {x} is a set consisting of a single element x
and so {x} is not a member of this set (d) True (e) True (f) False since {x}
does not have ∅ as a listed member

Now, the collection of all subsets of a set A is of importance. We denote
this set by P(A) and we call it the power set of A.

Example 1.1.11
Find the power set of A = {a, b, c}.

Solution.

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

We have already introduced a direct method of proof known as the proof
by contradiction. We next introduce another method of proof known as the
proof by mathematical induction: We want to prove that some statement
P (n) is true for any non-negative integer n ≥ n0. The steps of mathematical
induction are as follows:

(i) Basis of induction: Show that P (n0) is true.
(ii) Induction hypothesis: Assume P (n0), P (n0 + 1), · · · , P (n) are true.
(iii) Induction step: Show that P (n+ 1) is true.

Example 1.1.12
(a) Use induction to show that if #(A) = n then #(P(A)) = 2n, where
n ∈W.
(b) If P(A) has 256 elements, how many elements are there in A?
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Solution.
(a) We apply induction to prove the claim. If n = 0 then A = ∅ and in this
case P(A) = {∅}. Thus, #(P(A)) = 1 = 20. As induction hypothesis, sup-
pose that if #(A) = k, where k = 0, 1, 2, · · · , n, then #(P(A)) = 2k. Let B =
{a1, a2, · · · , an, an+1}. Then P(B) consists of all subsets of {a1, a2, · · · , an}
together with all subsets of {a1, a2, · · · , an} with the element an+1 added to
them. Hence, #(P(B)) = 2n + 2n = 2 · 2n = 2n+1.
(b) Since #(P(A)) = 256 = 28, by (a) we have #(A) = 8

Example 1.1.13

Use induction to show that
n∑
i=1

(2i− 1) = n2, n ∈ N.

Solution.

If n = 1 we have 12 = 2(1) − 1 =
1∑
i=1

(2i − 1). Suppose that the result

is true for k = 1, 2, · · · , n. We will show that it is true for n + 1. Indeed,
n+1∑
i=1

(2i− 1) =
n∑
i=1

(2i− 1) + 2(n+ 1)− 1 = n2 + 2n+ 2− 1 = (n+ 1)2
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Practice Problems

Problem 1.1.1
Consider the experiment of rolling a die. List the elements of the set A = {x|x
shows a face with prime number}. Recall that a prime number is a positive
integer greater than 1 with only two different divisors: 1 and the number
itself.

Problem 1.1.2
Consider the random experiment of tossing a coin three times.
(a) Let S be the collection of all outcomes of this experiment. List the ele-
ments of S. Use H for head and T for tail.
(b) Let E be the subset of S with more than one tail. List the elements of
E.
(c) Suppose F = {THH,HTH,HHT,HHH}. Write F in set-builder nota-
tion.

Problem 1.1.3
Consider the experiment of tossing a coin three times. Let E be the collection
of outcomes with at least one head and F the collection of outcomes of more
than one head. Compare the two sets E and F.

Problem 1.1.4
Recall that a standard deck of 52 playing cards can be described as follows:

hearts (red) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
clubs (black) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
diamonds (red) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
spades (black) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King

Cards labeled Ace, Jack, Queen, or King are called face cards.
A hand of 5 cards is dealt from a deck of 52 cards. Let E be the event that
the hand contains 5 aces. List the elements of E.

Problem 1.1.5
Prove the following properties:
(a) Reflexive Property: A ⊆ A.
(b) Antisymmetric Property: If A ⊆ B and B ⊆ A then A = B.
(c) Transitive Property: If A ⊆ B and B ⊆ C then A ⊆ C.
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Problem 1.1.6
Prove by using mathematical induction that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
, n ∈ N.

Problem 1.1.7
Prove by using mathematical induction that

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
, n ∈ N.

Problem 1.1.8
Use induction to show that (1 + x)n ≥ 1 + nx for all n ∈W, where x > −1.

Problem 1.1.9
Use induction to show that

1 + a+ a2 + · · ·+ an−1 =
1− an

1− a
, a 6= 1, n ∈ N.

Problem 1.1.10
Subway prepared 60 4-inch sandwiches for a birthday party. Among these
sandwiches, 45 of them had tomatoes, 30 had both tomatoes and onions,
and 5 had neither tomatoes nor onions. Using a Venn diagram, how many
sandwiches did he make with
(a) tomatoes or onions?
(b) onions?
(c) onions but not tomatoes?

Problem 1.1.11
A camp of international students has 110 students. Among these students,

75 speak English,
52 speak Spanish,
50 speak French,
33 speak English and Spanish,
30 speak English and French,
22 speak Spanish and French,
13 speak all three languages.
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How many students speak
(a) English and Spanish, but not French,
(b) neither English, Spanish, nor French,
(c) French, but neither English nor Spanish,
(d) English, but not Spanish,
(e) only one of the three languages,
(f) exactly two of the three languages.

Problem 1.1.12
An experiment consists of the following two stages:
(1) a fair coin is tossed
(2) if the coin shows a head, then a fair die is rolled; otherwise, the coin is
flipped again.
An outcome of this experiment is a pair of the form (outcome from stage
1, outcome from stage 2). Let S be the collection of all outcomes. List the
elements of S and then find the cardinality of S.

Problem 1.1.13
Show that the function f : R 7−→ R defined by f(x) = 3x + 5 is one-to-one
and onto.

Problem 1.1.14
Find #(A) if #(P(A)) = 32.

Problem 1.1.15
Consider the function f : N 7−→ Z defined by

f(n) =

{
n
2
, if n is even

−n−1
2
, if n is odd.

(a) Show that f(n) = f(m) only if n and m have the same parity, i.e., either
both are even or both are odd..
(b) Show that Z is countable.

Problem 1.1.16
Let A be a non-empty set and f : A 7−→ P(A) be any function. Let B =
{a ∈ A|a 6∈ f(a)}. Clearly, B ∈ P(A). Show that there is no b ∈ A such that
f(b) = B. Hence, there is no onto map from A to P(A).
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Problem 1.1.17
Use the previous problem to show that P(N) is uncountable.

Problem 1.1.18
Show that the sets (0,∞) and R have the same cardinality.

Problem 1.1.19
Show that the function f : N × N 7−→ N defined by f(n,m) = 2n3m is
one-to-one.

Problem 1.1.20
A marketing survey indicates that 60% of the population owns a laptop,
30% owns a desktop computer, and 20% owns both a laptop and a desktop
computers. What percent of the population owns a laptop or a desktop, but
not both?



16 CHAPTER 1. SET THEORY PREREQUISITE

1.2 Set Operations

In this section we introduce various operations on sets and study the prop-
erties of these operations.

Complements
Let U be a universal set and A,B be two subsets of U. The absolute com-
plement of A (See Figure 1.2.1(I)) is the set

Ac = {x ∈ U |x 6∈ A}.

Example 1.2.1
Find the absolute complement of A = {1, 2, 3} if U = {1, 2, 3, 4, 5, 6}.

Solution.
From the definition, Ac = {4, 5, 6}

The relative complement of A with respect to B (See Figure 1.2.1(II))
is the set

B − A = {x ∈ U |x ∈ B and x 6∈ A}.

Figure 1.2.1

Example 1.2.2
Let A = {1, 2, 3} and B = {{1, 2}, 3}. Find A−B.

Solution.
The elements of A that are not in B are 1 and 2. Thus, A−B = {1, 2}

Union and Intersection
In the remaining of this book, all sets are assumed to be subsets of a universal
set. Given two sets A and B. The union of A and B is the set

A ∪B = {x|x ∈ A or x ∈ B}
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where the ‘or’ is inclusive.(See Figure 1.2.2(a))

Figure 1.2.2

The above definition can be extended to more than two sets. More precisely,
if A1, A2, · · · , are sets then

∞⋃
n=1

An = {x|x ∈ Ai for some i ∈ N}.

The intersection of A and B is the set (See Figure 1.2.2(b))

A ∩B = {x|x ∈ A and x ∈ B}.

If A ∩B = ∅ we say that A and B are disjoint sets.

Example 1.2.3
Express each of the following sets in terms of the sets A,B, and C as well as
the operations of absolute complement, union and intersection. In each case
draw the corresponding Venn diagram.
(a) x belongs to at least one of the sets A,B,C;
(b) x belongs to at most one of the sets A,B,C;
(c) x is none of the sets A,B,C;
(d) x belongs to all three sets A,B,C;
(e) x belongs to exactly one of the sets A,B,C ;
(f) x belongs to A and B but not C.

Solution.
The Venn diagrams are shown in Figure 1.2.3.
(a) A ∪B ∪ C
(b) (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ Cc) ∪ (Ac ∩Bc ∩ C) ∪ (Ac ∩Bc ∩ Cc)
(c) (A ∪B ∪ C)c = Ac ∩Bc ∩ Cc

(d) A ∩B ∩ C
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(e) (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ Cc) ∪ (Ac ∩Bc ∩ C)
(f) A ∩B ∩ Cc

Figure 1.2.3

Example 1.2.4
Find a simpler expression of [(A ∪ B) ∩ (A ∪ C) ∩ (Bc ∩ Cc)] assuming all
three sets A,B,C intersect.

Solution.
Using the Venn diagram in Figure 1.2.4, one can easily see that [(A ∪ B) ∩
(A ∪ C) ∩ (Bc ∩ Cc)] = A− [A ∩ (B ∪ C)] = A−B ∪ C

Figure 1.2.4

Example 1.2.5
Let A and B be two non-empty sets. Write A as the union of two disjoint
sets.
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Solution.
Using a Venn diagram one can easily see that A∩B and A∩Bc are disjoint
sets such that A = (A ∩B) ∪ (A ∩Bc)

The concept of intersection can be extended to a countable number of sets.
Given the sets A1, A2, · · · , we define

∞⋂
n=1

An = {x|x ∈ Ai for all i ∈ N}.

Example 1.2.6

For each positive integer n, we define An = {n}. Find
∞⋂
n=1

An.

Solution.

Clearly,
∞⋂
n=1

An = ∅

Theorem 1.2.1
Let A,B and C be subsets of U. We have
(a) Commutative law: A ∩B = B ∩ A and A ∪B = B ∪ A.
(b) Associative law: A∩(B∩C) = (A∩B)∩C and (A∪B)∪C = A∪(B∪C).

Proof.
(a) We have: x ∈ A ∩ B ⇔ x ∈ A and x ∈ B ⇔ x ∈ B and x ∈ A
⇔ x ∈ B ∩A. Similar proof holds for the union where the “and” is replaced
by “or”.
(b) We have: x ∈ A ∩ (B ∩ C) ⇔ x ∈ A and x ∈ B ∩ C ⇔ x ∈ A and (x ∈
B and x ∈ C)⇔ (x ∈ A and x ∈ B) and x ∈ C ⇔ x ∈ (A ∩B) ∩ C. Similar
proof holds for the union

The following theorem establishes the distributive laws of sets.

Theorem 1.2.2
If A,B, and C are subsets of U then
(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
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Proof.
See Problem 1.2.15

The following theorem presents the relationships between (A ∪ B)c, (A ∩
B)c, Ac and Bc.

Theorem 1.2.3 (De Morgan’s Laws)
Let A and B be subsets of U. We have
(a) (A ∪B)c = Ac ∩Bc.
(b) (A ∩B)c = Ac ∪Bc.

Proof.
We prove part (a) leaving part(b) as an exercise for the reader.
(a) Let x ∈ (A ∪B)c. Then x ∈ U and x 6∈ A ∪B. Hence, x ∈ U and (x 6∈ A
and x 6∈ B). This implies that (x ∈ U and x 6∈ A) and (x ∈ U and x 6∈ B).
It follows that x ∈ Ac ∩Bc.
Conversely, let x ∈ Ac ∩ Bc. Then x ∈ Ac and x ∈ Bc. Hence, x 6∈ A and
x 6∈ B which implies that x 6∈ (A ∪B). Hence, x ∈ (A ∪B)c

Remark 1.2.1
Using mathematical induction, De Morgan’s laws are valid for any countable
number of sets. That is (

∞⋃
n=1

An

)c

=
∞⋂
n=1

Acn

and (
∞⋂
n=1

An

)c

=
∞⋃
n=1

Acn.

Example 1.2.7
An assisted living agency advertises its program through videos and booklets.
Let U be the set of people solicited for the agency program. All participants
were given a chance to watch a video and to read a booklet describing the
program. Let V be the set of people who watched the video, B the set of
people who read the booklet, and C the set of people who decided to enroll
in the program.
(a) Describe with set notation: “The set of people who did not see the video
or read the booklet but who still enrolled in the program”
(b) Rewrite your answer using De Morgan’s law and and then restate the
above.
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Solution.
(a) (V ∪B)c ∩ C.
(b) (V ∪ B)c ∩ C = V c ∩ Bc ∩ C = the set of people who did not watch the
video, did not read the booklet, but did enroll

If Ai ∩ Aj = ∅ for all i 6= j then we say that the sets in the collection
{An}∞n=1 are pairwise disjoint.

Example 1.2.8
Find three sets A,B, and C that are not pairwise disjoint but A∩B∩C = ∅.

Solution.
One example is A = B = {1} and C = ∅

Example 1.2.9
Throw a pair of fair dice. Let A be the event the total is 5, B the event the
total is even, and C the event the total is divisible by 9. Show that A,B,
and C are pairwise disjoint.

Solution.
We have

A ={(1, 4), (2, 3), (3, 2), (4, 1)}
B ={(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6)(3, 1), (3, 3), (3, 5), (4, 2),

(4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)}
C ={(3, 6), (4, 5), (5, 4), (6, 3)}.

Clearly, A ∩B = A ∩ C = B ∩ C = ∅

Next, we establish the following rule of counting.

Theorem 1.2.4 (Inclusion-Exclusion Principle)
Suppose A and B are finite sets. Then
(a) #(A ∪B) = #(A) + #(B)−#(A ∩B).
(b) If A ∩B = ∅, then #(A ∪B) = #(A) + #(B).
(c) If A ⊆ B, then #(A) ≤ #(B).
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Proof.
(a) Indeed, #(A) gives the number of elements in A including those that
are common to A and B. The same holds for #(B). Hence, #(A) + #(B)
includes twice the number of common elements. Therefore, to get an accurate
count of the elements of A ∪ B, it is necessary to subtract #(A ∩ B) from
#(A) + #(B). This establishes the result.
(b) If A and B are disjoint then #(A∩B) = 0 and by (a) we have #(A∪B) =
#(A) + #(B).
(c) If A is a subset of B then the number of elements of A cannot exceed the
number of elements of B. That is, #(A) ≤ #(B)

Example 1.2.10
The State Department interviewed 35 candidates for a diplomatic post in
Algeria; 25 speak arabic, 28 speak french, and 2 speak neither languages.
How many speak both languages?

Solution.
Let F be the group of applicants that speak french, A those who speak arabic.
Then F ∩ A consists of those who speak both languages. By the Inclusion-
Exclusion Principle, we have #(F ∪ A) = #(F ) + #(A) −#(F ∩ A). That
is, 33 = 28 + 25−#(F ∩A). Solving for #(F ∩A) we find #(F ∩A) = 20

Cartesian Product
The notation (a, b) is known as an ordered pair of elements and is defined
by (a, b) = {{a}, {a, b}}.
The Cartesian product of two sets A and B is the set

A×B = {(a, b)|a ∈ A, b ∈ B}.

The idea can be extended to products of any number of sets. Given n sets
A1, A2, · · · , An the Cartesian product of these sets is the set

A1 × A2 × · · · × An = {(a1, a2, · · · , an) : a1 ∈ A1, a2 ∈ A2, · · · , an ∈ An}

where, we define

(a1, a2, · · · , an) = ((a1, a2, · · · , an−1), an), n ≥ 2.

Example 1.2.11
Show that (a1, a2, · · · , an) = (b1, b2, · · · , bn) if and only if ai = bi for i =
1, 2, · · · , n.
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Solution.
The proof is by induction on n ≥ 2. For the basis of induction, we have
(a1, a2) = (b1, b2) if and only if {{a1}, {a1, a2}} = {{b1}, {b1, b2}} and this
is equivalent to {a1} = {b1} (i.e., a1 = b1) and {a1, a2} = {b1, b2}. Thus,
a1 = b1 and a2 = b2. For the induction hypothesis, suppose that the re-
sult holds for k = 2, 3, · · · , n. For the induction step, we must show that
(a1, a2, · · · , an+1) = (b1, b2, · · · , bn+1) is equivalent to ai = bi for i = 1, 2, · · · , n+
1. Indeed,

(a1, a2, · · · , an+1) =(b1, b2, · · · , bn+1)

⇔((a1, a2, · · · , an), an+1) = ((b1, b2, · · · , bn), bn+1)

⇔(a1, a2, · · · , an) = (b1, b2, · · · , bn), an+1 = bn+1

⇔ai = bi, i = 1, 2, · · · , n+ 1

Example 1.2.12
Consider the experiment of tossing a fair coin n times. Represent the sample
space as a Cartesian product.

Solution.
If S is the collection of all the outcomes then S = S1 × S2 × · · · × Sn, where
Si, 1 ≤ i ≤ n, is the set consisting of the two outcomes H=head and T =
tail

The following theorem is a tool for finding the cardinality of the Cartesian
product of two finite sets.

Theorem 1.2.5
Given two finite sets A and B. Then

#(A×B) = #(A) ·#(B).

Proof.
Suppose that A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bm}. Then

A×B = {(a1, b1), (a1, b2), · · · , (a1, bm),

(a2, b1), (a2, b2), · · · , (a2, bm),

(a3, b1), (a3, b2), · · · , (a3, bm),

...

(an, b1), (an, b2), · · · , (an, bm)}
Thus, #(A×B) = n ·m = #(A) ·#(B)
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Remark 1.2.2
By induction, the previous result can be extended to any finite number of
sets. See Problem 1.2.18.

Example 1.2.13
What is the total number of outcomes of tossing a fair coin n times.

Solution.
If S is the sample space then S = S1 × S2 × · · · × Sn where Si, 1 ≤ i ≤ n, is
the set consisting of the two outcomes H=head and T = tail. By the previous
theorem, #(S) = 2n
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Practice Problems

Problem 1.2.1
Let A and B be any two sets. Use Venn diagrams to show that B = (A ∩
B) ∪ (Ac ∩B) and A ∪B = A ∪ (Ac ∩B).

Problem 1.2.2
Show that if A ⊆ B then B = A ∪ (Ac ∩ B). Thus, B can be written as the
union of two disjoint sets.

Problem 1.2.3 ‡
A survey of a group’s viewing habits over the last year revealed the following
information

(i) 28% watched gymnastics
(ii) 29% watched baseball
(iii) 19% watched soccer
(iv) 14% watched gymnastics and baseball
(v) 12% watched baseball and soccer
(vi) 10% watched gymnastics and soccer
(vii) 8% watched all three sports.

Represent the statement “the group that watched none of the three sports
during the last year” using operations on sets.

Problem 1.2.4
An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red
balls and an unknown number of blue balls. A single ball is drawn from each
urn. For i = 1, 2, let Ri denote the event that a red ball is drawn from urn
i and Bi the event that a blue ball is drawn from urn i. Show that the sets
R1 ∩R2 and B1 ∩B2 are disjoint.

Problem 1.2.5 ‡
An auto insurance has 10,000 policyholders. Each policyholder is classified
as

(i) young or old;
(ii) male or female;
(iii) married or single.
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Of these policyholders, 3,000 are young, 4,600 are male, and 7,000 are mar-
ried. The policyholders can also be classified as 1,320 young males, 3,010
married males, and 1,400 young married persons. Finally, 600 of the policy-
holders are young married males.
How many of the company’s policyholders are young, female, and single?

Problem 1.2.6 ‡
A marketing survey indicates that 60% of the population owns an automobile,
30% owns a house, and 20% owns both an automobile and a house. What
percentage of the population owns an automobile or a house, but not both?

Problem 1.2.7 ‡
35% of visits to a primary care physicians (PCP) office results in neither lab
work nor referral to a specialist. Of those coming to a PCPs office, 30% are
referred to specialists and 40% require lab work.
What percentage of visit to a PCPs office results in both lab work and referral
to a specialist?

Problem 1.2.8
In a universe U of 100, let A and B be subsets of U such that #(A∪B) = 70
and #(A ∪Bc) = 90. Determine #(A).

Problem 1.2.9 ‡
An insurance company estimates that 40% of policyholders who have only
an auto policy will renew next year and 60% of policyholders who have only
a homeowners policy will renew next year. The company estimates that 80%
of policyholders who have both an auto and a homeowners policy will renew
at least one of those policies next year. Company records show that 65% of
policyholders have an auto policy, 50% of policyholders have a homeowners
policy, and 15% of policyholders have both an auto and a homeowners policy.
Using the company’s estimates, calculate the percentage of policyholders that
will renew at least one policy next year.

Problem 1.2.10
Show that if A,B, and C are subsets of a universe U then

#(A∪B∪C) = #(A)+#(B)+#(C)−#(A∩B)−#(A∩C)−#(B∩C)+#(A∩B∩C).
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Problem 1.2.11
In a survey on popsicle flavor preferences of kids aged 3-5, it was found that
• 22 like strawberry.
• 25 like blueberry.
• 39 like grape.
• 9 like blueberry and strawberry.
• 17 like strawberry and grape.
• 20 like blueberry and grape.
• 6 like all flavors.
• 4 like none.

How many kids were surveyed?

Problem 1.2.12
Let A,B, and C be three subsets of a universe U with the following properties:
#(A) = 63,#(B) = 91,#(C) = 44,#(A ∩ B) = 25,#(A ∩ C) = 23,#(C ∩
B) = 21,#(A ∪B ∪ C) = 139. Find #(A ∩B ∩ C).

Problem 1.2.13
Fifty students living in a college dormitory were registering for classes for
the fall semester. The following were observed:
• 30 registered in a math class,
• 18 registered in a history class,
• 26 registered in a computer class,
• 9 registered in both math and history classes,
• 16 registered in both math and computer classes,
• 8 registered in both history and computer classes,
• 47 registered in at least one of the three classes.
(a) How many students did not register in any of these classes ?
(b) How many students registered in all three classes?

Problem 1.2.14 ‡
A doctor is studying the relationship between blood pressure and heartbeat
abnormalities in her patients. She tests a random sample of her patients
and notes their blood pressures (high, low, or normal) and their heartbeats
(regular or irregular). She finds that:
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(i) 14% have high blood pressure.
(ii) 22% have low blood pressure.
(iii) 15% have an irregular heartbeat.
(iv) Of those with an irregular heartbeat, one-third have high blood pressure.
(v) Of those with normal blood pressure, one-eighth have an irregular heartbeat.

What portion of the patients selected have a regular heartbeat and low blood
pressure?

Problem 1.2.15
Prove: If A,B, and C are subsets of U then
(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Problem 1.2.16
Translate the following verbal description of events into set theoretic nota-
tion. For example, “A or B occurs, but not both” corresponds to the set
A ∪B − A ∩B.
(a) A occurs whenever B occurs.
(b) If A occurs, then B does not occur.
(c) Exactly one of the events A and B occurs.
(d) Neither A nor B occur.

Problem 1.2.17 ‡
A survey of 100 TV watchers revealed that over the last year:
i) 34 watched CBS.
ii) 15 watched NBC.
iii) 10 watched ABC.
iv) 7 watched CBS and NBC.
v) 6 watched CBS and ABC.
vi) 5 watched NBC and ABC.
vii) 4 watched CBS, NBC, and ABC.
viii) 18 watched HGTV and of these, none watched CBS, NBC, or ABC.
Calculate how many of the 100 TV watchers did not watch any of the four
channels (CBS, NBC, ABC or HGTV).

Problem 1.2.18
Let S1, S2, · · · , Sn be non-empty sets. Show that the function f : S1 × S2 ×
· · · × Sn −→ (S1 × S2 × · · · × Sn−1) × Sn defined by f((s1, s2, · · · , sn)) =
((s1, s2, · · · , sn−1), sn) is one-to-one and onto.
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Problem 1.2.19
A room contains n people. Let ik be the birthday date of person k, k =
1, 2, · · · , n. Let S be the collection of all n−tuples of the form (i1, i2, · · · , in).Assume
no birthday occurred in a leap year.
Find #(S).

Problem 1.2.20
An insurance company offers three types of insurance: life insurance, auto
insurance, and home insurance. Of all the customers, 55% have life insurance,
60% have auto insurance, 30% have home insurance, 25% have both life
insurance and auto insurance, 15% have life insurance and home insurance,
and 15% have auto insurance and home insurance. What percentage of
customers have all three types of insurance?

Problem 1.2.21 ‡
An insurance agent’s files reveal the following facts about his policyholders:
i) 243 own auto insurance.
ii) 207 own homeowner insurance.
iii) 55 own life insurance and homeowner insurance.
iv) 96 own auto insurance and homeowner insurance.
v) 32 own life insurance, auto insurance and homeowner insurance.
vi) 76 more clients own only auto insurance than only life insurance.
vii) 270 own only one of these three insurance products.
Calculate the total number of the agent’s policyholders who own at least one
of these three insurance products.

Problem 1.2.22 ‡
A profile of the investments owned by an agent’s clients follows:
i) 228 own annuities.
ii) 220 own mutual funds.
iii) 98 own life insurance and mutual funds.
iv) 93 own annuities and mutual funds.
v) 16 own annuities, mutual funds, and life insurance.
vi) 45 more clients own only life insurance than own only annuities.
vii) 290 own only one type of investment (i.e., annuity, mutual fund, or life
insurance).
Calculate the agent’s total number of clients.
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Problem 1.2.23 ‡
An actuary compiles the following information from a portfolio of 1000 home-
owners insurance policies:
i) 130 policies insure three-bedroom homes.
ii) 280 policies insure one-story homes.
iii) 150 policies insure two-bath homes.
iv) 30 policies insure three-bedroom, two-bath homes.
v) 50 policies insure one-story, two-bath homes.
vi) 40 policies insure three-bedroom, one-story homes.
vii) 10 policies insure three-bedroom, one-story, two-bath homes.
Calculate the number of homeowners policies in the portfolio that insure
neither one-story nor two-bath nor three-bedroom homes.



Chapter 2

Counting and Combinatorics

The major goal of this chapter is to establish several (combinatorial) tech-
niques for counting large finite sets without actually listing their elements.
These techniques provide effective methods for counting the size of events,
an important concept in probability theory.

31
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2.1 The Fundamental Principle of Counting

Sometimes one encounters the question of listing all the outcomes of a certain
experiment. One way for doing that is by constructing a so-called tree
diagram.

Example 2.1.1
Create a tree diagram that lists all the sequences of heads and tails obtained
by tossing a coin three times.

Solution.
The tree diagram along its branches is shown in Figure 2.1.1

Figure 2.1.1

Example 2.1.2
List all two-digit numbers that can be constructed from the digits 1,2, and
3.

Solution.
The tree diagram is shown in Figure 2.1.2.
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Figure 2.1.2

The different numbers are {11, 12, 13, 21, 22, 23, 31, 32, 33}

Of course, trees are manageable as long as the number of outcomes is not
large. If there are many stages to an experiment and several possibilities
at each stage, the tree diagram associated with the experiment would be-
come too large to be manageable. For such problems the counting of the
outcomes is simplified by means of algebraic formulas. The commonly used
formula is the Fundamental Principle of Counting, also known as the
multiplication rule of counting, which states:

Theorem 2.1.1
If a choice consists of k steps, of which the first can be made in n1 ways,
for each of these the second can be made in n2 ways,· · · , and for each of
these the kth can be made in nk ways, then the whole choice can be made in
n1 · n2 · · · ·nk ways.

Proof.
In set-theoretic term, we let Si denote the set of outcomes for the ith step,
i = 1, 2, · · · , k. Then #(Si) = ni. The set of outcomes for the entire job is the
Cartesian product S1×S2× · · · ×Sk = {(s1, s2, · · · , sk) : si ∈ Si, 1 ≤ i ≤ k}.
Thus, we just need to show that

#(S1 × S2 × · · · × Sk) = #(S1) ·#(S2) · · ·#(Sk).

The proof is by induction on k ≥ 2.
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Basis of Induction
By Theorem 1.2.5, we have #(S1×S2) = #(S1)×#(S2)), Thus, the property
is true for n = 2.
Induction Hypothesis
Suppose

#(S1 × S2 × · · · × Sk) = #(S1) ·#(S2) · · ·#(Sk)

for k = 2, 3, · · · , n.
Induction Step
We must show

#(S1 × S2 × · · · × Sn+1) = #(S1) ·#(S2) · · ·#(Sn+1).

To see this, note that there is a one-to-one correspondence between the sets
S1×S2×· · ·×Sn+1 and (S1×S2×· · ·Sn)×Sn+1 given by f(s1, s2, · · · , sn, sn+1) =
((s1, s2, · · · , sn), sn+1). See Problem 1.2.18. Thus, #(S1×S2× · · · ×Sn+1) =
#((S1×S2×· · ·Sn)×Sn+1) = #(S1×S2×· · ·Sn)#(Sn+1) (by Theorem 1.2.5).
Now, applying the induction hypothesis gives

#(S1 × S2 × · · ·Sn × Sn+1) = #(S1) ·#(S2) · · ·#(Sn+1)

Example 2.1.3
The following three factors were considered in the study of the effectiveness
of a certain cancer treatment:

(i) Medicine (A1, A2, A3, A4, A5)
(ii) Dosage Level (Low, Medium, High)
(iii) Dosage Frequency (1,2,3,4 times/day)

Find the number of ways that a cancer patient can be given the medication?

Solution.
The choice here consists of three stages, that is, k = 3. The first stage, can be
made in n1 = 5 different ways, the second in n2 = 3 different ways, and the
third in n3 = 4 ways. Hence, the number of possible ways a cancer patient
can be given medication is n1 · n2 · n3 = 5 · 3 · 4 = 60 different ways

Example 2.1.4
How many license-plates with 3 letters followed by 3 digits exist? Repetition
of either letter or digit is permitted.
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Solution.
A 6-step process: (1) Choose the first letter, (2) choose the second letter,
(3) choose the third letter, (4) choose the first digit, (5) choose the second
digit, and (6) choose the third digit. Every step can be done in a number of
ways that does not depend on previous choices, and each license plate can
be specified in this manner. So there are 26 · 26 · 26 · 10 · 10 · 10 = 17, 576, 000
ways

Example 2.1.5
How many numbers in the range 1000 - 9999 have no repeated digits?

Solution.
A 4-step process: (1) Choose first digit, (2) choose second digit, (3) choose
third digit, (4) choose fourth digit. Possible choices for (1) are digits 1
through 9. Possible choices for (2) are digits 0-9 with the digit 1 excluded.
Since there are no repetition of digits, there are 8 choices for (3) and 7 choices
for (4). Hence, there are 9 · 9 · 8 · 7 = 4, 536 different numbers

Example 2.1.6
How many license plates with 3 letters followed by 3 digits exist if exactly
one of the digits is 1? Repetition of either letter or digit is permitted.

Solution.
In this case, we must pick a place for the 1 digit, and then the remaining
digit places must be populated from the digits {0, 2, · · · 9}. A 6-step process:
(1) Choose the first letter, (2) choose the second letter, (3) choose the third
letter, (4) choose which of three positions the 1 goes, (5) choose the first of
the other digits, and (6) choose the second of the other digits. So there are
26 · 26 · 26 · 3 · 9 · 9 = 4, 270, 968 possible license plates
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Practice Problems

Problem 2.1.1
If each of the 10 digits 0-9 is chosen at random, how many ways can you
choose the following numbers?
(a) A two-digit code number, repeated digits permitted.
(b) A three-digit identification card number, for which the first digit cannot
be a 0. Repeated digits permitted.
(c) A four-digit bicycle lock number, where no digit can be used twice.
(d) A five-digit zip code number, with the first digit not zero. Repeated
digits permitted.

Problem 2.1.2
(a) If eight cars are entered in a race and three finishing places are considered,
how many finishing orders can they finish? Assume no ties.
(b) If the top three cars are Buick, Honda, and BMW, in how many possible
orders can they finish?

Problem 2.1.3
You are taking 2 shirts(white and red) and 3 pairs of pants (black, blue, and
gray) on a trip. How many different choices of outfits do you have?

Problem 2.1.4
A Poker club has 10 members. A president and a vice-president are to be
selected. In how many ways can this be done if everyone is eligible?

Problem 2.1.5
In a medical study, patients are classified according to whether they have
regular (RHB) or irregular heartbeat (IHB) and also according to whether
their blood pressure is low (L), normal (N), or high (H). Use a tree diagram
to represent the various outcomes that can occur.

Problem 2.1.6
If a travel agency offers special weekend trips to 12 different cities, by air,
rail, bus, or sea, in how many different ways can such a trip be arranged?

Problem 2.1.7
If twenty different types of wine are entered in wine-tasting competition, in
how many different ways can the judges award a first prize and a second
prize?
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Problem 2.1.8
In how many ways can the 24 members of a faculty senate of a college choose
a president, a vice-president, a secretary, and a treasurer?

Problem 2.1.9
Find the number of ways in which four of ten new novels can be ranked first,
second, third, and fourth according to their figure sales for the first three
months.

Problem 2.1.10
How many ways are there to seat 8 people, consisting of 4 couples, in a row
of seats (8 seats wide) if all couples are to get adjacent seats?

Problem 2.1.11
Consider strings of length 4 that can be formed using the letters A,B,C,D
and F. How many strings that do not start with the letter B can be formed
if repetitions are not allowed?

Problem 2.1.12
Let A = {a1, a2, · · · , an}. Use the Fundamental Principle of Counting to
show that #P(A) = 2n.

Problem 2.1.13
Let A and B be two sets with #(A) = n and #(B) = m. How many functions
are there from A to B?

Problem 2.1.14
Let A and B be two sets with #(A) = n, #(B) = m and m ≥ n. How many
one-to-one functions are there from A to B?

Problem 2.1.15
A university has 20,000 students registered. If each student has three initials;
is it true that there must be at least two students with the same initials?

Problem 2.1.16
How many 4-digit odd numbers are there?

Problem 2.1.17
How many 4-letter words begin with AZ?
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Problem 2.1.18
There are five pants P1, · · · , P5 you are considering taking on your vacation.
You can take them all; you can take none of them; you can take all except
P1 etc. How many possibilities are there?

Problem 2.1.19
Find the number of 4-letter words with at least one repeated letter.

Problem 2.1.20
There are 50 states and 2 U.S. Senators for each state. How many committees
can be formed consisting of one Senator from each of the 50 states?
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2.2 Permutations

Consider the following problem: In how many ways can 8 horses finish in a
race (assuming there are no ties)? We can look at this problem as a decision
consisting of 8 steps. The first step is the possibility of a horse to finish first
in the race, the second step is the possibility of a horse to finish second, · · · ,
the 8th step is the possibility of a horse to finish 8th in the race. Thus, by
the Fundamental Principle of Counting there are

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40, 320 ways.

This problem exhibits an example of an ordered arrangement, that is, the
order the objects are arranged is important. Such an ordered arrangement is
called a permutation. Products such as 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 can be written
in a shorthand notation called factorial. That is, 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 8!
(read “8 factorial”). In general, we define n factorial by

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1, n ≥ 1

where n is a whole number. By convention we define

0! = 1.

Example 2.2.1
Evaluate the following expressions: (a) 6! (b) 10!

7!
.

Solution.
(a) 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720
(b) 10!

7!
= 10·9·8·7·6·5·4·3·2·1

7·6·5·4·3·2·1 = 10 · 9 · 8 = 720

Using factorials and the Fundamental Principle of Counting, we see that
the number of permutations of n objects is n!.

Example 2.2.2
There are 5! permutations of the 5 letters of the word “rehab.” In how many
of them is h the second letter?

Solution.
There are 4 ways to fill the first spot. The second spot is filled by the letter
h. There are 3 ways to fill the third, 2 to fill the fourth, and one way to fill
the fifth. There are 4! such permutations
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Example 2.2.3
Five different books are on a shelf. In how many different ways could you
arrange them?

Solution.
The five books can be arranged in 5 · 4 · 3 · 2 · 1 = 5! = 120 ways

Counting Permutations
We next consider the permutations of a set of distinct objects taken from a
larger set. Suppose we have n distinct items. How many ordered arrange-
ments of k items can we form from these n items? The number of permuta-
tions is denoted by nPk. The n refers to the number of different items and the
k refers to the number of them appearing in each arrangement. A formula
for nPk is given next.

Theorem 2.2.1
For any non-negative integer n and 0 ≤ k ≤ n, we have

nPk =
n!

(n− k)!
.

Proof.
We can treat a permutation of k items chosen out of the n items pool as a
decision with k steps. The first step can be made in n different ways, the
second in n− 1 different ways, ..., the kth in n− k + 1 different ways. Thus,
by the Fundamental Principle of Counting there are n(n− 1) · · · (n− k + 1)
arrangements of k items out of n items. That is,

nPk = n(n−1) · · · (n−k+1) =
n(n− 1) · · · (n− k + 1)(n− k)!

(n− k)!
=

n!

(n− k)!

Example 2.2.4
How many license plates are there that start with three letters followed by 4
digits (no repetitions)?

Solution.
The decision consists of two steps. The first is to select the letters and this
can be done in 26P3 ways. The second step is to select the digits and this
can be done in 10P4 ways. Thus, by the Fundamental Principle of Counting
there are 26P3 ·10 P4 = 78, 624, 000 license plates
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Example 2.2.5
How many five-digit zip codes can be made where all digits are different?
The possible digits are the digits 0 through 9.

Solution.
The answer is 10P5 = 10!

(10−5)!
= 30, 240 zip codes
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Practice Problems

Problem 2.2.1
Find m and n so that mPn = 9!

6!
.

Problem 2.2.2
How many four-letter code words can be formed using a standard 26-letter
alphabet
(a) if repetition is allowed?
(b) if repetition is not allowed?

Problem 2.2.3
Certain automobile license plates consist of a sequence of three letters fol-
lowed by three digits.
(a) If letters can not be repeated but digits can, how many possible license
plates are there?
(b) If no letters and no digits are repeated, how many license plates are
possible?

Problem 2.2.4
A permutation lock has 40 numbers on it.
(a) How many different three-number permutation locks can be made if the
numbers can be repeated?
(b) How many different permutation locks are there if the three numbers are
different?

Problem 2.2.5
(a) 12 cabinet officials are to be seated in a row for a picture. How many
different seating arrangements are there?
(b) Seven of the cabinet members are women and 5 are men. In how many
different ways can the 7 women be seated together on the left, and then the
5 men together on the right?

Problem 2.2.6
Using the digits 1, 3, 5, 7, and 9, with no repetitions of the digits, how many
(a) one-digit number can be made?
(b) two-digit numbers can be made?
(c) three-digit numbers can be made?
(d) four-digit numbers can be made?
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Problem 2.2.7
There are five members of the Math Club. In how many ways can the
positions of a president, a secretary, and a treasurer, be chosen?

Problem 2.2.8
Find the number of ways of choosing three initials from the alphabet if none
of the letters can be repeated. Name initials such as MBF and BMF are
considered different.

Problem 2.2.9
(a) How many three-letter words can be made using the English alphabet.
(b) How many three-letter words can be made using the English alphabet
where no two letters are the same.
(c) How many three-letter words have at least two letters the same?

Problem 2.2.10
Find n that satisfies the equation 3 (n−1Pn−2) = n!.

Problem 2.2.11
How many 3-digit odd numbers greater than 600 can be created using the
digits 2,3,4,5,6, and 7? Repetition of digits is allowed.

Problem 2.2.12
How many 3-digit odd numbers greater than 600 can be created using the
digits 2,3,4,5,6, and 7? Repetition of digits is not allowed.

Problem 2.2.13
Find the number of arrangements of r objects chosen from n objects, if
repetition is allowed.

Problem 2.2.14
Solve: n−1Pn−3 = n!

10
.

Problem 2.2.15
Show that n−1Pr + r · (n−1Pr−1) =n Pr.

Problem 2.2.16
Show that nPr

nPr−1
= n− r + 1.
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Problem 2.2.17
How many distinct values can be represented with 5 digits? Repetition is
allowed.

Problem 2.2.18
How many permutations of the letters ABCDEFGH contain the string ABC
?

Problem 2.2.19
There are 3 men and 3 women to be seated in a row of 10 chairs. In how
many different ways can they be seated if one men must be seated at each
end of the row?

Problem 2.2.20
How many two digit numbers can be formed using the digits 1, 2, 3, 4, 5, 6
if repetition is allowed?
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2.3 Combinations

In a permutation the order of the set of objects or people is taken into ac-
count. However, there are many problems in which we want to know the
number of ways in which k objects can be selected from n distinct objects in
arbitrary order. For example, when selecting a two-person committee from
a club of 10 members, the order in the committee is irrelevant. That is,
choosing Mr. A and Ms. B in a committee is the same as choosing Ms. B
and Mr. A.
A combination is defined as a possible selection of a certain number of objects
taken from a group without regard to order. More precisely, the number of
k−element subsets of an n−element set is called the number of combina-
tions of n objects taken k at a time. It is denoted by nCk and is read
“n choose k”. The formula for nCk is given next.

Theorem 2.3.1
If nCk denotes the number of ways in which k objects can be selected from
a set of n distinct objects then

nCk =
nPk
k!

=
n!

k!(n− k)!
.

Proof.
Since the number of groups of k elements out of n elements is nCk and each
group can be arranged in k! ways, we have nPk = k!nCk. It follows that

nCk =
nPk
k!

=
n!

k!(n− k)!

An alternative notation for nCk is

(
n
k

)
. We define nCk = 0 if k < 0 or

k > n.

Example 2.3.1
A jury consisting of 2 women and 3 men is to be selected from a group of 5
women and 7 men. In how many different ways can this be done? Suppose
that either Steve or Harry must be selected but not both, then in how many
ways this jury can be formed?
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Solution.
By the Fundamental Principle of Counting, there are 5C2 ·7C3 = 350 possible
jury combinations consisting of 2 women and 3 men. Now, if a committee
selected must include either Steve or Harry but not both then by the Funda-
mental Principle of Counting the number of jury groups that do not include
the two men at the same time is 5C2 · 5C2 · 2C1 = 200

The next theorem discusses some of the properties of combinations.

Theorem 2.3.2
Suppose that n and k are whole numbers with 0 ≤ k ≤ n. Then
(a) nC0 =n Cn = 1 and nC1 =n Cn−1 = n.
(b) Symmetry property: nCk =n Cn−k.
(c) Pascal’s identity: n+1Ck =n Ck−1 +n Ck.

Proof.
(a) From the formula of nCk we have nC0 = n!

0!(n−0)!
= n!

n!
= 1 and nCn =

n!
n!(n−n)!

= 1
0!

= 1. Similarly, nC1 = n!
1!(n−1)!

= n(n−1)!
(n−1)!

= n and nCn−1 =
n!

(n−1)!
= n.

(b) Indeed, we have nCn−k = n!
(n−k)!(n−n+k)!

= n!
k!(n−k)!

=n Ck.

(c) We have

nCk−1 +n Ck =
n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
n!k

k!(n− k + 1)!
+
n!(n− k + 1)

k!(n− k + 1)!

=
n!

k!(n− k + 1)!
(k + n− k + 1)

=
(n+ 1)!

k!(n+ 1− k)!
=n+1 Ck

Example 2.3.2
The Russellville School District has six members. In how many ways
(a) can all six members line up for a picture?
(b) can they choose a president and a secretary?
(c) can they choose three members to attend a state conference with no
regard to order?
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Solution.
(a) 6P6 = 6! = 720 different ways
(b) 6P2 = 30 ways
(c) 6C3 = 20 different ways

Pascal’s identity allows one to construct the so-called Pascal’s triangle. Fig-
ure 2.3.1 describes such a triangle for n = 10.

Figure 2.3.1

As an application of combination we have the following theorem which pro-
vides an expansion of (x+ y)n, where n is a non-negative integer.

Theorem 2.3.3 (Binomial Theorem)
Let x and y be variables, and let n be a non-negative integer. Then

(x+ y)n =
n∑
k=0

nCkx
n−kyk

where nCk will be called the binomial coefficient.

Proof.
The proof is by induction on n ∈W.

Basis of induction: For n = 0, we have

(x+ y)0 =
0∑

k=0

0Ckx
0−kyk = 0C0x

0−0y0 = 1.
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Induction hypothesis: Suppose that the theorem is true for k = 0, 1, · · · , n.
Induction step: Let us show that it is still true for n+ 1. That is,

(x+ y)n+1 =
n+1∑
k=0

n+1Ckx
n−k+1yk.

Indeed, we have

(x+ y)n+1 =(x+ y)(x+ y)n = x(x+ y)n + y(x+ y)n

=x
n∑
k=0

nCkx
n−kyk + y

n∑
k=0

nCkx
n−kyk

=
n∑
k=0

nCkx
n−k+1yk +

n∑
k=0

nCkx
n−kyk+1

=[nC0x
n+1 + nC1x

ny + nC2x
n−1y2 + · · ·+ nCnxy

n]

+[nC0x
ny + nC1x

n−1y2 + · · ·+ nCn−1xy
n + nCny

n+1]

=n+1C0x
n+1 + [nC1 + nC0]xny + · · ·+

[nCn + nCn−1]xyn + n+1Cn+1y
n+1

=n+1C0x
n+1 + n+1C1x

ny + n+1C2x
n−1y2 + · · ·

+n+1Cnxy
n + n+1Cn+1y

n+1

=
n+1∑
k=0

n+1Ckx
n−k+1yk

Note that the coefficients in the expansion of (x + y)n are the entries of the
(n+ 1)st row of Pascal’s triangle.

Example 2.3.3
How many subsets are there of a set with n elements?

Solution.
Since there are nCk subsets of k elements with 0 ≤ k ≤ n, the total number
of subsets of a set of n elements is

n∑
k=0

nCk = (1 + 1)n = 2n
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Practice Problems

Problem 2.3.1
A club with 42 members has to select three representatives for a regional
meeting. How many possible choices are there?

Problem 2.3.2
In a UN ceremony, 25 diplomats were introduced to each other. Suppose
that the diplomats shook hands with each other exactly once. How many
handshakes took place?

Problem 2.3.3
There are five members of the math club. In how many ways can the two-
person Social Committee be chosen?

Problem 2.3.4
A medical research group plans to select 2 volunteers out of 8 for a drug
experiment. In how many ways can they choose the 2 volunteers?

Problem 2.3.5
A consumer group has 30 members. In how many ways can the group choose
3 members to attend a national meeting?

Problem 2.3.6
Which is usually greater the number of combinations of a set of objects or
the number of permutations?

Problem 2.3.7
Determine whether each problem requires a combination or a permutation:
(a) There are 10 toppings available for your ice cream and you are allowed
to choose only three. How many possible 3-topping combinations can you
have?
(b) Fifteen students participated in a spelling bee competition. The first
place winner will receive $1,000, the second place $500, and the third place
$250. In how many ways can the 3 winners be drawn?

Problem 2.3.8
Use the binomial theorem and Pascal’s triangle to find the expansion of
(a+ b)7.
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Problem 2.3.9
Find the 5th term in the expansion of (2a− 3b)7.

Problem 2.3.10 ‡
Thirty items are arranged in a 6-by-5 array as shown.

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16 A17 A18 A19 A20

A21 A22 A23 A24 A25

A26 A27 A28 A29 A30

Calculate the number of ways to form a set of three distinct items such that
no two of the selected items are in the same row or same column.

Problem 2.3.11
Solve: nC4 =n−2 C2.

Problem 2.3.12
How many ways are there to select a committee to develop a discrete mathe-
matics course at a school if the committee is to consist of 3 faculty members
from the mathematics department and 4 from the computer science depart-
ment, if there are 9 faculty members of the math department and 11 of the
CS department?

Problem 2.3.13
Find the largest values of m and n such that mCn =15 P4.

Problem 2.3.14
There are 10 boys and 13 girls in Mr. Bensons fourth-grade class and 12
boys and 11 girls in Mr. Johnson fourth-grade class. A picnic committee
of six people is selected at random from the total group of students in both
classes. How many committees consisting of three boys and three girls?

Problem 2.3.15
A store has 80 modems in its inventory, 30 coming from Source A and the
remainder from Source B: Of the modems from Source A; 20% are defective.
Of the modems from Source B; 8% are defective. How many groups of 5
modems will have exactly two defective modems?
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Problem 2.3.16
A jar contains 4 red marbles, 3 green marbles, 2 white marbles, and 1 purple
marble. You randomly grab 5 marbles. Of the groups of the selected 5
marbles, how many will have at least one white marble?

Problem 2.3.17 ‡
Each week, a subcommittee of four individuals is formed from among the
members of a committee comprising seven individuals. Two subcommittee
members are then assigned to lead the subcommittee, one as chair and the
other as secretary.
Calculate the maximum number of consecutive weeks that can elapse without
having the subcommittee contain four individuals who have previously served
together with the same subcommittee chair.

Problem 2.3.18
A newly formed hiking club has 25 members. Three members volunteered
to serve on a 3-person executive committee that will consist of a president,
vice president and secretary. However, the members will be elected for the
positions. An election committee of four will be created from the remaining
22 members. In how many ways can the club select its officers and election
committee?

Problem 2.3.19
A board of trustees of a university consists of 8 men and 7 women. A com-
mittee of 3 must be selected at random and without replacement. The role
of the committee is to select a new president for the university. In how many
ways can a committee that consists of two men and one woman be selected?

Problem 2.3.20
From 27 pieces of damaged luggage, an airline luggage handler damages a
random sample of four. Let i be the number of insured luggage out of the 27
luggage. How many possible samples of 4 has exactly one insured luggage?
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Chapter 3

Review of Calculus

In this chapter, we collect the results of calculus that we need for the remain-
ing of this book.

53
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3.1 Limits and Continuity

In this section we review the concept of the limit of a function. An applica-
tion of this concept is the concept of continuity of a function.

One-Sided Limits
Consider the piecewise defined function

f(x) =

{
x2, x < 1

3− x, x ≥ 1

whose graph is shown in Figure 3.1.1

Figure 3.1.1

Imagine that x and f(x) are two moving objects that move simultaneously
with x moving along the horizontal axis and f(x) moving along the curve.
For example, if x moves toward x = 1 from the right, we see that f(x) moves
toward the value 2. We express this statement with the notation

lim
x→1+

f(x) = 2

which reads “the limit of f(x) as x approaches 1 from the right” is equal to
2. The notation x → 1+ means that x gets really close to 1 from the right
but it will never reach the value 1. The above is an example of what we call
a right-hand limit.
In a similar way, we can define the concept of a left-hand limit. For exam-
ple, suppose that x approaches 1 from the left side. In this case, f(x) is
approaching the value 1 and we write

lim
x→1−

f(x) = 1.
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We call such a limit, the left-hand limit.

The Limit of a Function
Now, let’s find the left-hand limit and the right-hand limit of f(θ) = sin θ

θ

whose graph is given in Figure 3.1.2 near 0.

Figure 3.1.2

From the graph we see

lim
θ→0−

f(θ) = 1 and lim
θ→0−

f(θ) = 1.

Since the left-hand limit is the same as the right-hand limit, we write

lim
θ→0

f(θ) = 0

which reads “the limit of f(θ) as θ approaches 0 (from either direction) is 1”.
Again, the notation θ → 0 means that θ can be very close to 0 from either
sides but will never assume the value 0. This is an example of the limit of
a function.

Example 3.1.1
Show, graphically, that lim

x→0

1
x

does not exist.

Solution.
The graph of f(x) = 1

x
is shown in Figure 3.1.3.



56 CHAPTER 3. REVIEW OF CALCULUS

Figure 3.1.3

From the figure, we have limx→0+ f(x) =∞ and limx→0− f(x) = −∞. Thus,
both left-hand and right-hand limits do not exist. Hence, lim

x→0

1
x

does not

exist

Properties of Limits
The following theorem lists the major properties of limits.

Theorem 3.1.1
Let f(x) and g(x) be two functions such that limx→a f(x) and limx→a g(x)
both exist.

(i) limx→a[αf(x) + βg(x)] = α limx→a f(x) + β limx→a g(x), where α and β
are constants.
(ii) limx→a[f(x) · g(x)] = [limx→a f(x)] · [limx→a g(x)].

(iii) limx→a
f(x)
g(x)

= limx→a f(x)
limx→a g(x)

, provided that limx→a g(x) 6= 0.

(iv) limx→a[f(x)]n = [limx→a f(x)]n, where n ∈ R.
(v) limx→a

n
√
f(x) = n

√
limx→a f(x).

(vi) limx→a x
n = an.

(vii) Squeeze Rule: If h1(x) ≤ f(x) ≤ h2(x) and limx→a h1(x) = limx→a h2(x) =
L then limx→a f(x) = L.

Continuity of a Function
An application of the concept of limit is the concept of continuity. Graphi-
cally, a function is said to be continuous if its graph has no holes, jumps,
or increases/decreases without bound at a certain point. Stated differently,
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a continuous function has a graph which can be drawn without lifting the
pencil from the paper.

Continuity at a Point
We say that a function f(x) is continuous at x = a if and only if the func-
tional values f(x) get closer and closer to the value f(a) as x is sufficiently
close to a. We write

lim
x→a

f(x) = f(a).

This means, that for any given ε > 0 we can find a δ > 0 such that

|x− a| < δ implies |f(x)− f(a)| < ε.

In words, we say that “f(x) is continuous at a” if, for each open interval J
containing f(a), we can find an open interval I containing a so that for each
point x in I, f(x) lies in the interval J. See Figure 3.1.4.

Figure 3.1.4

Remark 3.1.1
If limx→a− f(x) = f(a) then we say that f is left-continuous at x = a.
Likewise, if limx→a+ f(x) = f(a) then we say that f is right-continuous at
x = a. Hence, a function f is continuous at x = a if and only if its is left and
right continuous at x = a.

Discontinuity
A function f(x) that is not continuous at x = a is said to be discontinuous
there. We exhibit three examples of discontinuous functions.

Example 3.1.2 (Removable Discontinuity)
Show that the function f(x) = x2+x−2

x−1
is discontinuous at x = 1.
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Solution.
Graphing the given function (see Figure 3.1.5) we find

Figure 3.1.5

The small circle indicates an excluded point on the graph. Thus, we see that
f(1) is undefined and therefore f(x) is discontinuous at x = 1. Note that

lim
x→1

f(x) = 3.

Thus, if we redefine f(x) in such a way that f(1) = 3 then we create a
continuous function at x = 1. That is, the discontinuity is removable

Example 3.1.3 (Infinite Discontinuity)
Show that f(x) = 1

x
is discontinuous at x = 0.

Solution.
According to Figure 3.1.3, we have that lim

x→0

1
x

does not exist. Thus, f(x)

is discontinuous at x = 0. Since lim
x→0

f(x) = ±∞, we call x = 0 an infinite

discontinuity

Example 3.1.4 (Jump Discontinuity)

Show that f(x) = |x|
x

is discontinuous at x = 0.

Solution.
The fact that f(x) is discontinuous at x = 0 follows from Figure 3.1.6 below
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Figure 3.1.6

The limit properties of previous section can be used to prove the following
properties of continuous functions.

Theorem 3.1.2
If f and g are two continuous functions at x = a and k is a constant then all
of the following functions are continuous at x = a.

◦ Scalar Multiple: kf
◦ Sum and Difference: f ± g
◦ Product: f · g
◦ Quotient: f

g
, provided that g(a) 6= 0.

◦ Composition: The composition of two continuous functions is continuous.
Thus, limx→a f(g(x)) = f (limx→a g(x)) .

Continuity on an Interval
We say that a function f is continuous on the open interval (a, b) if it
is continuous at each number in this interval. If in addition, the function is
continuous from the right of a, i.e. lim

x→a+
f(x) = f(a), then we say that f

is continuous on the interval [a, b). If f is continuous from the left of b,i.e.
lim
x→b−

f(x) = f(b) then we say that f is continuous on the interval (a, b].

Finally, if f is continuous on the open interval (a, b), from the right at a and
from the left at b then we say that f is continuous in the interval [a, b].
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Example 3.1.5
Find the interval(s) on which each of the given functions is continuous.
(i) f(x) = x2−1

x2−4
.

(ii) g(x) = sin ( 1
x
).

(iii) h(x) =

{
3− x, if −5 ≤ x < 2
x− 2, if 2 ≤ x < 5.

Solution.
(i) (−∞,−2) ∪ (−2, 2) ∪ (2,∞).
(ii) (−∞, 0) ∪ (0,∞).
(iii) Since lim

x→2−
h(x) = lim

x→2−
(3− x) = 1 and lim

x→2+
(x− 2) = 0, h is continuous

on the interval [−5, 2) ∪ (2, 5)

The Intermediate Value Theorem
Continuity can be a very useful tool in solving equations. So if a function is
continuous on an interval and changes sign then definitely it has to cross the
x−axis. This shows that the function possesses a zero in that interval.

Theorem 3.1.3 (Intermediate Value Theorem)
Let f be a continuous function on [a, b] with f(a) < f(b). If f(a) < d < f(b)
then there is a < c < b such that f(c) = d.

Example 3.1.6
Show that cos x = x3 − x has at least one zero on the interval [π

4
, π

2
].

Solution.
Let f(x) = cos x − x3 + x. Since −.2305 ≈ f(π

2
) < 0 < 1.008 ≈ f(π

4
), by

the IVT with a = π
2
, b = π

4
and d = 0, there is at least one number c in the

interval (π
4
, π

2
) such that f(c) = 0

Limits Involving Infinity
Next, we investigate the short run and long run behaviors of functions.

Short Run Behavior: Infinite Limits
If a function f(x) increases without bound or decreases without bound as the
independent variable x gets sufficiently close to a number a from the right
(but not letting x = a) then we write

lim
x→a+

f(x) =∞ or lim
x→a+

f(x) = −∞.
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Likewise, we define

lim
x→a−

f(x) =∞ or lim
x→a−

f(x) = −∞.

If f(x) increases without bound or decreases without bound as the indepen-
dent variable x gets sufficiently close to a number a from either side (but not
letting x = a) then we write

lim
x→a

f(x) =∞ or lim
x→a

f(x) = −∞.

Geometrically, the line x = a is called a vertical asymptote.

Example 3.1.7
Find lim

x→0−

1
x

and lim
x→0+

1
x
.

Solution.
From Figure 3.1.3, we see that lim

x→0−

1
x

= −∞ and lim
x→0+

1
x

=∞

Example 3.1.8
Find lim

x→3−

2x
x−3

and lim
x→3+

2x
x−3

.

Solution.
We have

lim
x→3−

2x
x−3

= −∞ and lim
x→3+

2x
x−3

=∞.

Thus, the line x = 3 is a vertical asymptote

Example 3.1.9
Find lim

x→0

1
x2
.

Solution.
The graph of f(x) is given in Figure 3.1.7.
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Figure 3.1.7

We see from the graph that lim
x→0

1
x2

=∞. The y−axis is a vertical asymptote

Long Run Behavior: Limits at Infinity
If the variable x increases without bound or decreases without bound while
the function f approaches a value L then we write

lim
x→−∞

f(x) = L or lim
x→∞

f(x) = L.

Geometrically, we call the line y = L a horizontal asymptote.

Example 3.1.10
Find, graphically, lim

x→−∞
1
x

and lim
x→∞

1
x
.

Solution.
From Figure 3.1.3, we see that

lim
x→±∞

1

x
= 0.

Thus, the x−axis is a horizontal asymptote

The above result can be generalized for any positive power of x. That is,

lim
x→±∞

1

xn
= 0.
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Example 3.1.11
Find lim

x→∞
3x2−x−2
5x2+4x+1

.

Solution.
We have

lim
x→∞

3x2 − x− 2

5x2 + 4x+ 1
= lim

x→∞

3x2−x−2
x2

5x2+4x+1
x2

= lim
x→∞

3− 1
x
− 2

x2

5 + 4
x

+ 1
x2

=
lim
x→∞

(
3− 1

x
− 2

x2

)
lim
x→∞

(
5 + 4

x
− 1

x2

)
=

lim
x→∞

3− lim
x→∞

1
x
− lim

x→∞
2
x2

lim
x→∞

5 + lim
x→∞

4
x

+ lim
x→∞

1
x2

=
3− 0− 0

5 + 0 + 0
=

3

5

Example 3.1.12
Find lim

x→∞

√
x2 + 1− x.

Solution.
We have

lim
x→∞

√
x2 + 1− x = lim

x→∞
(
√
x2 + 1− x)

(
√
x2 + 1 + x)

(
√
x2 + 1 + x)

= lim
x→∞

x2 + 1− x2

√
x2 + 1 + x

= lim
x→∞

1√
x2 + 1 + x

= lim
x→∞

1
x√

1 + 1
x2

+ 1
=

0√
0 + 1 + 1

= 0

Infinite Limits at Infinity
By an infinite limit at infinity we mean one of the following

lim
x→∞

f(x) = ±∞ or lim
x→−∞

f(x) = ±∞.
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Example 3.1.13
(a) Find limx→−∞ x

3 and limx→∞ x
3.

(b) Find lim
x→∞

(x2 − x).

Solution.
(a) From the graph of x3 (see Figure 3.1.8(a)), we find

limx→−∞ x
3 = −∞ and limx→∞ x

3 =∞.

(b) From the graph of x2 − x (see Figure 3.1.8(b)), we find

lim
x→±∞

(x2 − x) =∞

Figure 3.1.8
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Practice Problems

Problem 3.1.1
Explain in words what the following limit stands for: limn→∞

α(E)
n

= P (E),
where α(E) and P (E) are constants.

Problem 3.1.2
Classify the points of discontinuity of the function

V (s) =

{
2s− 1, 0 < s < 1

2

1, 1
2
≤ s < 1.

Problem 3.1.3
Sketch the graph of the function

F (x) =


0 x < 1

0.25 1 ≤ x < 2
0.75 2 ≤ x < 3
0.875 3 ≤ x < 4

1 4 ≤ x.

Classify the points of discontinuities.

Problem 3.1.4
Sketch the graph of the function y = bxc is the greatest integer less than or
equal to x. Identify the points of discontinuities.

Problem 3.1.5
Sketch the graph of the function

F (x) =


0 x < 0
x2 0 ≤ x < 1

2
1
2

x = 1
2

1− 2−2x x > 1
2
.

Identify the points of discontinuities.
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3.2 Series

In this section we introduce the general definition of a series and study its
convergence. We start by introducing the Greek letter Σ to denote summa-
tions such as

n∑
i=1

ai = a1 + a2 + · · ·+ an

or
n∑

i=m

ai = am + am+1 + · · ·+ an.

Let {an}∞n=1 be a given sequence. The sum of the term of the sequence is
called a series, denoted by

∞∑
n=1

an = a1 + a2 + · · ·+ an + · · ·

To determine whether this series converges or not we consider the sequence
of partial sums defined as follows:

S1 =a1

S2 =a1 + a2

...

Sn =a1 + a2 + · · ·+ an.

We say that a series
∞∑
n=1

an converges to a number L if and only if the

sequence {Sn}∞n=1 converges to L and we write

∞∑
n=1

an = lim
n→∞

Sn = L.

A series which is not convergent is said to diverge.

Example 3.2.1

Is the series
∞∑
n=1

(−1)n convergent or divergent?
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Solution.

The series
∞∑
n=1

(−1)n diverges since the sequence of partial sums alternates

between the values −1 and 0

Example 3.2.2 (Telescoping sums)

Show that the series
∞∑
n=1

1

n(n+ 1)
converges to 1.

Solution.
Using partial fractions we can write

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Thus,

S1 =1− 1

2

S2 =(1− 1

2
) + (

1

2
− 1

3
) = 1− 1

3

S3 =S2 + (
1

3
− 1

4
) = (1− 1

3
) + (

1

3
− 1

4
) = 1− 1

4
...

Sn =1− 1

n+ 1
.

It follows that lim
n→∞

Sn = 1

Example 3.2.3 (Geometric series)
Determine for what values of r the following series is convergent:

∞∑
n=1

arn−1 = a+ ar + ar2 + · · · .

Solution.
The nth partial sum is

Sn = a+ ar + · · ·+ arn−1.
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Rewriting this sum in reverse order, we find

Sn = arn−1 + arn−2 + · · ·+ ar + a.

Hence,

Sn − rSn = a− arn =⇒ Sn = a
1− rn

1− r
.

Since rn converges to 0 for |r| < 1 and diverges otherwise, we find

∞∑
n=1

arn−1 =

{
a

1−r , if |r| < 1

divergent, if |r| ≥ 1

The following result provides a procedure for testing the divergence of a
series. This is known as the the nth term test for convergence.

Theorem 3.2.1

If the series
∞∑
n=1

an is convergent then lim
n→∞

an = 0. Equivalently, if lim
n→∞

an 6= 0

then the series
∞∑
n=1

an is divergent.

Proof.
We know that Sn = a1 + a2 + · · ·+ an and Sn+1 = a1 + a2 + · · ·+ an + an+1 =
Sn+an so it follows that Sn+1−Sn = an. Suppose that the series converges to a
number L. Then lim

n→∞
Sn = lim

n→∞
Sn+1 = L. Thus, lim

n→∞
an = lim

n→∞
(Sn+1−Sn) =

L− L = 0

Example 3.2.4
Use the nthterm test to show that the series

∑∞
n=1

n!
2n!+1

is divergent.

Solution.
We have

lim
n→∞

n!

2n! + 1
= lim

n→∞

n!

n!
(
2 + 1

n!

)
= lim

n→∞

1

2 + 1
n!

=
1

2
6= 0.

Hence, by the nthterm test, the given series is divergent
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Remark 3.2.1
The theorem states that if we know the series is convergent then lim

n→∞
an = 0.

The converse is not true in general. That is, the condition lim
n→∞

an = 0 does

not necessarily imply that the series
∞∑
n=1

an is convergent. For example the

well-known Harmonic series
∞∑
n=1

1

n
is divergent even though lim

n→∞
1
n

= 0.

Alternating Series
In the discussion above, we looked at convergence tests that apply only to
series with positive terms. We next consider series whose terms are not nec-
essarily positive.

By an alternating series we mean a series of the form
∞∑
n=1

(−1)n−1an where

an > 0. For instance, the series
∞∑
n=1

(−1)n−1

n
. Here an = 1

n
. The following

theorem provides a way for testing alternating series for convergence.

Theorem 3.2.2 (Alternating Series Test)

An alternating series
∞∑
n=1

(−1)n−1an is convergent if and only if:

(i) The sequence {an}∞n=1 is decreasing, i.e. an+1 < an for all n;
(ii) lim

n→∞
an = 0.

Example 3.2.5

Show that the series
∞∑
n=1

(−1)n−1

n
is convergent.

Solution.
To see this, let an = 1

n
. Since n < n + 1, 1

n+1
< 1

n
, that is, an+1 < an. Also,

lim
n→∞

an = lim
n→∞

1
n

= 0. Hence, by the previous theorem the given series is

convergent
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Absolute Convergence

Consider a series
∞∑
n=1

an which has both positive and negative terms. We say

that this series is absolutely convergent if the series of absolute values
∞∑
n=1

|an| is convergent. The following theorem provides a test of convergence

for series of the above type.

Theorem 3.2.3

If
∞∑
n=1

|an| is convergent then
∞∑
n=1

an is convergent. That is, absolute conver-

gence implies convergence.

Example 3.2.6

Show that the series
∞∑
n=1

(−1)n−1

n2
is absolutely convergent and hence conver-

gent.

Solution.

Indeed, the series of absolute values
∞∑
n=1

1

n2
is convergent (p-series with p = 2)

so by the above theorem, the series
∞∑
n=1

(−1)n−1

n2
is also convergent

Remark 3.2.2
It is very important to be very careful with the statement of the above theo-

rem. The theorem says that if we know that the series
∞∑
n=1

|an| is convergent

then the series
∞∑
n=1

an is definitely convergent. The converse is not true in

general. That is, it is possible that
∞∑
n=1

(−1)n−1an is convergent but
∞∑
n=1

|an|

is divergent. The following example illustrates this situation.

Example 3.2.7

Show that the series
∞∑
n=1

(−1)n−1

n
is convergent but the series

∞∑
n=1

1

n
is diver-

gent.
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Solution.

The alternating series test asserts that the series
∞∑
n=1

(−1)n
1

n
is convergent.

However, the series
∑∞

n=1 |
(−1)n−1

n
| =

∑∞
n=1

1
n

is divergent (Harmonic series)

Conditional Convergence

When a series is such that
∞∑
n=1

|an| is divergent but
∞∑
n=1

an is convergent then

we say that the series
∞∑
n=1

an is conditionally convergent. For example,

the series in the previous example is conditionally convergent.
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Practice Problems

Problem 3.2.1

For what values of x the series
∞∑
n=1

xn converges?

Problem 3.2.2
Use a geometric series to write 0.0808080808 · · · as a fraction of two integers.

Problem 3.2.3
A ball is dropped from a height of 6 feet and begins bouncing. The height
of each bounce is three-fourths the height of the previous bounce. Find the
total vertical distance traveled by the ball.

Problem 3.2.4

Test the convergence of the series
∞∑
n=1

(−1)n−1 n

n+ 1
.

Problem 3.2.5

Test the convergence of the series
∞∑
n=1

(−1)n−1 n

n2 + 1
.

Problem 3.2.6
Show that the series 1−x+x2−x3 + · · · is absolutely convergent for |x| < 1.
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3.3 The Derivative of a Function

In this section we introduce the definition of the derivative and its geometrical
significance.
The instantaneous rate of change of a function f(x) at a point x = a is
the value that the difference quotient or the average rate of change

f(a+ h)− f(a)

h

approaches over smaller and smaller intervals(i.e. when h→ 0). This instan-
taneous rate of change is called the derivative of f(x) with respect to x
at x = a and will be denoted by f ′(a). Thus,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

If this limit exists then we say that f is differentiable at a. To differ-
entiate a function f(x) at x = a means to find its derivative at the point
(a, f(a)). The process of finding the derivative of a function is known as
differentiation.

Example 3.3.1
Use the definition of the derivative to find f ′(x) where f(x) =

√
x, x > 0.

Solution.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

√
x+ h−

√
x

h

= lim
h→0

√
x+ h−

√
x

h

(√
x+ h+

√
x√

x+ h+
√
x

)
= lim

h→0

x+ h− x
h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

=
1

2
√
x
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Graphically, f ′(a) is the slope of the tangent line to the graph of f(x) at the
point (a, f(a)). See Figure 3.3.1.

Figure 3.3.1

The equation of the tangent line to the graph of f(x) at x = a is then given
by the formula

y − f(a) = f ′(a)(x− a).

The equation of the normal line to the graph of f(x) at x = a is given by

y − f(a) = − 1

f ′(a)
(x− a),

assuming that f ′(a) 6= 0.

Example 3.3.2
(i) Find the derivative of the function f(x) = x2 at x = 1.
(ii) Write the equation of the tangent line to the graph of f at the point
(1, f(1)).

Solution.
(i)

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)2 − 1

h

= lim
h→0

1 + 2h+ h2 − 1

h

= lim
h→0

h(2 + h)

h
= lim

h→0
(2 + h) = 2.
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(ii) The equation of the tangent line is given by

y − f(1) = f ′(1)(x− 1)

or in slope-intercept form
y = 2x− 1

Example 3.3.3
Find the equation of the line that is perpendicular to the tangent line to
f(x) = x2 at x = 1.

Solution.
The equation of the line is given by

y = mx+ b.

Since m × f ′(1) = −1 and f ′(1) = 2, we find m = −1
2
. Thus, y = −1

2
x + b.

Since the line crosses the point (1, 1), we have 1 = −1
2

+ b or b = 3
2
. Hence,

the equation of the normal line is

y = −1

2
x+

3

2

Remark 3.3.1
By letting x = a+ h in the definition of f ′(a) we obtain an alternative form
of f ′(a) given by

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

The Derivative Function
Recall that a function f is differentiable at x if the following limit exists

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (3.3.1)

Thus, we associate with the function f , a new function f ′ whose domain is
the set of points x at which the limit (3.3.1) exists. We call the function f ′

the derivative function of f.

Example 3.3.4 (Derivative of a Linear Function)
Find the derivative of the linear function f(x) = mx+ b.
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Solution.
We have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

m(x+ h) + b− (mx+ b)

h

= lim
h→0

mh

h
= m.

Thus, f ′(x) = m

Leibniz Notation for The Derivative
When dealing with mathematical models that involve derivatives it is conve-
nient to denote the prime (or Newton) notation of the derivative of a function
y = f(x) by dy

dx
. That is,

dy

dx
= f ′(x).

This notation is called Leibniz notation (due to W.G. Leibniz). For exam-
ple, we can write dy

dx
= 2x for y′ = 2x.

When using Leibniz notation to denote the value of the derivative at a point
a we will write

dy

dx

∣∣∣∣
x=a

Thus, to evaluate dy
dx

= 2x at x = 2 we would write

dy

dx

∣∣∣∣
x=2

= 2x|x=2 = 2(2) = 4.

Remark 3.3.2
When you think about it, the Leibniz notation better indicates what is going
on when you take a derivative than does the Newton notation. For one
thing, it clearly shows that a derivative of a function is taken with respect
to a particular independent variable. This will prove to be handy when we
deal with the applications of the derivative.

One of the advantages of Leibniz notation is the recognition of the units
of the derivative. For example, if the position function s(t) is expressed in
meters and the time t in seconds then the units of the velocity function ds

dt
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are meters/sec.
In general, the units of the derivative are the units of the dependent variable
divided by the units of the independent variable.

Example 3.3.5
The cost, C ( in dollars) to produce x gallons of ice cream can be expressed
as C = f(x). What are the units of measurements and the meaning of the
statement dC

dx

∣∣
x=200

= 1.4?

Solution.
dC
dx

is measured in dollars per gallon. The notation

dC

dx

∣∣∣∣
x=200

= 1.4

means that if 200 gallons of ice cream have already been produced then the
cost of producing the next gallon will be roughly 1.4 dollars

An Example of a Non-Differentiable Function
Up to this point, we have encountered differentiable functions. The next
example exhibits a function that is not differentiable at a point.

Example 3.3.6
Show that the function f(x) = |x| is not differentiable at x = 0. This shows
an example of a non-differentiable function at a sharp or corner point.

Solution.
f ′(0) would exist if the following limit exists and is equal to f ′(0)

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h|
h
.

But

lim
h→0−

|h|
h

= lim
h→0−

−h
h

= −1

whereas

lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1.

Thus, lim
h→0

|h|
h

does not exist. This shows that f(x) is not differentiable at

x = 0
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The following result can be used for testing the differentiability of a function.
It says that if a function is not continuous then it can not be differentiable.

Theorem 3.3.1
If a function f(x) is differentiable at x = a then it is continuous there.

Proof.
Since f ′(a) exists, we have

lim
x→a

f(x)− f(a)

x− a
= f ′(a).

Thus,

lim
x→a

f(x) = lim
x→a

[(x− a)
f(x)− f(a)

x− a
+ f(a)]

= lim
x→a

(x− a) lim
x→a

f(x)− f(a)

x− a
+
f(x)− f(a)

x− a
f(a)

=0 · f ′(a) + f(a) = f(a).

That is, lim
x→a

f(x) = f(a) and this shows that f is continuous at x = a

Remark 3.3.3
According to Example 3.3.6, a continuous function need not be differentiable.
That is, the converse of the above theorem is not true in general. So be careful
not to consider all continuous functions to be differentiable.

Properties of the Derivative
The following are basic properties of differentiation:
(1) If f is differentiable and k is a constant then [kf(x)]′ = kf ′(x).
(2) If f(x) and g(x) are two differentiable functions then [f(x) ± g(x)]′ =
f ′(x)± g′(x).
(3) Power Rule: For any real number n, the derivative of the function
f(x) = xn is given by f ′(x) = nxn−1.
(4) Product Rule: If f(x) and g(x) are two differentiable functions then
[f(x) · g(x)]′ = f ′(x)g(x) + f(x)g′(x).
(5) Quotient Rule: If f(x) and g(x) are two differentiable functions then
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[f(x)
g(x)

]′ = f ′(x)g(x)−f(x)g′(x)
[g(x)]2

.

(6) [sin x]′ = cosx and [cos x]′ = − sinx.
(7) Chain Rule: If f is a differentiable function of g and g is a differentiable
of x then f(g(x)) is differentiable function of x with derivative given by the
formula [f(g(x)) = f ′(g(x)) · g′(x).

Implicit Differentiation
So far functions have been defined explicitly, that is, they can be written
in the form y = f(x) such as y =

√
1− x2,−1 ≤ x ≤ 1. This same function

can be defined implicitly by the equation x2 + y2 = 1 where 0 ≤ y ≤ 1. To
find the derivative of the explicit form we use the chain rule to obtain

d

dx
(1− x2)

1
2 =

1

2
(1− x2)−

1
2 (−2x) =

−x√
1− x2

.

To find the derivative of the implicit form we start by differentiating both
sides of the equation with respect to x to obtain

2x+ 2y
dy

dx
= 0.

Solving this equation for dy
dx

we find

dy

dx
= −x

y
= − x√

1− x2
.

The purpose of this section is to find the derivatives of implicit functions.
The process is known as implicit differentiation and consists of the fol-
lowing two steps:

Step 1. Differentiate both sides of the equation with respect to x. Remember
that y is a function of x for part of the curve and use the chain rule when
differentiating terms containing y.
Step 2. Solve the differentiated equation in Step 1 algebraically for dy

dx
.

Example 3.3.7
Suppose that y is a differentiable function of x such that

x2y + 2y3 = 3x+ 2y.

Find the equation of the tangent line to the graph at the point (3, 1).
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Solution.
Differentiating both sides to obtain

2xy + x2y′ + 6y2y′ = 3 + 2y′

Replacing x = 3 and y = 1 we find

6 + 9y′ + 6y′ = 3 + 2y′

Solving for y′ to obtain y′ = − 3
13
. Thus, the equation of the tangent line is

given by

y − 1 = − 3

13
(x− 3)

or in standard form
3x+ 13y − 22 = 0
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Practice Problems

Problem 3.3.1
Show that f(x) = x

1
3 is not differentiable at x = 0. This is an example of a

non-differentiable function at a point where the tangent line is vertical.

Problem 3.3.2
Show that the function

f(x) =

{
−x2 + 5 if x ≤ 2
x− 2 if x > 2

is not differentiable at x = 2. This shows an example of a non-differentiable
function at a point of discontinuity.

Problem 3.3.3
Use the power rule to differentiate the following:

(a) y = x
4
3 (b) y = 1

3√x (c) y = xπ.

Problem 3.3.4
Find the derivative of the function y =

√
3x7 − x5

5
+ π.

Problem 3.3.5
Find the second derivative of y = 5 3

√
x− 10

x4
+ 1

2
√
x
.

Problem 3.3.6
Find the derivative of f(x) = x3 sinx.

Problem 3.3.7
Find the derivative of g(x) = x2

cosx
.

Problem 3.3.8
(a) Use the quotient rule to find the derivative of the function secx = 1

cosx
.

(b) Use the quotient rule to find the derivative of the function cscx = 1
sinx

.
(c) Use the quotient rule to find the derivative of the function tanx = sinx

cosx
.

(d) Use the quotient rule to find the derivative of the function cotx = 1
tanx

.

Problem 3.3.9
Find the derivative of y = (4x2 + 1)7.
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Problem 3.3.10
Differentiate: (a) 2 sin (3x) (b) cos (x2).

Problem 3.3.11
Consider the equation y3 − xy = −4.
(a) Find dy

dx
at (6,2) using implicit differentiation.

(b) Find the equation of the tangent line to y3−xy = −4 at the point (6, 2).
(c) At what point(s) (if any) is the tangent line horizontal?
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3.4 The Definite Integral

Definite integrals have the geometric property of measuring the area under
the graph of a function.
To this end, we start by dividing the interval [a, b] into n sub-intervals each
of length ∆x = b−a

n
using the partition points a = x0, x1, · · · , xn−1, xn = b.

We construct the Riemann sum

n∑
i=1

f(x∗i )∆x = f(x∗1)∆x+ f(x∗2)∆x+ · · ·+ f(x∗n)∆x.

The geometric interpretation of a Riemann sum is given in Figure 3.4.1 for
the case n = 6.

Figure 3.4.1

Note that if f(x∗i ) is negative then f(x∗i )∆x is the negative of the area of the

ith rectangle. Thus,
n∑
i=1

f(x∗i )∆x is the sum of the areas of the rectangles

that lie above the x−axis and the negatives of the areas of the rectangles
that lie below the x−axis.

We say that f is integrable if lim
n→∞

n∑
i=1

f(x∗i )∆x exists. In this case, we

denote the limit by ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x.

The left-hand symbol is called the definite integral of f(x) on [a, b]. The
number a is called the lower limit of the integral and the number b is the
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upper limit. The function f(x) is called the integrand. The process of
calculating a definite integral is called integration.
Which functions are integrable? The answer is provided by the following
theorem.

Theorem 3.4.1
If f is continuous on [a, b], or if f has only a finite number of jump disconti-

nuities, then f is integrable on [a, b]; that is, the definite integral
∫ b
a
f(x)dx

exists.

Remark 3.4.1
A definite integral can be interpreted as a net area, that is, a difference of
areas: ∫ b

a

f(x)dx = A1 − A2

where A1 is the total area of the region under the graph and above the x−axis
and A2 is the total area of the region above the graph but below the x− axis.
See Figure 3.4.2.

Figure 3.4.2

Hence, if a definite integral is positive then the area of the region above the
x− axis and under the graph is larger than the area of the region under the
x−axis and above the graph.

Example 3.4.1
Consider the integral

∫ 1

−1

√
1− x2dx.

Interpret the integral as an area, and find its exact value.

Solution.
Note that the equation of a circle centered at the origin and with radius 1
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is given by x2 + y2 = 1. Solving for y we find y = ±
√

1− x2. The func-
tion y =

√
1− x2 corresponds to the upper semicircle and the function

y = −
√

1− x2 corresponds to the lower semicircle. See Figure 3.4.3.

Figure 3.4.3

It follows that the given integral represents the area of the upper semicircle
and therefore is equal to π

2
. That is,∫ 1

−1

√
1− x2dx =

π

2

A quick calculation of a definite integral without the use of Riemann sums
is provided by the following theorem.

Theorem 3.4.2 (First Fundamental Theorem of Calculus)
If f is continuous in [a, b] and F ′ = f then∫ b

a

f(x)dx = F (b)− F (a).

We call the function F (x) an antiderivative of f(x).

Example 3.4.2
Compute

∫ 2

1
2xdx.

Solution.
Since the derivative of x2 is 2x, F (x) = x2. Thus, we have∫ 2

1

2xdx = F (2)− F (1) = 4− 1 = 3
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Example 3.4.3
Compute

∫ 2

1
3x2dx.

Solution.
Since F (x) = x3 is an antiderivative of f(x) = 3x2, by FTC we can write∫ 2

1

3x2dx = x3|21 = 23 − 13 = 7

The Second Fundamental Theorem of Calculus
We have seen so far that most of the functions that we have considered have
elementary antiderivatives, that is, antiderivatives that can be expressed as
a linear combination of elementary functions (such as constant functions,
powers of x, sinx, cosx, ex, lnx, etc.) However, not all functions have an-
tiderivatives that can be expressed in simple analytic formula and we already
encountered an example of such functions, i.e. sinx

x
. Below, we will present a

method for constructing antiderivatives.

Theorem 3.4.3 (Second Fundamental Theorem of Calculus)
Suppose that f is continuous on an interval and a is any point of that interval.
Then the funtion

F (x) =

∫ x

a

f(t)dt

is an antiderivative of f(x). That is, F ′(x) = f(x).

Example 3.4.4
According to the above theorem an antiderivative of the function f(x) = sinx

x

is given by

Si(x) =

∫ x

0+

sin t

t
dt.

Find the derivative of xSi(x).

Solution.
Applying the product rule,

d

dx
(xSi(x)) =(x)′Si(x) + x(Si(x))′

=Si(x) + x
sinx

x
=Si(x) + sin x



3.4. THE DEFINITE INTEGRAL 87

Integration by Substitution
To evaluate the integral ∫ b

a

f(g(x))g′(x)dx

we introduce the variable u(x) = g(x). In this case, the integral can be
evaluated as follows:∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du.

Example 3.4.5
Evaluate the integral

∫ 1

0
e−y

(1+e−y)2
dy.

Solution.
Letting u = 1 + e−y, we have du = −e−ydy. Hence,∫ 1

0

e−y

(1 + e−y)2
dy = −

∫ 1+e−1

2

du

u2
=

[
1

u

]1+e−1

2

=
1

1 + e−1
− 1

2

Integration by Parts Formula
The following is another technique of integration commonly encountered:∫

uv′dx = uv −
∫
u′vdx.

Example 3.4.6
Evaluate the indefinite integral

∫
xexdx.

Solution.
Let u = x and v′ = ex. Then u′ = 1 and v = ex. Hence,∫

xexdx = xex −
∫
exdx = xex − ex + C
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Practice Problems

Problem 3.4.1
Evaluate:

∫ x
a

1
π(1+x2)

dx.

Problem 3.4.2
Evaluate:

∫ x
0

a−1
(1+y)a

dy, where a is a constant.

Problem 3.4.3
Evaluate:

∫ x
0
kαyα−1e−ky

α
dy, where α and k are constants.

Problem 3.4.4
Let

f(t) =

{
e−t t ≥ 0,
0 t < 0.

Find the value of c so that
∫ 3

−2
f(t)dt = 1.

Problem 3.4.5
Evaluate the integral:

∫
xe−xdx.

Problem 3.4.6
Find the value of c that satisfies the equation

∫ 1

c
5(1− x)4dx = 0.1

Problem 3.4.7
Evaluate the integral

∫ 4

−2
xf(x)dx where

f(x) =

{ |x|
10
−2 ≤ x ≤ 4

0 otherwise.

Problem 3.4.8
Evaluate the integral

∫ 5

0
min (x, 4)f(x)dx where

f(x) =

{
1
5

0 < x < 5
0 otherwise.

Problem 3.4.9
Calculate

∫
3x(1 + x)−4dx.
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3.5 Improper Integrals

A very common mistake among students is when evaluating the integral∫ 1

−1
1
x
dx. A non careful student will just argue as follows∫ 1

−1

1

x
dx = [ln |x|]1−1 = 0.

Unfortunately, that’s not the right answer as we will see below. The impor-
tant fact ignored here is that the integrand is not continuous at x = 0. In
fact, f(x) = 1

x
has an infinite discontinuity at x = 0.

A (proper) definite integral, denoted by
∫ b
a
f(x)dx, exists when

(a) f(x) is continuous on [a, b],
(b) [a, b] is of finite length.

Improper integrals are integrals in which one or both of the above condi-
tions are not met, i.e.,
(1) The interval of integration is infinite:

[a,∞), (−∞, b], (−∞,∞).

For example, ∫ ∞
1

1

x
dx.

(2) The integrand has an infinite discontinuity at some point c in the interval
[a, b], i.e., the integrand is unbounded near c :

lim
x→c

f(x) = ±∞.

For example, ∫ 1

−1

1

x
dx.

An improper integral is defined in terms of limits so it may exist or may not
exist. If the limit exists, we say that the improper integral is convergent.
Otherwise, the integral is divergent.
We will consider only improper integrals with positive integrands since they
are the most common in probability.
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Infinite Intervals of Integration
The first type of improper integrals arises when the domain of integration is
infinite but the integrand is still continuous in the domain of integration. In
case one of the limits of integration is infinite, we define∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx

or ∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx.

If both limits are infinite, we write∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx.

Example 3.5.1
Does the integral

∫∞
1

1
x2
dx converge or diverge?

Solution.
We have∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞
[−1

x
]b1 = lim

b→∞
(−1

b
+ 1) = 1.

In terms of area, the given integral represents the area under the graph of
f(x) = 1

x2
from x = 1 and extending infinitely to the right. The above im-

proper integral says the following. Let b > 1 and obtain the area shown in
Figure 3.5.1.

Figure 3.5.1
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Then
∫ b

1
1
x2
dx is the area under the graph of f(x) from x = 1 to x = b. As b

gets larger and larger this area is close to 1

Example 3.5.2
Does the improper integral

∫∞
1

1√
x
dx converge or diverge?

Solution.
We have∫ ∞

1

1√
x
dx = lim

b→∞

∫ b

1

1√
x
dx = lim

b→∞
[2
√
x]b1 = lim

b→∞
(2
√
b− 2) =∞.

So the improper integral is divergent

The following example generalizes the results of the previous two examples.

Example 3.5.3
Determine for which values of p the improper integral

∫∞
1

1
xp
dx diverges.

Solution.
Suppose first that p = 1. Then

∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

[ln |x|]b1 = lim
b→∞

ln b =∞

so the improper integral is divergent.
Now, suppose that p 6= 1. Then

∫ ∞
1

1

xp
dx = lim

b→∞

∫ b

1

x−pdx

= lim
b→∞

[
x−p+1

−p+ 1
]b1

= lim
b→∞

(
b−p+1

−p+ 1
− 1

−p+ 1
).
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If p < 1 then −p + 1 > 0 so that limb→∞ b
−p+1 = ∞ and therefore the im-

proper integral is divergent. If p > 1 then−p+1 < 0 so that limb→∞ b
−p+1 = 0

and hence the improper integral converges:∫ ∞
1

1

xp
dx =

1

1− p

Example 3.5.4
For what values of c is the improper integral

∫∞
0
ecxdx convergent?

Solution.
We have

∫ ∞
0

ecxdx = lim
b→∞

∫ b

0

ecxdx = lim
b→∞

1

c
ecx|b0

= lim
b→∞

1

c
(ecb − 1) = −1

c

provided that c < 0. Otherwise, i.e. if c ≥ 0, then the improper integral is
divergent.

Remark 3.5.1
The previous two results are very useful and you may want to memorize
them.

Example 3.5.5
Show that the improper integral

∫∞
−∞

1
1+x2

dx converges.

Solution.
We have ∫ ∞

−∞

1

1 + x2
dx = lim

a→∞

∫ a

−a

1

1 + x2
dx

= lim
a→∞

tan−1 x
]c
−a + lim

a→∞
tan−1 x

]a
c

= lim
a→∞

[tan−1 a− tan−1 (−a)]

= lim
a→∞

2 tan−1 a

=2
(π

2

)
= π
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Integrands with infinite discontinuity
Suppose f(x) > 0 is unbounded at x = a such that lim

x→a+
f(x) =∞. Then we

define ∫ b

a

f(x)dx = lim
t→a+

∫ b

t

f(x)dx.

Similarly, if f(x) is unbounded at x = b with limx→b− f(x) = ∞ then we
define ∫ b

a

f(x)dx = lim
t→b−

∫ t

a

f(x)dx.

Now, if f(x) is unbounded at an interior point a < c < b then we define∫ b

a

f(x)dx = lim
t→c−

∫ t

a

f(x)dx+ lim
t→c+

∫ b

t

f(x)dx.

If both limits exist then the integral on the left-hand side converges. If one of
the limits does not exist then we say that the improper integral is divergent.

Example 3.5.6
Show that the improper integral

∫ 1

0
1√
x
dx converges.

Solution.
Indeed,

∫ 1

0

1√
x
dx = lim

t→0+

∫ 1

t

1√
x
dx = lim

t→0+
2
√
x|1t

= lim
t→0+

(2− 2
√
t) = 2.

In terms of area, we pick a t > 0 as shown in Figure 3.5.2. Then the shaded
area is

∫ 1

t
1√
x
dx. As t approaches 0 from the right, the area approaches the

value 2
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Figure 3.5.2

Example 3.5.7
Investigate the convergence of

∫ 2

0
1

(x−2)2
dx.

Solution.
We deal with this improper integral as follows

∫ 2

0

1

(x− 2)2
dx = lim

t→2−

∫ t

0

1

(x− 2)2
dx = lim

t→2−
− 1

(x− 2)

]t
0

= lim
t→2−

(
− 1

t− 2
− 1

2

)
=∞,

so that the given improper integral is divergent

Example 3.5.8
Investigate the improper integral

∫ 1

−1
1
x
dx.

Solution.
We first write ∫ 1

−1

1

x
dx =

∫ 0

−1

1

x
dx+

∫ 1

0

1

x
dx.

On one hand, we have∫ 0

−1

1

x
dx = lim

t→0−

∫ t

−1

1

x
dx = lim

t→0−
ln |x|]t−1

= lim
t→0−

ln (|t|) =∞.
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This shows that the improper integral
∫ 0

−1
1
x
dx is divergent and therefore the

improper integral
∫ 1

−1
1
x
dx is divergent

Improper Integrals of Mixed Type
Now, if the interval of integration is unbounded and the integrand is un-
bounded at one or more points inside the interval of integration we can
evaluate the improper integral by decomposing it into a sum of an improper
integral with finite interval but where the integrand is unbounded and an
improper integral with an infinite interval. If each component integrals con-
verges, then we say that the original integral converges to the sum of the
values of the component integrals. If one of the component integrals diverges,
we say that the entire integral diverges.

Example 3.5.9
Investigate the convergence of

∫∞
0

1
x2
dx.

Solution.
Note that the interval of integration is infinite and the function is undefined
at x = 0. So we write∫ ∞

0

1

x2
dx =

∫ 1

0

1

x2
dx+

∫ ∞
1

1

x2
dx.

But ∫ 1

0

1

x2
dx = lim

t→0+

∫ 1

t

1

x2
dx = lim

t→0+
−1

x
|1t = lim

t→0+
(
1

t
− 1) =∞.

Thus,
∫ 1

0
1
x2
dx diverges and consequently the improper integral

∫∞
0

1
x2
dx di-

verges

Comparison Tests for Improper Integrals
Sometimes it is difficult to find the exact value of an improper integral by
anti-differentiation, for instance the integral

∫∞
0
e−x

2
dx. However, it is still

possible to determine whether an improper integral converges or diverges.
The idea is to compare the integral to one whose behavior we already know,
such us
• the p-integral

∫∞
1

1
xp
dx which converges for p > 1 and diverges otherwise;

• the integral
∫∞

0
ecxdx which converges for c < 0 and diverges for c ≥ 0;

• the integral
∫ 1

0
1
xp
dx which converges for p < 1 and diverges otherwise.
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The comparison method consists of the following:

Theorem 3.5.1
Suppose that f and g are continuous and 0 ≤ g(x) ≤ f(x) for all x ≥ a.
Then
(a) if

∫∞
a
f(x)dx is convergent, so is

∫∞
a
g(x)dx

(b) if
∫∞
a
g(x)dx is divergent, so is

∫∞
a
f(x)dx.

This is only common sense: if the curve y = g(x) lies below the curve y =
f(x), and the area of the region under the graph of f(x) is finite, then of
course so is the area of the region under the graph of g(x). Similar results
hold for the other types of improper integrals.

Example 3.5.10
Determine whether

∫∞
1

1√
x3+5

dx converges.

Solution.
For x ≥ 1, we have that x3 + 5 ≥ x3 so that

√
x3 + 5 ≥

√
x3. Thus, 1√

x3+5
≤

1√
x3
. Letting f(x) = 1√

x3
and g(x) = 1√

x3+5
then we have that 0 ≤ g(x) ≤

f(x). From the previous section we know that
∫∞

1
1

x
3
2
dx is convergent, a p-

integral with p = 3
2
> 1. By the comparison test,

∫∞
1

1√
x3+5

dx is convergent

Example 3.5.11
Investigate the convergence of

∫∞
4

dx
lnx−1

.

Solution.
For x ≥ 4, we know that lnx− 1 < lnx < x. Thus, 1

lnx−1
> 1

x
. Let g(x) = 1

x

and f(x) = 1
lnx−1

. Thus, 0 < g(x) ≤ f(x). Since
∫∞

4
1
x
dx =

∫∞
1

1
x
dx−

∫ 4

1
1
x
dx

and the integral
∫∞

1
1
x
dx is divergent being a p-integral with p = 1, the

integral
∫∞

4
1
x
dx is divergent. By the comparison test

∫∞
4

dx
lnx−1

is divergent
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Practice Problems

Problem 3.5.1
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 0

−∞

dx√
3− x

.

Problem 3.5.2
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 1

−1

ex

ex − 1
dx.

Problem 3.5.3
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 4

1

dx

x− 2
.

Problem 3.5.4
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 10

1

dx√
10− x

.

Problem 3.5.5
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

−∞

dx

ex + e−x
.

Problem 3.5.6
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

0

dx

x2 + 4
.
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Problem 3.5.7
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 0

−∞
exdx.

Problem 3.5.8
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

0

dx

(x− 5)
1
3

.

Problem 3.5.9
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 2

0

dx

(x− 1)2
.

Problem 3.5.10
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

−∞

x

x2 + 9
dx.

Problem 3.5.11
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 1

0

4dx√
1− x2

.

Problem 3.5.12
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

0

xe−xdx.

Problem 3.5.13
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 1

0

x2

√
1− x3

dx.
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Problem 3.5.14
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 2

1

x

x− 1
dx.

Problem 3.5.15
Investigate the convergence of

∫∞
4

dx
lnx−1

.

Problem 3.5.16
Investigate the convergence of the improper integral

∫∞
1

sinx+3√
x
dx.

Problem 3.5.17
Investigate the convergence of

∫∞
1
e−

1
2
x2dx.
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3.6 Graphing Systems of Inequalities in Two

Variables

When evaluating double integrals over a certain region, the region under
consideration is the solution to a system of inequalities in two variables.
The purpose of this section is to represent the solution graphically. We will
consider systems of linear inequalities. However, the discussion applies to
any system of inequalities.
By a linear inequality in the variables x and y we mean anyone of the
following

ax+ by ≤ c, ax+ by ≥ c, ax+ by < c, ax+ by > c.

A pair of numbers (x, y) that satisfies a linear inequality is called a solu-
tion. A solution set of a linear inequality is a half-plane in the Cartesian
coordinates system. The boundary of the region is the graph of the line
ax + by = c. The boundary is represented by a dashed line in the case of
inequalities involving either < or > . Otherwise, the boundary is represented
by a solid line to show that the points on the line are included in the solution
set.
To solve a linear inequality of the type above, one starts by drawing the
boundary line. This boundary line partition the Cartesian coordinates sys-
tem into two half-planes. One of them is the solution set. To determine
which of the two half-planes is the solution set, one picks a point, called a
test point, in one of the half-plane. If the chosen point is a solution to the
linear inequality then the half-plane containing the point is the solution set.
Otherwise, the half-plane not containing the point is the solution set.

Example 3.6.1
Solve graphically each of the following inequalities:
(a) y ≤ x− 2
(b) y < x− 2
(c) y ≥ x− 2
(d) y > x− 2.

Solution.
(a) First, we graph the line y = x−2 as a solid line. The test point (0, 0) does
not satisfy the inequality so that the lower-half plane including the boundary
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line is the solution set. See Figure 3.6.1(a).
(b) The boundary line is a dashed-line. As in (a), the solution set is the
lower-half plane. See Figure 3.6.1(b).
(c) The solution set is the upper-half plane together with the boundary line.
See Figure 3.6.1(c).
(d) The solution set is the upper-half plane. See Figure 3.6.1(d)

Figure 3.6.1

We next consider systems of linear inequalities. The solution set is the region
in the Cartesian coordinate system consisting of all pairs that simultaneously
satisfy all the inequalities in the system. The solution region is known as the
feasible region.
To find the feasible region, we solve graphically each linear inequality in the
system. The feasible region is the region where all the solution sets overlap.
The intersection of two boundary lines is called a corner point.

Example 3.6.2
Determine if the point (x, y) = (1, 2) is in the feasible region of the system{

2x+ 3y ≥ 6
2x− 3y ≥ 15.

Solution.
The give point satisfies the first inequality. However, it does not satisfy the
second inequality since 2x − 3y = 2(1) − 3(2) = −4 < 15. Hence, the point
(1, 2) is not in the feasible region of the given system

Example 3.6.3
Solve the linear system 

−3x+ 4y ≤ 12
x+ 2y < 6
−x+ 5y ≥ −5.
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Solution.
We graph the solution set to each linear inequality on the same set of axes.
The overlapping region is the triangle with corners (0, 3),

(
−80

11
,−27

11

)
,
(

40
7
, 1

7

)
as shown in Figure 3.6.2

Figure 3.6.2
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Practice Problems

Problem 3.6.1
Solve graphically 2x− 3y ≤ 6.

Problem 3.6.2
Solve graphically x > 3.

Problem 3.6.3
Solve graphically y ≤ 2.

Problem 3.6.4
Solve graphically 2x+ 5y > 20.

Problem 3.6.5
Solve the system of inequalities:

x− y < 1
2x+ 3y ≤ 12

x ≥ 0.

Problem 3.6.6
Solve the system of inequalities:

x+ 2y ≤ 3
−3x+ y < 5

−3x+ 8y ≥ −23.

Problem 3.6.7
Solve the system of inequalities:{

y < 2x+ 1
x+ y ≥ −5.

Problem 3.6.8
Solve the system of inequalities:

x > −2
y ≤ 4

3x+ 4y ≤ 24.
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Problem 3.6.9
Find the feasible region of the system

x+ y > 1
0 < x < 1
0 < y < 2.

Problem 3.6.10
Find the feasible region of the system

x+ y < 1
0 < x < 0.2
y > 0.

Problem 3.6.11
Graph the region x2 ≤ y ≤ x.

Problem 3.6.12
Find the feasible region of the system{

x < 50− y
20 < x, y < 30.

Problem 3.6.13
Find the feasible region of the system{

x2 > y
0 < x, y < 1.

Problem 3.6.14
Find the feasible region of the system

x
2
≤ y ≤ x

0 ≤ x ≤ 2
0 ≤ y ≤ 1.

Problem 3.6.15
Find the feasible region of the system{

x− 1
2
≤ y ≤ x+ 1

2

0 ≤ x, y ≤ 1.
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Problem 3.6.16
Find the feasible region of the system{

x+ 2y < 3
0 ≤ x, y ≤ 2.

Problem 3.6.17
Find the feasible region of the system

y ≥ 2x
0 ≤ y ≤ 3− x

x ≥ 0

Problem 3.6.18
Find the feasible region of the system{

x− 20 ≤ y ≤ x+ 20
2000 ≤ x, y ≤ 2200.
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3.7 Iterated Double Integrals

In this section, we see how to compute double integrals exactly using one-
variable integrals.
Going back to the definition of the integral over a region as the limit of a
double Riemann sum:

∫
R

f(x, y)dxdy = lim
m,n→∞

m∑
j=1

n∑
i=1

f(x∗i , y
∗
j )∆x∆y

= lim
m,n→∞

m∑
j=1

(
n∑
i=1

f(x∗i , y
∗
j )∆x

)
∆y

= lim
m,n→∞

m∑
j=1

∆y

(
n∑
i=1

f(x∗i , y
∗
j )∆x

)

= lim
m→∞

m∑
j=1

∆y

∫ b

a

f(x, y∗j )dx.

We now let

F (y∗j ) =

∫ b

a

f(x, y∗j )dx

and, substituting into the expression above, we obtain

∫
R

f(x, y)dxdy = lim
m→∞

m∑
j=1

F (y∗j )∆y =

∫ d

c

F (y)dy =

∫ d

c

∫ b

a

f(x, y)dxdy.

Thus, if f is continuous over a rectangle R then the integral of f over R can
be expressed as an iterated integral. To evaluate this iterated integral,
first perform the inside integral with respect to x, holding y constant, then
integrate the result with respect to y.

Example 3.7.1
Compute

∫ 16

0

∫ 8

0

(
12− x

4
− y

8

)
dxdy.
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Solution.
We have∫ 16

0

∫ 8

0

(
12− x

4
− y

8

)
dxdy =

∫ 16

0

(∫ 8

0

(
12− x

4
− y

8

)
dx

)
dy

=

∫ 16

0

[
12x− x2

8
− xy

8

]8

0

dy

=

∫ 16

0

(88− y)dy = 88y − y2

2

∣∣∣∣16

0

= 1280

We note, that we can repeat the argument above for establishing the iterated
integral, reversing the order of the summation so that we sum over j first
and i second (i.e. integrate over y first and x second) so the result has the
order of integration reversed. That is we can show that∫

R

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx.

Example 3.7.2
Compute

∫ 8

0

∫ 16

0

(
12− x

4
− y

8

)
dydx.

Solution.
We have∫ 8

0

∫ 16

0

(
12− x

4
− y

8

)
dydx =

∫ 8

0

(∫ 16

0

(
12− x

4
− y

8

)
dy

)
dx

=

∫ 8

0

[
12y − xy

4
− y2

16

]16

0

dx

=

∫ 8

0

(176− 4x)dx = 176x− 2x2
∣∣8
0

= 1280

Iterated Integrals Over Non-Rectangular Regions
So far we looked at double integrals over rectangular regions. The problem
with this is that most of the regions are not rectangular so we need to now
look at the following double integral,∫

R

f(x, y)dxdy
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where R is any region. We consider the two types of regions shown in Figure
3.7.1.

Figure 3.7.1

In Case 1, the iterated integral of f over R is defined by∫
R

f(x, y)dxdy =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx.

This means, that we are integrating using vertical strips from g1(x) to g2(x)
and moving these strips from x = a to x = b.
In case 2, we have∫

R

f(x, y)dxdy =

∫ d

c

∫ h2(y)

h1(y)

f(x, y)dxdy

so we use horizontal strips from h1(y) to h2(y). Note that in both cases, the
limits on the outer integral must always be constants.

Remark 3.7.1
Chosing the order of integration will depend on the problem and is usually
determined by the function being integrated and the shape of the region R.
The order of integration which results in the “simplest” evaluation of the
integrals is the one that is preferred.

Example 3.7.3
Let f(x, y) = xy. Integrate f(x, y) for the triangular region bounded by the
x−axis, the y−axis, and the line y = 2− 2x.
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Solution.
Figure 3.7.2 shows the region of integration for this example.

Figure 3.7.2

Graphically integrating over y first is equivalent to moving along the x axis
from 0 to 1 and integrating from y = 0 to y = 2− 2x. That is, summing up
the vertical strips as shown in Figure 3.7.3(I).

∫
R

xydxdy =

∫ 1

0

∫ 2−2x

0

xydydx

=

∫ 1

0

xy2

2

∣∣∣∣2−2x

0

dx =
1

2

∫ 1

0

x(2− 2x)2dx

=2

∫ 1

0

(x− 2x2 + x3)dx = 2

[
x2

2
− 2

3
x3 +

x4

4

]1

0

=
1

6
.

If we choose to do the integral in the opposite order, then we need to invert
the y = 2− 2x i.e. express x as function of y. In this case we get x = 1− 1

2
y.

Integrating in this order corresponds to integrating from y = 0 to y = 2
along horizontal strips ranging from x = 0 to x = 1− 1

2
y, as shown in Figure
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3.7.3(II)∫
R

xydxdy =

∫ 2

0

∫ 1− 1
2
y

0

xydxdy

=

∫ 2

0

x2y

2

∣∣∣∣1− 1
2
y

0

dy =
1

2

∫ 2

0

y(1− 1

2
y)2dy

=
1

2

∫ 2

0

(y − y2 +
y3

4
)dy =

y2

4
− y3

6
+
y4

32

∣∣∣∣2
0

=
1

6

Figure 3.7.3

Example 3.7.4
Find

∫
R

(4xy− y3)dxdy where R is the region bounded by the curves y =
√
x

and y = x3.

Solution.
A sketch of R is given in Figure 3.7.4. Using horizontal strips we can write∫

R

(4xy − y3)dxdy =

∫ 1

0

∫ 3
√
y

y2
(4xy − y3)dxdy

=

∫ 1

0

2x2y − xy3
∣∣ 3
√
y

y2
dy =

∫ 1

0

(
2y

5
3 − y

10
3 − y5

)
dy

=
3

4
y

8
3 − 3

13
y

13
3 − 1

6
y6

∣∣∣∣1
0

=
55

156
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Figure 3.7.4

Example 3.7.5

Sketch the region of integration of
∫ 2

0

∫ √4−x2
−
√

4−x2 xydydx

Solution.
A sketch of the region is given in Figure 3.7.5.

Figure 3.7.5
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Practice Problems

Problem 3.7.1
Set up a double integral of f(x, y) over the region given by 0 < x < 1;x <
y < x+ 1.

Problem 3.7.2
Set up a double integral of f(x, y) over the part of the unit square 0 ≤ x ≤
1; 0 ≤ y ≤ 1, on which y ≤ x

2
.

Problem 3.7.3
Set up a double integral of f(x, y) over the part of the unit square on which
both x and y are greater than 0.5.

Problem 3.7.4
Set up a double integral of f(x, y) over the part of the unit square on which
at least one of x and y is greater than 0.5.

Problem 3.7.5
Set up a double integral of f(x, y) over the part of the region given by 0 <
x < 50− y < 50 on which both x and y are greater than 20.

Problem 3.7.6
Set up a double integral of f(x, y) over the set of all points (x, y) in the first
quadrant with |x− y| ≤ 1.

Problem 3.7.7
Evaluate

∫
R
e−x−ydxdy, where R is the region in the first quadrant in which

x+ y ≤ 1.

Problem 3.7.8
Evaluate

∫
R
e−x−2ydxdy, where R is the region in the first quadrant in which

x ≤ y.

Problem 3.7.9
Evaluate

∫
R

(x2 + y2)dxdy, where R is the region 0 ≤ x ≤ y ≤ L.

Problem 3.7.10
Evaluate

∫
R

(x− y + 1)dxdy, where R is the region inside the unit square in
which x+ y ≥ 0.5.
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Problem 3.7.11
Evaluate

∫ 1

0

∫ 1

0
xmax(x, y)dydx.

Problem 3.7.12
Evaluate

∫
R

1
375

(20− x− y)dxdy where R = {(x, y) : 1 ≤ x ≤ 2, 2 ≤ y ≤ 3}.

Problem 3.7.13
Evaluate

∫
R
xαy1−αdxdy where R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Problem 3.7.14
Evaluate

∫
R
x+y

8
dxdy where R = {(x, y) : 1 ≤ x ≤ 2, 1 ≤ y ≤ 2}.

Problem 3.7.15
Evaluate

∫
R

2x+2−y
4

dxdy where R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, x + y ≥
1}.

Problem 3.7.16
Evaluate

∫
R

6[1−(x+y)]dxdy where R = {(x, y) : 0 ≤ x ≤ 0.2, y ≥ 0, x+y ≤
1}.

Problem 3.7.17
Evaluate

∫
R

6
125000

(50 − x − y)dxdy where R = {(x, y) : x, y ≥ 20, 0 ≤ x ≤
50− y}.

Problem 3.7.18
Evaluate

∫
R

(x+ y)dxdy where R = {(x, y) : 0 ≤ x, y ≤ 1, x ≥ √y}.

Problem 3.7.19
Evaluate

∫
R
xydxdy where R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, x

2
≤ y ≤ x}.

Problem 3.7.20
Evaluate

∫
R

1
800
e−

x
40
− y

20dxdy where R = {(x, y) : x, y ≥ 0, x+ y ≤ 60}.

Problem 3.7.21
Evaluate

∫
R
e−(x+y)dxdy where R = {(x, y) : x, y ≥ 0, x ≤ y}.

Problem 3.7.22
Evaluate

∫
R

6y(1− y)dxdy where R = {(x, y) : 0 ≤ x ≤ y ≤ 1, x ≤ 3
4
, y ≥ 1

2
}.
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Problem 3.7.23
Evaluate

∫
R

3xy3dxdy where R = {(x, y) : 0 ≤ x, y ≤ 1, y ≥ 2x}.

Problem 3.7.24
Evaluate

∫
R

6xy2dxdy where R = {(x, y) : 0 ≤ x, y ≤ 1, x− 1
2
≤ y ≤ x+ 1

2
}.

Problem 3.7.25
Evaluate

∫
R

8
7
x2y−3dxdy where R = {(x, y) : 1 ≤ x, y ≤ 2, x ≥ y}.

Problem 3.7.26
Evaluate

∫
R

3x2+2y
24

dxdy where R = {(x, y) : 0 ≤ x, y ≤ 2, x+ 2y ≤ 3}.

Problem 3.7.27
Evaluate

∫
R

4
9
dxdy where R = {(x, y) : 0 ≤ x ≤ y ≤ 3− x, y ≥ 2x}.

Problem 3.7.28
Evaluate

∫
R

1
6
e−(x

2
+ y

3
)dxdy where R = {(x, y) : x, y ≥ 0, y ≤ x}.



Chapter 4

Probability: Definitions and
Properties

In this chapter, we discuss the fundamental concepts of probability at a level
at which no previous exposure to the topic is assumed.
Probability has been used in many applications ranging from medicine to
business and so the study of probability is considered an essential component
of any mathematics curriculum.
So what is probability? Before answering this question we start with some
basic definitions.

121
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4.1 Basic Definitions and Axioms of Proba-

bility

A random experiment or simply an experiment is a process whose out-
comes cannot be predicted with certainty. Examples of an experiment in-
clude rolling a die, flipping a coin, and choosing a card from a deck of playing
cards.
The sample space S of an experiment is the set of all possible outcomes for
the experiment. For example, if you roll a die one time then the experiment is
the roll of the die. A sample space for this experiment is S = {1, 2, 3, 4, 5, 6}
where each digit represents a face of the die.
An event is a subset of the sample space. For example, the event of rolling
an odd number with a die consists of three outcomes {1, 3, 5}. An event
consisting of a single outcome is called a single event. An event with no
outcomes is called an impossible event.

Example 4.1.1
Consider the random experiment of tossing a coin three times.
(a) Find the sample space of this experiment.
(b) Find the outcomes of the event of obtaining more than one head.

Solution.
We will use T for tail and H for head.
(a) The sample space is composed of eight outcomes:

S = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}.

(b) The event of obtaining more than one head is the set

{THH,HTH,HHT,HHH}

Probability is the measure of occurrence of an event. Various probability
concepts exist nowadays. A widely used probability concept is the exper-
imental or empirical probability which uses the relative frequency1 of an
event and is defined as follows. Let α(E) denote the number of times in the

1The relative frequency of an event is defined as the number of times that the
event occurs during experimental trials, divided by the total number of trials conducted.
The relative frequency is not a theoretical quantity, but an experimental one. Thus, the
term experimental probability.
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first n repetitions of the experiment that the event E occurs. Then P (E),
the probability of the event E, is defined by

P (E) = lim
n→∞

α(E)

n
.

This result is a theorem called the law of large numbers2

In contrast to experimental probability, we have the theoretical or classical
probability. When the outcome of an experiment has the same chance of
being selected as any other outcome, as in the example of tossing a coin,
the outcomes are said to be equally likely. The theoretical or classical
probability concept applies only when all possible outcomes are equally
likely, in which case the probability of an event E is given by the formula

P (E) =
number of outcomes favorable to event

total number of outcomes
=

#(E)

#(S)
.

The function P satisfies the following axioms, known as Kolomogorov’s
axioms:

(P1) : For any event E, 0 ≤ P (E) ≤ 1.
(P2): P (S) = 1.
(P3): For any sequence of pairwise mutually exclusive events {En}n≥1, that
is, Ei ∩ Ej = ∅ for i 6= j, we have

P

(
∞⋃
n=1

En

)
=
∞∑
n=1

P (En) (Countable additivity)

provided that the series on the right is convergent. Any function P that
satisfies Axioms (P1)- (P3) will be called a probability measure. Hence, a
classical probability is a probability measure. The converse is false as shown
in the next example.

Example 4.1.2
Consider the sample space S = {1, 2, 3}. Suppose that P ({1, 2}) = 0.5 and
P ({2, 3}) = 0.7. Is P a valid probability measure? Justify your answer.

2The relative frequency of an event converges to the probability of the event as the
experiment is repeated a large number of times.
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Solution.
In the affirmative, we must have P (S) = P ({1}) + P ({2}) + P ({3}) = 1.
But P ({1, 2}) = P ({1}) + P ({2}) = 0.5. This implies that 0.5 + P ({3}) = 1
or P ({3}) = 0.5. Similarly, 1 = P ({2, 3}) + P ({1}) = 0.7 + P ({1}) and so
P ({1}) = 0.3. It follows that P ({2}) = 1−P ({1})−P ({3}) = 1−0.3−0.5 =
0.2. We can easily verify Kolmogorov’s axioms for this P. Hence, P is a valid
probability measure but not a classical probability since the outcomes are
not equally likely

Next, we discuss some properties of a probability measure.

Theorem 4.1.1
If P is a probability measure then
(i) P (∅) = 0.
(ii) If {E1, E2, · · · , En} is a finite set of pairwise mutually exclusive events
then

P

(
n⋃
k=1

Ek

)
=

n∑
k=1

P (Ek).

(iii) P (Ec) = 1− P (E), where Ec is the complementary event.

Proof.
(i) Using (P2) and (P3), we have:

1 =P (S) = P (S ∪ ∅ ∪ ∅ ∪ · · · )
=P (S) + P (∅) + P (∅) + · · · = 1 + P (∅) + P (∅) + · · ·

0 =P (∅) + P (∅) + · · ·

Now, by (P1), we must have P (∅) = 0.
(ii) If {E1, E2, · · · , En} is a finite set of mutually exclusive events, then by
defining Ek = ∅ for k > n and using (P3) and (i) above, we find

P

(
n⋃
k=1

Ek

)
= P

(
∞⋃
k=1

Ek

)
=
∞∑
k=1

P (Ek) =
n∑
k=1

P (Ek).

(iii) Since E ∪ Ec = S, E ∩ Ec = ∅, and P (S) = 1 we find

1 = P (S) = P (E) + P (Ec) =⇒ P (Ec) = 1− P (E)

In the remaining of this book, P will stand for the classical probability.
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Example 4.1.3
A hand of 5 cards is dealt from a deck. Let E be the event that the hand
contains 5 aces. List the elements of E and find P (E).

Solution.
Recall that a standard deck of 52 playing cards can be described as follows:

hearts (red) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
clubs (black) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
diamonds (red) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
spades (black) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King

Cards labeled Ace, Jack, Queen, or King are called face cards.
Since there are only 4 aces in the deck, event E is impossible, i.e. E = ∅ so
that P (E) = 0

Example 4.1.4
What is the probability of drawing an ace from a well-shuffled deck of 52
playing cards?

Solution.
Since there are four aces in a deck of 52 playing cards, the probability of
getting an ace is

P (Ace) =
4

52
=

1

13

Example 4.1.5
What is the probability of rolling a 3 or a 4 with a fair die?

Solution.
The event of having a 3 or a 4 is the event E = {3, 4}. The probability of
rolling a 3 or a 4 is P (E) = 2

6
= 1

3

Example 4.1.6 (Birthday problem)
In a room containing n people, calculate the probability that at least two of
them have the same birthday. Assume all years are non-leap years.
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Solution.
In a group of n randomly chosen people, the sample space S is the set

S = {(i1, i2, · · · , in)|1 ≤ ik ≤ 365, k = 1, 2, · · · , n}.

Hence, #(S) = 365n. Let E be the event that at least two people share the
same birthday. Then the complementary event Ec is the event that no two
people of the n people share the same birthday. Moreover,

P (E) = 1− P (Ec).

The outcomes in Ec are permutations of n numbers chosen from 365 numbers
without repetitions. Therefore

#(Ec) = 365Pn = (365)(364) · · · (365− n+ 1).

Hence,

P (Ec) = (365)(364)···(365−n+1)
(365)n

and

P (E) = 1− (365)(364) · · · (365− n+ 1)

(365)n

Remark 4.1.1
It is important to keep in mind that the classical definition of probability
applies only to a sample space that has equally likely outcomes. Applying
the definition to a space with outcomes that are not equally likely leads to
incorrect conclusions. For example, the sample space for spinning the spinner
in Figure 4.1.1 is given by S = {Red,Blue}, but the outcome Blue is more
likely to occur than is the outcome Red. Indeed, P (Blue) = 3

4
whereas

P (Red) = 1
4

as opposed to P (Blue) = P (Red) = 1
2

Figure 4.1.1



4.1. BASIC DEFINITIONS AND AXIOMS OF PROBABILITY 127

Practice Problems

Problem 4.1.1
Consider the random experiment of rolling a die.
(a) Find the sample space of this experiment.
(b) Find the event of rolling the die an even number.

Problem 4.1.2
An experiment consists of the following two stages: (1) first a coin is tossed
(2) if the face appearing is a head, then a die is rolled; if the face appearing
is a tail, then the coin is tossed again. An outcome of this experiment is a
pair of the form (outcome from stage 1, outcome from stage 2). Let S be the
collection of all outcomes.
Find the sample space of this experiment.

Problem 4.1.3
If, for a given experiment, O1, O2, O3, · · · is an infinite sequence of distinct
outcomes such that

P ({Oi}) =

(
1

2

)i
, i = 1, 2, 3, · · · .

Show that P is a (non-classical) probability measure.

Problem 4.1.4 ‡
An insurer offers a health plan to the employees of a large company. As
part of this plan, the individual employees may choose exactly two of the
supplementary coverages A,B, and C, or they may choose no supplementary
coverage. The proportions of the company’s employees that choose coverages
A,B, and C are 1

4
, 1

3
, and , 5

12
respectively.

Determine the probability that a randomly chosen employee will choose no
supplementary coverage.

Problem 4.1.5
An experiment consists of throwing two dice.
(a) Write down the sample space of this experiment.
(b) If E is the event “total score is at most 10”, list the outcomes belonging
to Ec.
(c) Find the probability that the total score is at most 10 when the two dice
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are thrown.
(d) What is the probability that a double, that is,

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

will not be thrown?
(e) What is the probability that a double is not thrown nor is the score
greater than 10?

Problem 4.1.6
Let S = {1, 2, 3, · · · , 10}. If a number is chosen at random, that is, with the
same chance of being drawn as all other numbers in the set, calculate each
of the following probabilities:
(a) The event A that an even number is drawn.
(b) The event B that a number less than 5 and greater than 9 is drawn.
(c) The event C that a number less than 11 but greater than 0 is drawn.
(d) The event D that a prime number is drawn.
(e) The event E that a number both odd and prime is drawn.

Problem 4.1.7
The following spinner is spun:

Find the probabilities of obtaining each of the following:
(a) P(factor of 24).
(b) P(multiple of 4).
(c) P(odd number).
(d) P({9}).
(e) P(composite number), i.e., a number greater than 1 that is not prime.
(f) P(neither prime nor composite).

Problem 4.1.8
A box of clothes contains 15 shirts and 10 pants. Three items are drawn
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from the box without replacement. What is the probability that all three are
all shirts or all pants?

Problem 4.1.9
A coin is tossed seven times. What is the probability that the second head
appears at the 7th toss?

Problem 4.1.10
Suppose each of 40 professors in a mathematics department picks at random
one of 200 courses. What is the probability that at least two professors pick
the same course?

Problem 4.1.11
A large classroom has 100 foreign students, 30 of whom speak Spanish. 25
of the students speak Italian, while 55 speak neither Spanish nor Italian.
(a) How many of those speak both Spanish and Italian?
(b) A student who speaks Italian is chosen at random. What is the proba-
bility that he/she speaks Spanish?

Problem 4.1.12
A box contains 5 batteries of which 2 are defective. An inspector selects 2
batteries at random from the box. She/he tests the 2 items and observes
whether the sampled items are defective.
(a) Write out the sample space of all possible outcomes of this experiment.
Be very specific when identifying these.
(b) The box will not be accepted if both of the sampled items are defective.
What is the probability the inspector will reject the box?

Problem 4.1.13
Consider the experiment of rolling two dice. How many events A are there
with P (A) = 1

3
?

Problem 4.1.14 ‡
A store has 80 modems in its inventory, 30 coming from Source A and the
remainder from Source B. Of the modems from Source A, 20% are defective.
Of the modems from Source B, 8% are defective.
Calculate the probability that exactly two out of a random sample of five
modems from the store’s inventory are defective.
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Problem 4.1.15 ‡
From 27 pieces of luggage, an airline luggage handler damages a random
sample of four. The probability that exactly one of the damaged pieces of
luggage is insured is twice the probability that none of the damaged pieces
are insured. Calculate the probability that exactly two of the four damaged
pieces are insured.

Problem 4.1.16
A board of trustees of a university consists of 8 men and 7 women. A com-
mittee of 3 must be selected at random and without replacement. The role
of the committee is to select a new president for the university. Calculate the
probability that the number of men selected exceeds the number of women
selected.

Problem 4.1.17 ‡
A public health researcher examines the medical records of a group of 937
men who died in 1999 and discovers that 210 of the men died from causes
related to heart disease. Moreover, 312 of the 937 men had at least one
parent who suffered from heart disease, and, of these 312 men, 102 died from
causes related to heart disease.
Determine the probability that a man randomly selected from this group has
parents not suffering from a heart disease.

Problem 4.1.18
Given P (A ∩B) = 0.18 and P (A ∩Bc) = 0.22. Find P (A).

Problem 4.1.19
A pollster surveyed 100 people about watching the TV show “The big bang
theory”. The results of the poll are shown in the table.

Yes No Total
Male 19 41 60
Female 12 28 40
Total 31 69 100

(a) What is the probability of a randomly selected individual is a male and
watching the show?
(b) What is the probability of a randomly selected individual is a male?
(c) What is the probability of a randomly selected individual watches the
show?
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Problem 4.1.20
Ten persons are chosen at random. Find the probability that at least 2 have
the same birth week.

Problem 4.1.21 ‡
A company issues auto insurance policies. There are 900 insured individuals.
Fifty-four percent of them are males. If a female is randomly selected from
the 900, the probability she is over 25 years old is 0.43. There are 395 total
insured individuals over 25 years old.
A person under 25 years old is randomly selected. Calculate the probability
that the person selected is male.

Problem 4.1.22 ‡
George and Paul play a betting game. Each chooses an integer from 1 to
20 (inclusive) at random. If the two numbers differ by more than 3, George
wins the bet. Otherwise, Paul wins the bet. Calculate the probability that
Paul wins the bet.

Problem 4.1.23 ‡
In a certain group of cancer patients, each patient’s cancer is classified in
exactly one of the following five stages: stage 0, stage 1, stage 2, stage 3, or
stage 4.
i) 75% of the patients in the group have stage 2 or lower.
ii) 80% of the patients in the group have stage 1 or higher.
iii) 80% of the patients in the group have stage 0, 1, 3, or 4.
One patient from the group is randomly selected. Calculate the probability
that the selected patient’s cancer is stage 1.
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4.2 Probability of Intersection and Union

In this section we find the probability of the union of two events and the
intersection of two events.

The union of two events A and B is the event A ∪ B whose outcomes are
either in A or in B. The intersection of two events A and B is the event
A ∩ B whose outcomes are outcomes of both events A and B. Two events
A and B are said to be mutually exclusive if they have no outcomes in
common. In this case A ∩B = ∅ and P (A ∩B) = P (∅) = 0.

Example 4.2.1
Consider the sample space of rolling a die. Let A be the event of rolling a
prime number, B the event of rolling a composite number, and C the event
of rolling a 4. Find
(a) A ∪B,A ∪ C, and B ∪ C.
(b) A ∩B,A ∩ C, and B ∩ C.
(c) Which events are mutually exclusive?

Solution.
(a) We have

A ∪B = {2, 3, 4, 5, 6} A ∪ C = {2, 3, 4, 5} B ∪ C = {4, 6}.

(b) We have

A ∩B = ∅ A ∩ C = ∅ B ∩ C = {4}.

(c) A and B are mutually exclusive as well as A and C

For any events A and B the probability of A ∪ B is given by the addition
rule.

Theorem 4.2.1
Let A and B be two events. Then

P (A ∪B) = P (A) + P (B)− P (A ∩B).
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Proof.
Let Ac ∩ B denote the event whose outcomes are the outcomes in B that
are not in A. Then using the Venn diagram in Figure 4.2.1 we see that
B = (A ∩B) ∪ (Ac ∩B) and A ∪B = A ∪ (Ac ∩B).

Figure 4.2.1

Since (A∩B) and (Ac∩B) are mutually exclusive, by Axiom (P3) of Section
4.1, we have

P (B) = P (A ∩B) + P (Ac ∩B).

Thus,
P (Ac ∩B) = P (B)− P (A ∩B).

Similarly, A and Ac ∩B are mutually exclusive, thus we have

P (A ∪B) = P (A) + P (Ac ∩B) = P (A) + P (B)− P (A ∩B)

Note that in the case A and B are mutually exclusive, P (A∩B) = 0 so that

P (A ∪B) = P (A) + P (B). (4.2.1)

Example 4.2.2
An airport security has two checkpoints. Let A be the event that the first
checkpoint is busy, and let B be the event the second checkpoint is busy.
Assume that P (A) = 0.2, P (B) = 0.3 and P (A ∩ B) = 0.06. Find the
probability that neither of the two checkpoints is busy.

Solution.
The probability that neither of the checkpoints is busy is P [(A ∪B)c] = 1−
P (A∪B). But P (A∪B) = P (A)+P (B)−P (A∩B) = 0.2+0.3−0.06 = 0.44.
Hence, P [(A ∪B)c] = 1− 0.44 = 0.56



134 CHAPTER 4. PROBABILITY: DEFINITIONS AND PROPERTIES

Example 4.2.3
Let P (A) = 0.9 and P (B) = 0.6. Find the minimum possible value for
P (A ∩B).

Solution.
Since P (A) + P (B) = 1.5 and 0 ≤ P (A ∪B) ≤ 1, by the previous theorem

P (A ∩B) = P (A) + P (B)− P (A ∪B) ≥ 1.5− 1 = 0.5.

So the minimum value of P (A ∩B) is 0.5

Example 4.2.4
Let N be the set of all positive integers and P be a probability measure
defined by P (n) = 2

(
1
3

)n
for all n ∈ N. What is the probability that a

number chosen at random from N will be odd?

Solution.
We have

P ({1, 3, 5, · · · }) =P ({1}) + P ({3}) + P ({5}) + · · ·

=2

[(
1

3

)
+

(
1

3

)3

+

(
1

3

)5

+ · · ·

]

=

(
2

3

)[
1 +

(
1

3

)2

+

(
1

3

)4

+ · · ·

]

=

(
2

3

)
· 1

1−
(

1
3

)2 =
3

4

where the series in brackets is a geometric series with a = 1 and r = 1
9
. See

Example 3.2.3

Now, if E and F are two events such that E ⊆ F, then F can be writ-
ten as the union of two mutually exclusive events F = E ∪ (Ec ∩ F ). By
Axiom (P3) we obtain

P (F ) = P (E) + P (Ec ∩ F ).

Thus, P (F )− P (E) = P (Ec ∩ F ) ≥ 0 and this shows

E ⊆ F =⇒ P (E) ≤ P (F ).
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Theorem 4.2.2
For any three events A,B, and C we have

P (A ∪B ∪ C) =P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+P (A ∩B ∩ C).

Proof.
We have

P (A ∪B ∪ C) = P (A) + P (B ∪ C)− P (A ∩ (B ∪ C))

= P (A) + P (B) + P (C)− P (B ∩ C)

− P ((A ∩B) ∪ (A ∩ C))

= P (A) + P (B) + P (C)− P (B ∩ C)

− [P (A ∩B) + P (A ∩ C)− P ((A ∩B) ∩ (A ∩ C))]

= P (A) + P (B) + P (C)− P (B ∩ C)

− P (A ∩B)− P (A ∩ C) + P ((A ∩B) ∩ (A ∩ C))

= P (A) + P (B) + P (C)− P (A ∩B)−
P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

Example 4.2.5
If a person visits his primary care physician, suppose that the probability
that he will have blood test work is 0.44, the probability that he will have an
X-ray is 0.24, the probability that he will have an MRI is 0.21, the probability
that he will have blood test and an X-ray is 0.08, the probability that he will
have blood test and an MRI is 0.11, the probability that he will have an
X-ray and an MRI is 0.07, and the probability that he will have blood test,
an X-ray, and an MRI is 0.03. What is the probability that a person visiting
his PCP will have at least one of these things done to him/her?

Solution.
Let B be the event that a person will have blood test, X is the event that a
person will have an X-ray, and M is the event a person will have an MRI. We
are given P (B) = 0.44, P (X) = 0.24, P (M) = 0.21, P (B ∩X) = 0.08, P (B ∩
M) = 0.11, P (X ∩M) = 0.07 and P (B ∩X ∩M) = 0.03. Thus,

P (B ∪X ∪M) = 0.44 + 0.24 + 0.21− 0.08− 0.11− 0.07 + 0.03 = 0.66
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Practice Problems

Problem 4.2.1
An entrance exam consists of two subjects: Math and English. The prob-
ability that a student fails the math test is 0.20. The probability of failing
English is 0.15, and the probability of failing both subjects is 0.03. What is
the probability that the student will fail at least one of these subjects?

Problem 4.2.2
Let A be the event of “drawing a king” from a deck of cards and B the event
of “drawing a diamond”. Are A and B mutually exclusive? Find P (A ∪B).

Problem 4.2.3
An urn contains 2 red balls, 4 blue balls, and 5 white balls.
(a) What is the probability of the event R that a ball drawn at random is
red?
(b) What is the probability of the event “not R” that is, that a ball drawn
at random is not red?
(c) What is the probability of the event that a ball drawn at random is either
red or blue?

Problem 4.2.4
In the experiment of rolling of fair pair of dice, let E denote the event of
rolling a sum that is an even number and P the event of rolling a sum that is
a prime number. Find the probability of rolling a sum that is even or prime?

Problem 4.2.5
Let S be a sample space and A and B be two events such that P (A) = 0.8
and P (B) = 0.9. Determine whether A and B are mutually exclusive or not.

Problem 4.2.6 ‡
A survey of a group’s viewing habits over the last year revealed the following
information

(i) 28% watched gymnastics
(ii) 29% watched baseball
(iii) 19% watched soccer
(iv) 14% watched gymnastics and baseball
(v) 12% watched baseball and soccer
(vi) 10% watched gymnastics and soccer
(vii) 8% watched all three sports.
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Find the probability of the group that watched none of the three sports
during the last year.

Problem 4.2.7 ‡
The probability that a visit to a primary care physician’s (PCP) office results
in neither lab work nor referral to a specialist is 35% . Of those coming to a
PCP’s office, 30% are referred to specialists and 40% require lab work.
Determine the probability that a visit to a PCP’s office results in both lab
work and referral to a specialist.

Problem 4.2.8 ‡
You are given P (A ∪B) = 0.7 and P (A ∪Bc) = 0.9. Determine P (A).

Problem 4.2.9 ‡
Among a large group of patients recovering from shoulder injuries, it is found
that 22% visit both a physical therapist and a chiropractor, whereas 12% visit
neither of these. The probability that a patient visits a chiropractor exceeds
by 14% the probability that a patient visits a physical therapist.
Determine the probability that a randomly chosen member of this group
visits a physical therapist.

Problem 4.2.10 ‡
In modeling the number of claims filed by an individual under an auto-
mobile policy during a three-year period, an actuary makes the simplifying
assumption that for all integers n ≥ 0, pn+1 = 1

5
pn, where pn represents the

probability that the policyholder files n claims during the period.
Under this assumption, what is the probability that a policyholder files more
than one claim during the period?

Problem 4.2.11 ‡
A marketing survey indicates that 60% of the population owns an automobile,
30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile
or a house, but not both.

Problem 4.2.12 ‡
An insurance agent offers his clients auto insurance, homeowners insurance
and renters insurance. The purchase of homeowners insurance and the pur-
chase of renters insurance are mutually exclusive. The profile of the agent’s
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clients is as follows:
i) 17% of the clients have none of these three products.
ii) 64% of the clients have auto insurance.
iii) Twice as many of the clients have homeowners insurance as have renters
insurance.
iv) 35% of the clients have two of these three products.
v) 11% of the clients have homeowners insurance, but not auto insurance.
Calculate the percentage of the agent’s clients that have both auto and renters
insurance.

Problem 4.2.13 ‡
A mattress store sells only king, queen and twin-size mattresses. Sales records
at the store indicate that one-fourth as many queen-size mattresses are sold
as king and twin-size mattresses combined. Records also indicate that three
times as many king-size mattresses are sold as twin-size mattresses.
Calculate the probability that the next mattress sold is either king or queen-
size.

Problem 4.2.14 ‡
The probability that a member of a certain class of homeowners with liability
and property coverage will file a liability claim is 0.04, and the probability
that a member of this class will file a property claim is 0.10. The probability
that a member of this class will file a liability claim but not a property claim
is 0.01.
Calculate the probability that a randomly selected member of this class of
homeowners will not file a claim of either type.

Problem 4.2.15 ‡
This year, a medical insurance policyholder has probability 0.70 of having no
emergency room visits, 0.85 of having no hospital stays, and 0.61 of having
neither emergency room visits nor hospital stays.
Calculate the probability that the policyholder has at least one emergency
room visit and at least one hospital stay this year.

Problem 4.2.16 ‡
A policyholder purchases automobile insurance for two years. Define the
following events:

F =the policyholder has exactly one accident in year one

G =the policyholder has one or more accidents in year two.
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Define the following events:
i) The policyholder has exactly one accident in year one and has more than
one accident in year two.
ii) The policyholder has at least two accidents during the two-year period.
iii) The policyholder has exactly one accident in year one and has at least
one accident in year two.
iv) The policyholder has exactly one accident in year one and has a total of
two or more accidents in the two-year period.
v) The policyholder has exactly one accident in year one and has more acci-
dents in year two than in year one.
Determine the number of events from the above list of five that are the same
as F ∩G.

Problem 4.2.17 ‡
The annual numbers of thefts a homeowners insurance policyholder experi-
ences are analyzed over three years. Define the following events:
i) A = the event that the policyholder experiences no thefts in the three
years.
ii) B = the event that the policyholder experiences at least one theft in the
second year.
iii) C = the event that the policyholder experiences exactly one theft in the
first year.
iv) D = the event that the policyholder experiences no thefts in the third
year.
v) E = the event that the policyholder experiences no thefts in the second
year, and at least one theft in the third year.
Determine which three events satisfy the condition that the probability of
their union equals the sum of their probabilities.
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4.3 Probability and Counting Techniques

The Fundamental Principle of Counting can be used to compute probabilities
as shown in the following example.

Example 4.3.1
In an actuarial course in probability, an instructor has decided to give his
class a weekly quiz consisting of 5 multiple-choice questions taken from a
pool of previous SOA P/1 exams. Each question has 4 answer choices, of
which 1 is correct and the other 3 are incorrect.
(a) How many answer choices are there?
(b) What is the probability of getting all 5 right answers?
(c) What is the probability of answering exactly 4 questions correctly?
(d) What is the probability of getting at least four answers correctly?

Solution.
(a) We can look at this question as a decision consisting of five steps. There
are 4 ways to do each step so that by the Fundamental Principle of Counting
there are

(4)(4)(4)(4)(4) = 1024 possible choices of answers.

(b) There is only one way to answer each question correctly. Using the
Fundamental Principle of Counting there is (1)(1)(1)(1)(1) = 1 way to answer
all 5 questions correctly out of 1024 possible answer choices. Hence,

P(all 5 right) = 1
1024

(c) The following table lists all possible responses that involve exactly 4 right
answers where R stands for right and W stands for a wrong answer.

Five Responses Number of ways to fill out the test
WRRRR (3)(1)(1)(1)(1) = 3
RWRRR (1)(3)(1)(1)(1) = 3
RRWRR (1)(1)(3)(1)(1) = 3
RRRWR (1)(1)(1)(3)(1) = 3
RRRRW (1)(1)(1)(1)(3) = 3

So there are 15 ways out of the 1024 possible ways that result in 4 right
answers and 1 wrong answer so that
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P(4 right,1 wrong) = 15
1024
≈ 1.5%

(d) “At least 4” means you can get either 4 right and 1 wrong or all 5 right.
Thus,

P (at least 4 right) =P (4R, 1W ) + P (5R)

=
15

1024
+

1

1024

=
16

1024
≈ 0.016

Example 4.3.2
Consider the experiment of rolling two dice. How many events A are there
with P (A) = 1

3
?

Solution.
We want to find events A such that P (A) = 1

3
= 12

36
where 36 is the total

number of outcomes of the experiment. There are 36C12 = 1251677700 such
distinct events

Probability Trees
Probability trees can be used to compute the probabilities of combined out-
comes in a sequence of experiments.

Example 4.3.3
Construct the probability tree of the experiment of flipping a fair coin twice.

Solution.
The probability tree is shown in Figure 4.3.1

Figure 4.3.1
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The probabilities shown in Figure 4.3.1 are obtained by following the paths
leading to each of the four outcomes and multiplying the probabilities along
the paths. This procedure is an instance of the following general property.

Multiplication Rule for Probabilities for Tree Diagrams
For all multistage experiments, the probability of the outcome along any
path of a tree diagram is equal to the product of all the probabilities along
the path.

Example 4.3.4
A shipment of 500 DVD players contains 9 defective DVD players. Construct
the probability tree of the experiment of sampling two of them without re-
placement.

Solution.
The probability tree is shown in Figure 4.3.2

Figure 4.3.2

Example 4.3.5
The faculty of a college consists of 35 female faculty and 65 male faculty.
70% of the female faculty favor raising tuition, while only 40% of the male
faculty favor the increase.
If a faculty member is selected at random from this group, what is the prob-
ability that he or she favors raising tuition?

Solution.
Figure 4.3.3 shows a tree diagram for this problem where F stands for female,
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M for male.

Figure 4.3.3

The first and third branches correspond to favoring the tuition raise. We add
their probabilities.

P (tuition raise) = 0.245 + 0.26 = 0.505

Example 4.3.6
A regular insurance claimant is trying to hide 3 fraudulent claims among 7
genuine claims. The claimant knows that the insurance company processes
claims in batches of 5 or in batches of 10. For batches of 5, the insurance
company will investigate one claim at random to check for fraud; for batches
of 10, two of the claims are randomly selected for investigation. The claimant
has three possible strategies:
(a) submit all 10 claims in a single batch,
(b) submit two batches of 5, one containing 2 fraudulent claims and the other
containing 1,
(c) submit two batches of 5, one containing 3 fraudulent claims and the other
containing 0.
What is the probability that all three fraudulent claims will go undetected
in each case? What is the best strategy?

Solution.
Using a probability tree (construction left to the reader), we find
(a) P(fraud not detected) = 7

10
· 6

9
= 7

15

(b) P(fraud not detected) = 3
5
· 4

5
= 12

25

(c) P(fraud not detected) = 2
5
· 1 = 2

5

Claimant’s best strategy is to distribute fraudulent claims between two batches
of 5, i.e., strategy (b)
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Practice Problems

Problem 4.3.1
A box contains three red balls and two blue balls. Two balls are to be drawn
without replacement. Use a tree diagram to represent the various outcomes
that can occur. What is the probability of each outcome?

Problem 4.3.2
Repeat the previous exercise but this time replace the first ball before drawing
the second.

Problem 4.3.3
An urn contains three red marbles and two green marbles. An experiment
consists of drawing one marble at a time without replacement, until a red
one is obtained. Find the probability of the following events.

A : Only one draw is needed.

B : Exactly two draws are needed.

C : Exactly three draws are needed.

Problem 4.3.4
Consider a jar with three black marbles and one red marble. For the exper-
iment of drawing two marbles with replacement, what is the probability of
drawing a black marble and then a red marble in that order? Assume that
the balls are equally likely to be drawn.

Problem 4.3.5
An urn contains 3 white balls and 2 red balls. Two balls are to be drawn one
at a time and without replacement. Draw a tree diagram for this experiment
and find the probability that the two drawn balls are of different colors.
Assume that the balls are equally likely to be drawn

Problem 4.3.6
Repeat the previous problem but with each drawn ball to be put back into
the urn.

Problem 4.3.7
A board of trustees of a university consists of 8 men and 7 women. A com-
mittee of 3 must be selected at random and without replacement. The role
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of the committee is to select a new president for the university. Calculate the
probability that the number of men selected exceeds the number of women
selected.

Problem 4.3.8 ‡
A store has 80 modems in its inventory, 30 coming from Source A and the
remainder from Source B. Of the modems from Source A, 20% are defective.
Of the modems from Source B, 8% are defective.
Calculate the probability that exactly two out of a random sample of five
modems from the store’s inventory are defective.

Problem 4.3.9 ‡
From 27 pieces of luggage, an airline luggage handler damages a random
sample of four. The probability that exactly one of the damaged pieces of
luggage is insured is twice the probability that none of the damaged pieces
are insured. Calculate the probability that exactly two of the four damaged
pieces are insured.

Problem 4.3.10
Melanie is going to play a tennis match and a squash match. The probability
that she will win the tennis match is 7

10
and that of winning the squash mash

is 3
5
.

(a) Construct the probability tree diagram.
(b) What is the probability that Melanie will win both matches?

Problem 4.3.11
On a shelf, there are 4 tuna sandwiches, 5 cheese sandwiches, and 2 peanut
butter sandwiches. Jeanine takes two sandwiches at random. What is the
probability that she takes two different types of sandwiches?

Problem 4.3.12
A jar contains 7 balls. Two of the balls are labeled 1, three are labeled 2,
and two are labeled 3.
(a) Pick two balls without replacement. What is the probability that both
balls have the number 1 on them?
(b) Calculate the probability that the number on the second ball is greater
than the number on the first tile.
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Problem 4.3.13
A tin has 12 chocolate bars, 5 strawberry bars and 3 vanilla bars. You pick,
without replacement, two bars from the tin. What is the probability that
the two bars are of different flavors?

Problem 4.3.14
A box has five red marbles, three blue marbles and two green marbles. You
pick successively and without replacement two marbles from the box. What
is the probability that the two marbles have the same color?

Problem 4.3.15
A race is run with 10 competitors. What is the probability of selecting 3
finishers of the race in the correct order?

Problem 4.3.16
A lottery consists of selecting 6 numbers from 1 - 53. What is the probability
of getting exactly 4 winning numbers correct with one ticket?

Problem 4.3.17
A company consists of 10 male and 12 female. What is the probability of a
having a committee of 2 male and 2 female?

Problem 4.3.18 ‡
An insurance agent meets twelve potential customers independently, each of
whom is equally likely to purchase an insurance product. Six are interested
only in auto insurance, four are interested only in homeowners insurance,
and two are interested only in life insurance.
The agent makes six sales. Calculate the probability that two are for auto
insurance, two are for homeowners insurance, and two are for life insurance.

Problem 4.3.19 ‡
Six claims are to be randomly selected from a group of thirteen different
claims, which includes two workers compensation claims, four homeowners
claims and seven auto claims.
Calculate the probability that the six claims selected will include one workers
compensation claim, two homeowners claims and three auto claims.

Problem 4.3.20 ‡
A drawer contains four pairs of socks, with each pair a different color. One
sock at a time is randomly drawn from the drawer until a matching pair is
obtained. Calculate the probability that the maximum number of draws is
required.



Chapter 5

Conditional Probability and
Independence

In this chapter we introduce the concept of conditional probability. So far,
the notation P (A) stands for the probability of A regardless of the occurrence
of any other events. If the occurrence of an event B influences the probability
of A then this new probability is called conditional probability.
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5.1 Conditional Probabilities

We desire to know the probability of an event A conditional on the knowledge
that another event B has occurred. The information the eventB has occurred
causes us to update the probabilities of other events in the sample space.
To illustrate, suppose you cast two dice; one red, and one green. The sample
space is given in the Table 5.1.1.

G\ R 1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Table 5.1.1

Let A be the event of getting two ones. That is, A = {(1, 1)}. Then P (A) =
1/36. However, if, after casting the dice, you ascertain that the green die
shows a one (but know nothing about the red die). That is, the event B =
{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. Then there is 1/6 chance that both of
them will be one. In other words, the probability of getting two ones changes
if you have partial information, and we refer to this (altered) probability as
conditional probability.
If the occurrence of the event A depends on the occurrence of B then the
conditional probability will be denoted by P (A|B), read as the probability of
A given B. Conditioning restricts the sample space to those outcomes which
are in the set being conditioned on (i.e., B). In this case,

P (A|B) =
number of outcomes corresponding to events A and B

number of outcomes of B
.

Thus,

P (A|B) =
#(A ∩B)

#(B)
=

#(A∩B)
#(S)

#(B)
#(S)

=
P (A ∩B)

P (B)

provided that P (B) > 0.

Example 5.1.1
LetM denote the event “student is male” and letH denote the event “student
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is Hispanic”. In a class of 100 students suppose 60 are Hispanic, and suppose
that 10 of the Hispanic students are males. Find the probability that a
randomly chosen Hispanic student is a male, that is, find P (M |H).

Solution.
Since 10 out of 100 students are both Hispanic and male, P (M ∩H) = 10

100
=

0.1. Also, 60 out of the 100 students are Hispanic, so P (H) = 60
100

= 0.6.
Hence, P (M |H) = 0.1

0.6
= 1

6

Using the fact that P (A ∩B) = P (B ∩ A) and the formulas

P (A|B) = P (A∩B)
P (B)

and P (B|A) = P (B∩A)
P (A)

we can write

P (A|B)P (B) = P (B|A)P (A). (5.1.1)

From this last equation, we can write

P (B|A) =
P (A|B)P (B)

P (A)
.

This formula is known as Bayes’ formula. This formula tells us that P (B|A)
can be found if we know P (A|B).

Example 5.1.2
The probability of an applicant to be admitted to a certain college is 0.8.
The probability for a student in the college to live on campus is 0.6. What
is the probability that an applicant will be admitted to the college and will
be assigned a dormitory housing?

Solution.
The probability of the applicant being admitted and receiving dormitory
housing is defined by
P(Accepted and Housing) = P(Housing|Accepted)P(Accepted)

= (0.6)(0.8) = 0.48
From the def-

inition of P (A|B) we can write P (A ∩ B) = P (A|B)P (B). This result can
be generalized to any finite number of events.

Theorem 5.1.1
Consider n events A1, A2, · · · , An. Then

P (A1∩A2∩· · ·∩An) = P (A1)P (A2|A1)P (A3|A1∩A2) · · ·P (An|A1∩A2∩· · ·∩An−1)
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Proof.
The proof is by induction on n ≥ 2. The relation holds for n = 2. Suppose
that the relation is true for 2, 3, · · · , n. We wish to establish

P (A1∩A2∩· · ·∩An+1) = P (A1)P (A2|A1)P (A3|A1∩A2) · · ·P (An+1|A1∩A2∩· · ·∩An).

We have,

P (A1 ∩A2 ∩ · · · ∩An+1) =P ((A1 ∩A2 ∩ · · · ∩An) ∩An+1)

=P (An+1|A1 ∩A2 ∩ · · · ∩An)P (A1 ∩A2 ∩ · · · ∩An)

=P (An+1|A1 ∩A2 ∩ · · · ∩An)P (A1)P (A2|A1)P (A3|A1 ∩A2)

· · ·P (An|A1 ∩A2 ∩ · · · ∩An−1)

=P (A1)P (A2|A1)P (A3|A1 ∩A2) · · ·P (An|A1 ∩A2 ∩ · · · ∩An−1)

× P (An+1|A1 ∩A2 ∩ · · · ∩An)

Example 5.1.3
Suppose 5 cards are drawn from a deck of 52 playing cards. What is the
probability that all cards are the same suit, i.e., a flush?

Solution.
We must find

P(a flush) = P(5 spades) + P( 5 hearts ) + P( 5 diamonds ) + P( 5 clubs ).

Now, the probability of getting 5 spades is found as follows:

P(5 spades) = P(1st card is a spade)P(2nd card is a spade|1st card is a spade)
× · · ·× P(5th card is a spade|1st,2nd,3rd,4th cards are spades)
= 13

52
× 12

51
× 11

50
× 10

49
× 9

48
.

Alternatively,

P(5 spades)= 13C5

52C5
.

Since the above calculation is the same for any of the four suits,

P(a flush) = 4× 13
52
× 12

51
× 11

50
× 10

49
× 9

48
= 0.0019807923

We end this section by showing that P (·|A) satisfies Axioms (P1)-(P3).
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Theorem 5.1.2
For a fixed event A, the function B → P (B|A) defines a probability measure
on P(S).

Proof.
1. Since A ∩B ⊆ A, 0 ≤ P (A ∩B) ≤ P (A), so that by dividing through by
P (A) we obtain 0 ≤ P (B|A) ≤ 1.

2. P (S|A) = P (S∩A)
P (A)

= P (A)
P (A)

= 1.
3. Suppose that B1, B2, · · · , are mutually exclusive events. Then B1∩A,B2∩
A, · · · , are mutually exclusive. Thus,

P (
∞⋃
n=1

Bn|A) =

P

(
∞⋃
n=1

(Bn ∩ A)

)
P (A)

=

∞∑
n=1

P (Bn ∩ A)

P (A)

=
∞∑
n=1

P (Bn ∩ A)

P (A)
=
∞∑
n=1

P (Bn|A)

From the above theorem, every theorem we have proved for unconditional
probability function holds for a conditional probability function. For exam-
ple, we have

P (Bc|A) = 1− P (B|A).

Prior and Posterior Probabilities
The unconditional probability P (A) is the probability of the event A prior
to introducing new events that might affect A. This is also known as the
prior probability of A. When the occurrence of an event B will affect the
event A then the conditional probability P (A|B) is known as the posterior
probability of A.
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Practice Problems

Problem 5.1.1 ‡
A public health researcher examines the medical records of a group of 937
men who died in 1999 and discovers that 210 of the men died from causes
related to heart disease. Moreover, 312 of the 937 men had at least one
parent who suffered from heart disease, and, of these 312 men, 102 died from
causes related to heart disease.
Determine the probability that a man randomly selected from this group died
of causes related to heart disease, given that neither of his parents suffered
from heart disease.

Problem 5.1.2 ‡
An insurance company examines its pool of auto insurance customers and
gathers the following information:

(i) All customers insure at least one car.
(ii) 70% of the customers insure more than one car.
(iii) 20% of the customers insure a sports car.
(iv) Of those customers who insure more than one car, 15% insure a sports car.

Calculate the probability that a randomly selected customer insures exactly
one car and that car is not a sports car.

Problem 5.1.3 ‡
An actuary is studying the prevalence of three health risk factors, denoted
by A,B, and C, within a population of women. For each of the three factors,
the probability is 0.1 that a woman in the population has only this risk factor
(and no others). For any two of the three factors, the probability is 0.12 that
she has exactly these two risk factors (but not the other). The probability
that a woman has all three risk factors, given that she has A and B, is 1

3
.

What is the probability that a woman has none of the three risk factors,
given that she does not have risk factor A?

Problem 5.1.4
You are given P (A) = 2

5
, P (A ∪ B) = 3

5
, P (B|A) = 1

4
, P (C|B) = 1

3
, and

P (C|A ∩B) = 1
2
. Find P (A|B ∩ C).
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Problem 5.1.5
A pollster surveyed 100 people about watching the TV show “The big bang
theory”. The results of the poll are shown in the table.

Yes No Total
Male 19 41 60
Female 12 28 40
Total 31 69 100

(a) What is the probability of a randomly selected individual is a male and
watching the show?
(b) What is the probability of a randomly selected individual is a male?
(c) What is the probability of a randomly selected individual watches the
show?
(d) What is the probability of a randomly selected individual watches the
show, given that the individual is a male?
(e) What is the probability that a randomly selected individual watching the
show is a male?

Problem 5.1.6
A machine produces small cans that are used for baked beans. The probabil-
ity that the can is in perfect shape is 0.9. The probability of the can having
an unnoticeable dent is 0.02. The probability that the can is obviously dented
is 0.08. Produced cans get passed through an automatic inspection machine,
which is able to detect obviously dented cans and discard them. What is the
probability that a can that gets shipped for use will be of perfect shape?

Problem 5.1.7
An urn contains 225 white marbles and 15 black marbles. If we randomly
pick (without replacement) two marbles in succession from the urn, what is
the probability that they will both be black?

Problem 5.1.8
Find the probabilities of randomly drawing two kings in succession from an
ordinary deck of 52 playing cards if we sample
(a) without replacement;
(b) with replacement.
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Problem 5.1.9
A box of television tubes contains 20 tubes, of which five are defective. If
three of the tubes are selected at random and removed from the box in
succession without replacement, what is the probability that all three tubes
are defective?

Problem 5.1.10
A study of texting and driving has found the following: Given that an ac-
cident is fatal, the probability that it is caused by a texting driver is 40%.
Also, 1% of all auto accidents are fatal, and drivers who text while driving
are responsible for 20% of all accidents. Find the probability that an accident
is caused by a driver who does not text given that the accident is non-fatal.

Problem 5.1.11
A TV manufacturer buys TV tubes from three sources. Source A supplies
50% of all tubes and has a 1% defective rate. Source B supplies 30% of all
tubes and has a 2% defective rate. Source C supplies the remaining 20% of
tubes and has a 5% defective rate.
(a) What is the probability that a randomly selected purchased tube is de-
fective?
(b) Given that a purchased tube is defective, what is the probability it came
from Source A? From Source B? From Source C?

Problem 5.1.12
In a certain town in the United States, 40% of the population are liberals and
60% are conservatives. The city council has proposed selling alcohol illegal in
the town. It is known that 75% of conservatives and 30% of liberals support
this measure.
(a) What is the probability that a randomly selected resident from the town
will support the measure?
(b) If a randomly selected person does support the measure, what is the
probability the person is a liberal?
(c) If a randomly selected person does not support the measure, what is the
probability that he or she is a liberal?

Problem 5.1.13
Let A and B be arbitrary events of a sample space S. Show that
(a) A = (A ∩B) ∪ (A ∩Bc) and (A ∩B) ∩ (A ∩Bc) = ∅.
(b) P (A) = P (A|B)P (B) + P (A|Bc)P (Bc).
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Problem 5.1.14
Prove:

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
.

Problem 5.1.15
Show that P (A|B) > P (A) if and only if P (Ac|B) < P (Ac). We assume that
0 < P (A) < 1 and 0 < P (B) < 1

Problem 5.1.16
Two events A and B are said to be independent if and only if P (A|B) =
P (A). Prove that A and B are independent if and only if P (A ∩ B) =
P (A)P (B).

Problem 5.1.17
Suppose that A and B are independent.
(a) Show that A and Bc are independent.
(b) Show that Ac and Bc are independent.

Problem 5.1.18 ‡
A machine has two parts labeled A and B. The probability that part A works
for one year is 0.8 and the probability that part B works for one year is 0.6.
The probability that at least one part works for one year is 0.9.
Calculate the probability that part B works for one year, given that part A
works for one year.
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5.2 Bayes’ Formula and the Law of Total Prob-

ability

It is often the case that we know the probabilities of certain events conditional
on other events, but what we would like to know is the “reverse”. That is,
given P (A|B) we would like to find P (B|A) or vice versa.
Bayes’ formula is a simple mathematical formula used for calculating P (B|A)
given P (A|B). From the previous section, we found

P (B|A) =
P (A|B)P (B)

P (A)
.

Now, since
A = (A ∩B) ∪ (A ∩Bc)

and the events A ∩B and A ∩Bc are mutually exclusive, we can write

P (A) = P (A ∩B) + P (A ∩Bc) = P (A|B)P (B) + P (A|Bc)P (Bc) (5.2.1)

where we used Equation (4.2.1). Thus,

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
. (5.2.2)

Equation (5.2.2) is known as Bayes’ formula. Equation (5.2.1) is a known
as the Law of Total Probability.

Example 5.2.1
The completion of a highway construction may be delayed because of a pro-
jected storm. The probabilities are 0.60 that there will be a storm, 0.85 that
the construction job will be completed on time if there is no storm, and 0.35
that the construction will be completed on time if there is a storm. What is
the probability that the construction job will be completed on time?

Solution.
Let A be the event that the construction job will be completed on time and B
is the event that there will be a storm. We are given P (B) = 0.60, P (A|Bc) =
0.85, and P (A|B) = 0.35. From Equation (5.2.1) we find

P (A) = P (B)P (A|B) +P (Bc)P (A|Bc) = (0.60)(0.35) + (0.4)(0.85) = 0.55
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Example 5.2.2
A small manufacturing company uses two machines A and B to make shirts.
Observation shows that machine A produces 10% of the total production
of shirts while machine B produces 90% of the total production of shirts.
Assuming that 1% of all the shirts produced by A are defective while 5% of
all the shirts produced by B are defective, find the probability that a shirt
taken at random from a day’s production was made by machine A, given
that it is defective.

Solution.
We are given P (A) = 0.1, P (B) = 0.9, P (D|A) = 0.01, and P (D|B) = 0.05.
We want to find P (A|D). Using Bayes’ formula we find

P (A|D) =
P (A ∩D)

P (D)
=

P (D|A)P (A)

P (D|A)P (A) + P (D|B)P (B)

=
(0.01)(0.1)

(0.01)(0.1) + (0.05)(0.9)
≈ 0.0217

Formula (5.2.2) is a special case of the more general result:

Theorem 5.2.1 (Extended Bayes’ formula)
Suppose that the sample space S is the union of mutually exclusive events
H1, H2, · · · , Hn with P (Hi) > 0 for each i. Then for any event A, we have

P (Hi|A) =
P (A|Hi)P (Hi)

P (A)

where

P (A) = P (A|H1)P (H1) + P (A|H2)P (H2) + · · ·+ P (A|Hn)P (Hn). (5.2.3)

Equation (5.2.3) is known as the Law of Total Probability.

Proof.
First note that

P (A) =P (A ∩ S) = P (A ∩ (
n⋃
i=1

Hi)) = P (
n⋃
i=1

(A ∩Hi))

=
n∑
i=1

P (A ∩Hi) =
n∑
i=1

P (A|Hi)P (Hi).
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Hence, for 1 ≤ i ≤ n, we have

P (Hi|A) =
P (A|Hi)P (Hi)

P (A)
=

P (A|Hi)P (Hi)
n∑
i=1

P (A|Hi)P (Hi)

Example 5.2.3
Passengers in Little Rock Airport rent cars from three rental companies: 60%
from Avis, 30% from Enterprise, and 10% from National. Past statistics show
that 9% of the cars from Avis, 20% of the cars from Enterprise , and 6% of the
cars from National need oil change. If a rental car delivered to a passenger
needs an oil change, what is the probability that it came from Enterprise?

Solution.
Define the events

A =car comes from Avis

E =car comes from Enterprise

N =car comes from National

O =car needs oil change

Then

P (A) = 0.6 P (E) = 0.3 P (N) = 0.1
P (O|A) = 0.09 P (O|E) = 0.2 P (O|N) = 0.06

From Bayes’ theorem we have

P (E|O) =
P (O|E)P (E)

P (O|A)P (A) + P (O|E)P (E) + P (O|N)P (N)

=
0.2× 0.3

0.09× 0.6 + 0.2× 0.3 + 0.06× 0.1
= 0.5

Example 5.2.4
A toy factory produces its toys with three machines A,B, and C. From the
total production, 50% are produced by machine A, 30% by machine B, and
20% by machine C. Past statistics show that 4% of the toys produced by
machine A are defective, 2% produced by machine B are defective, and 4%
of the toys produced by machine C are defective.
(a) What is the probability that a randomly selected toy is defective?
(b) If a randomly selected toy was found to be defective, what is the proba-
bility that this toy was produced by machine A?
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Solution.
(a) Let D be the event that the selected product is defective. Then, P (A) =
0.5, P (B) = 0.3, P (C) = 0.2, P (D|A) = 0.04, P (D|B) = 0.02, P (D|C) =
0.04. We have

P (D) =P (D|A)P (A) + P (D|B)P (B) + P (D|C)P (C)

=(0.04)(0.50) + (0.02)(0.30) + (0.04)(0.20) = 0.034

(b) By Bayes’ theorem, we find

P (A|D) =
P (D|A)P (A)

P (D)
=

(0.04)(0.50)

0.034
≈ 0.5882

Example 5.2.5
A group of traffic violators consists of 45 men and 15 women. The men have
probability 1/2 for being ticketed for crossing a red light while the women
have probability 1/3 for the same offense.
(a) Suppose you choose at random a person from the group. What is the
probability that the person will be ticketed for crossing a red light?
(b) Determine the conditional probability that you chose a woman given that
the person you chose was being ticketed for crossing the red light.

Solution.
Let

W ={the one selected is a woman}
M ={the one selected is a man}
T ={the one selected is ticketed for crossing a red light}

(a) We are given the following information: P (W ) = 15
60

= 1
4
, P (M) =

3
4
, P (T |W ) = 1

3
, and P (T |M) = 1

2
. We have,

P (T ) = P (T |W )P (W ) + P (T |M)P (M) =
11

24
.

(b) Using Bayes’ theorem we find

P (W |T ) =
P (T |W )P (W )

P (T )
=

(1/3)(1/4)

(11/24)
=

2

11
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Practice Problems

Problem 5.2.1 ‡
An auto insurance company insures drivers of all ages. An actuary compiled
the following statistics on the company’s insured drivers:

Age of Probability Portion of Company’s
Driver of Accident Insured Drivers
16 - 20 0.06 0.08
21 - 30 0.03 0.15
31 - 65 0.02 0.49
66 - 99 0.04 0.28

A randomly selected driver that the company insures has an accident. Cal-
culate the probability that the driver was age 16-20.

Problem 5.2.2 ‡
An insurance company issues life insurance policies in three separate cate-
gories: standard, preferred, and ultra-preferred. Of the company’s policy-
holders, 50% are standard, 40% are preferred, and 10% are ultra-preferred.
Each standard policyholder has probability 0.010 of dying in the next year,
each preferred policyholder has probability 0.005 of dying in the next year,
and each ultra-preferred policyholder has probability 0.001 of dying in the
next year.
A policyholder dies in the next year. What is the probability that the de-
ceased policyholder was ultra-preferred?

Problem 5.2.3 ‡
Upon arrival at a hospital’s emergency room, patients are categorized ac-
cording to their condition as critical, serious, or stable. In the past year:

(i) 10% of the emergency room patients were critical;
(ii) 30% of the emergency room patients were serious;
(iii) the rest of the emergency room patients were stable;
(iv) 40% of the critical patients died;
(v) 10% of the serious patients died; and
(vi) 1% of the stable patients died.

Given that a patient survived, what is the probability that the patient was
categorized as serious upon arrival?
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Problem 5.2.4 ‡
A health study tracked a group of persons for five years. At the beginning of
the study, 20% were classified as heavy smokers, 30% as light smokers, and
50% as nonsmokers.
Results of the study showed that light smokers were twice as likely as non-
smokers to die during the five-year study, but only half as likely as heavy
smokers.
A randomly selected participant from the study died over the five-year pe-
riod. Calculate the probability that the participant was a heavy smoker.

Problem 5.2.5 ‡
An actuary studied the likelihood that different types of drivers would be
involved in at least one collision during any one-year period. The results of
the study are presented below.

Probability
Type of Percentage of of at least one
driver all drivers collision
Teen 8% 0.15
Young adult 16% 0.08
Midlife 45% 0.04
Senior 31% 0.05
Total 100%

Given that a driver has been involved in at least one collision in the past
year, what is the probability that the driver is a young adult driver?

Problem 5.2.6 ‡
A blood test indicates the presence of a particular disease 95% of the time
when the disease is actually present. The same test indicates the presence of
the disease 0.5% of the time when the disease is not present. One percent of
the population actually has the disease.
Calculate the probability that a person has the disease given that the test
indicates the presence of the disease.

Problem 5.2.7 ‡
The probability that a randomly chosen male has a blood circulation prob-
lem is 0.25 . Males who have a blood circulation problem are twice as likely
to be smokers as those who do not have a blood circulation problem.
What is the conditional probability that a male has a blood circulation prob-
lem, given that he is a smoker?
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Problem 5.2.8 ‡
A study of automobile accidents produced the following data:

Probability of
Model Proportion of involvement
year all vehicles in an accident
1997 0.16 0.05
1998 0.18 0.02
1999 0.20 0.03
Other 0.46 0.04

An automobile from one of the model years 1997, 1998, and 1999 was in-
volved in an accident. Determine the probability that the model year of this
automobile is 1997.

Problem 5.2.9 ‡
Ten percent of a company’s life insurance policyholders are smokers. The
rest are nonsmokers. For each nonsmoker, the probability of dying during
the year is 0.01. For each smoker, the probability of dying during the year is
0.05.
Given that a policyholder has died, what is the probability that the policy-
holder was a smoker?

Problem 5.2.10
Seventy percent of the lost luggage at a certain airport are subsequently
recovered. Of the recovered luggage, 60% are of a premium brand FANCY,
whereas 90% of the non-recovered luggage are not of the brand FANCY.
Suppose that a luggage is lost. If it is a brand FANCY, what is the probability
that it will be recovered?

Problem 5.2.11
A bolt factory uses three machines to manufacture bolts: A,B, and C. Ma-
chine A produces 25% of the bolt, machine B produces 35% and the rest of
the bolts are produced by machine C. Studies show that of the bolts pro-
duced by machine A, 5% are defective, whereas 4% from machine B and 2%
from machine C. A randomly chosen bolt was found to be defective. What
is the probability that it was produced by machine A.

Problem 5.2.12 ‡
An urn contains four fair dice. Two have faces numbered 1, 2, 3, 4, 5, and
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6; one has faces numbered 2, 2, 4, 4, 6, and 6; and one has all six faces
numbered 6. One of the dice is randomly selected from the urn and rolled.
The same die is rolled a second time. Calculate the probability that a 6 is
rolled both times.

Problem 5.2.13 ‡
In a group of health insurance policyholders, 20% have high blood pressure
and 30% have high cholesterol. Of the policyholders with high blood pressure,
25% have high cholesterol. A policyholder is randomly selected from the
group. Calculate the probability that a policyholder has high blood pressure,
given that the policyholder has high cholesterol.

Problem 5.2.14 ‡
An insurance company insures red and green cars. An actuary compiles the
following data:

Color of car Red Green
Number insured 300 700

Probability an accident occurs 0.10 0.05
Probability that the claim exceeds
the deductible, given an accident 0.90 0.80

occurs from this group

The actuary randomly picks a claim from all claims that exceed the de-
ductible. Calculate the probability that the claim is on a red car.

Problem 5.2.15 ‡
A student takes an examination consisting of 20 true-false questions. The
student knows the answer toN of the questions, which are answered correctly,
and guesses the answers to the rest. The conditional probability that the
student knows the answer to a question, given that the student answered it
correctly, is 0.824. Calculate N.

Problem 5.2.16 ‡
Two fair dice are tossed. One die is red and one die is green. Calculate the
probability that the sum of the numbers on the two dice is an odd number
given that the number that shows on the red die is larger than the number
that shows on the green die.
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Problem 5.2.17 ‡
The following information is given about a group of high-risk borrowers.
i) Of all these borrowers, 30% defaulted on at least one student loan.
ii) Of the borrowers who defaulted on at least one car loan, 40% defaulted
on at least one student loan.
iii) Of the borrowers who did not default on any student loans, 28% defaulted
on at least one car loan.
A statistician randomly selects a borrower from this group and observes that
the selected borrower defaulted on at least one student loan.
Calculate the probability that the selected borrower defaulted on at least one
car loan.

Problem 5.2.18 ‡
An insurance company categorizes its policyholders into three mutually ex-
clusive groups: high-risk, medium-risk, and low-risk. An internal study of
the company showed that 45% of the policyholders are low-risk and 35% are
medium-risk. The probability of death over the next year, given that a poli-
cyholder is high-risk is two times the probability of death of a medium-risk
policyholder. The probability of death over the next year, given that a poli-
cyholder is medium-risk is three times the probability of death of a low-risk
policyholder. The probability of death of a randomly selected policyholder,
over the next year, is 0.009.
Calculate the probability of death of a policyholder over the next year, given
that the policyholder is high-risk.

Problem 5.2.19 ‡
At a mortgage company, 60% of calls are answered by an attendant. The
remaining 40% of callers leave their phone numbers. Of these 40%, 75%
receive a return phone call the same day. The remaining 25% receive a
return call the next day.
Of those who initially spoke to an attendant, 80% will apply for a mortgage.
Of those who received a return call the same day, 60% will apply. Of those
who received a return call the next day, 40% will apply.
Calculate the probability that a person initially spoke to an attendant, given
that he or she applied for a mortgage.

Problem 5.2.20 ‡
An insurance company studies back injury claims from a manufacturing com-
pany. The insurance company finds that 40% of workers do no lifting on the
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job, 50% do moderate lifting and 10% do heavy lifting. During a given year,
the probability of filing a claim is 0.05 for a worker who does no lifting, 0.08
for a worker who does moderate lifting and 0.20 for a worker who does heavy
lifting. A worker is chosen randomly from among those who have filed a back
injury claim.
Calculate the probability that the worker’s job involves moderate or heavy
lifting.

Problem 5.2.21 ‡
Bowl I contains eight red balls and six blue balls. Bowl II is empty. Four
balls are selected at random, without replacement, and transferred from bowl
I to bowl II. One ball is then selected at random from bowl II.
Calculate the conditional probability that two red balls and two blue balls
were transferred from bowl I to bowl II, given that the ball selected from
bowl II is blue.
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5.3 Independent Events

Intuitively, when the occurrence of an event B has no influence on the prob-
ability of occurrence of an event A then we say that the two events are
independent. For example, in the experiment of tossing two coins, the first
toss has no effect on the second toss. In terms of conditional probability, two
events A and B are said to be independent if and only if

P (A|B) = P (A).

We next introduce the two most basic theorems regarding independence.

Theorem 5.3.1
A and B are independent events if and only if P (A ∩B) = P (A)P (B).

Proof.
A and B are independent if and only if P (A|B) = P (A) and this is equivalent
to

P (A ∩B) = P (A|B)P (B) = P (A)P (B)

Example 5.3.1
A coal exploration company is set to look for coal mines in two states Virginia
and New Mexico. Let V be the event that a coal mine is found in Virginia
and NM the event that a coal mine is found in New Mexico. Suppose that V
and NM are independent events with P (V ) = 0.4 and P (NM) = 0.7. What
is the probability that at least one coal mine is found in one of the states?

Solution.
The probability that at least one coal mine is found in one of the two states
is P (V ∪NM). Thus,

P (V ∪NM) =P (V ) + P (NM)− P (V ∩NM)

=P (V ) + P (NM)− P (V )P (NM)

=0.4 + 0.7− 0.4(0.7) = 0.82

Example 5.3.2
Let A and B be two independent events such that P (B|A ∪ B) = 2

3
and

P (A|B) = 1
2
. What is P (B)?
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Solution.
First, note that by independence we have

1

2
= P (A|B) = P (A).

Next,

P (B|A ∪B) =
P (B ∩ (A ∪B)))

P (A ∪B)
=

P (B)

P (A ∪B)

=
P (B)

P (A) + P (B)− P (A ∩B)

=
P (B)

P (A) + P (B)− P (A)P (B)
.

Thus,
2

3
=

P (B)
1
2

+ P (B)
2

Solving this equation for P (B), we find P (B) = 1
2

Theorem 5.3.2
If A and B are independent then
(i) A and Bc are independent;
(ii) Ac and Bc are independent.

Proof.
(i) First note that A can be written as the union of two mutually exclusive
events: A = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc). Thus, P (A) = P (A ∩B) +
P (A ∩Bc). It follows that

P (A ∩Bc) =P (A)− P (A ∩B) = P (A)− P (A)P (B)

=P (A)(1− P (B)) = P (A)P (Bc).

(ii) Using De Morgan’s formula we have

P (Ac ∩Bc) =1− P (A ∪B) = 1− [P (A) + P (B)− P (A ∩B)]

=[1− P (A)]− P (B) + P (A)P (B)

=P (Ac)− P (B)[1− P (A)] = P (Ac)− P (B)P (Ac)

=P (Ac)[1− P (B)] = P (Ac)P (Bc)
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When the outcome of one event affects the outcome of a second event, the
events are said to be dependent. The following is an example of events that
are dependent.

Example 5.3.3
Steve draws a spade from a standard deck of 52 cards. Without replacing
the first card, he proceeds to draw a second card and he gets a spade. Are
these events independent? What is the probability that the first card is a
spade and then the second card is a spade?

Solution.
Let A be the event that the first card is a spade. Then P (A) = 13

52
= 1

4
.

Let B the event the second card is a spade. Since the drawing is without
replacement, the event B is conditioned on A and therefore A affects the
probability of B so A and B are dependent. The probability that first card
is a spade and then the second card is also a spade is

P (A ∩B) = P (B|A)P (A) =
12

51
· 13

52
=

3

51

The definition of independence for a finite number of events is defined as
follows: Events A1, A2, · · · , An are said to be mutually independent or
simply independent if for any 1 ≤ i1 < i2 < · · · < ik ≤ n we have

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1)P (Ai2) · · ·P (Aik).

In particular, three events A,B,C are independent if and only if

P (A ∩B) =P (A)P (B)

P (A ∩ C) =P (A)P (C)

P (B ∩ C) =P (B)P (C)

P (A ∩B ∩ C) =P (A)P (B)P (C).

Example 5.3.4
Consider the experiment of tossing a coin n times. Let Ai = “the ith coin
shows Heads”. Show that A1, A2, · · · , An are independent.

Solution.
For any 1 ≤ i1 < i2 < · · · < ik ≤ n we have P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = 1

2k
.

But P (Ai) = 1
2
. Thus, P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1)P (Ai2) · · ·P (Aik)
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Example 5.3.5
In a clinic laboratory, the probability that a blood sample shows cancerous
cells is 0.05. Four blood samples are tested, and the samples are independent.
(a) What is the probability that none shows cancerous cells?
(b) What is the probability that exactly one sample shows cancerous cells?
(c) What is the probability that at least one sample shows cancerous cells?

Solution.
Let Hi denote the event that the ith sample contains cancerous cells for
i = 1, 2, 3, 4.
(a) The event that none contains cancerous cells is equivalent to Hc

1 ∩Hc
2 ∩

Hc
3 ∩Hc

4. So, by independence, the desired probability is

P (Hc
1 ∩Hc

2 ∩Hc
3 ∩Hc

4) =P (Hc
1)P (Hc

2)P (Hc
3)P (Hc

4)

=(1− 0.05)4 = 0.8145.

(b) Let

A1 =H1 ∩Hc
2 ∩Hc

3 ∩Hc
4

A2 =Hc
1 ∩H2 ∩Hc

3 ∩Hc
4

A3 =Hc
1 ∩Hc

2 ∩H3 ∩Hc
4

A4 =Hc
1 ∩Hc

2 ∩Hc
3 ∩H4

Then, the requested probability is the probability of the union A1∪A2∪A3∪
A4 and these events are mutually exclusive. Also, by independence, P (Ai) =
(0.95)3(0.05) = 0.0429, i = 1, 2, 3, 4. Therefore, the answer is 4(0.0429) =
0.1716.
(c) Let B be the event that no sample contains cancerous cells. The event
that at least one sample contains cancerous cells is the complement of B,
i.e. Bc. By part (a), it is known that P (B) = 0.8145. So, the requested
probability is

P (Bc) = 1− P (B) = 1− 0.8145 = 0.1855

Example 5.3.6
Find the probability of getting four sixes and then another number in five
random rolls of a balanced die.
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Solution.
Because the events are independent, the probability in question is

1

6
· 1

6
· 1

6
· 1

6
· 5

6
=

5

7776

A collection of events A1, A2, · · · , An are said to be pairwise independent
if and only if P (Ai ∩ Aj) = P (Ai)P (Aj) for any i 6= j where 1 ≤ i, j ≤ n.
Pairwise independence does not imply mutual independence as the following
example shows.

Example 5.3.7
Consider the experiment of flipping two fair coins. Consider the three events:
A = the first coin shows heads; B = the second coin shows heads, and C =
the two coins show the same result. Show that these events are pairwise
independent, but not independent.

Solution.
Note thatA = {(H,H), (H,T )}, B = {(H,H), (T,H)}, C = {(H,H), (T, T )}.
We have

P (A ∩B) =P ({(H,H)}) =
1

4
=

2

4
· 2

4
= P (A)P (B)

P (A ∩ C) =P ({(H,H)}) =
1

4
=

2

4
· 2

4
= P (A)P (C)

P (B ∩ C) =P ({(H,H)}) =
1

4
=

2

4
· 2

4
= P (B)P (C)

Hence, the events A,B, and C are pairwise independent. On the other hand

P (A ∩B ∩ C) = P ({(H,H)}) =
1

4
6= 2

4
· 2

4
· 2

4
= P (A)P (B)P (C)

so that A,B, and C are not mutually independent
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Practice Problems

Problem 5.3.1
You randomly select two cards from a standard 52-card deck. What is the
probability that the first card is not a face card (a king, queen, jack, or an
ace) and the second card is a face card if
(a) you replace the first card before selecting the second, and
(b) you do not replace the first card?

Problem 5.3.2 ‡
One urn contains 4 red balls and 6 blue balls. A second urn contains 16 red
balls and x blue balls. A single ball is drawn from each urn. The probability
that both balls are the same color is 0.44 .
Calculate x.

Problem 5.3.3 ‡
An actuary studying the insurance preferences of automobile owners makes
the following conclusions:
(i) An automobile owner is twice as likely to purchase a collision coverage as
opposed to a disability coverage.
(ii) The event that an automobile owner purchases a collision coverage is
independent of the event that he or she purchases a disability coverage.
(iii) The probability that an automobile owner purchases both collision and
disability coverages is 0.15.
What is the probability that an automobile owner purchases neither collision
nor disability coverage?

Problem 5.3.4 ‡
An insurance company pays hospital claims. The number of claims that
include emergency room or operating room charges is 85% of the total num-
ber of claims. The number of claims that do not include emergency room
charges is 25% of the total number of claims. The occurrence of emergency
room charges is independent of the occurrence of operating room charges on
hospital claims.
Calculate the probability that a claim submitted to the insurance company
includes operating room charges.

Problem 5.3.5
Let S = {1, 2, 3, 4} with each outcome having equal probability 1

4
and define
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the events A = {1, 2}, B = {1, 3}, and C = {1, 4}. Show that the three
events are pairwise independent but not independent.

Problem 5.3.6
Suppose A,B, and C are mutually independent events with probabilities
P (A) = 0.5, P (B) = 0.8, and P (C) = 0.3. Find the probability that exactly
two of the events A,B,C occur.

Problem 5.3.7
Suppose you flip a nickel, a dime and a quarter. Each coin is fair, and the
flips of the different coins are independent. Let A be the event “the total
value of the coins that came up heads is at least 15 cents”. Let B be the
event “the quarter came up heads”. Let C be the event “the total value of
the coins that came up heads is divisible by 10 cents”.
(a) Write down the sample space, and list the events A,B, and C.
(b) Find P (A), P (B) and P (C).
(c) Compute P (B|A).
(d) Are B and C independent? Explain.

Problem 5.3.8 ‡
Workplace accidents are categorized into three groups: minor, moderate and
severe. The probability that a given accident is minor is 0.5, that it is mod-
erate is 0.4, and that it is severe is 0.1. Two accidents occur independently
in one month.
Calculate the probability that neither accident is severe and at most one is
moderate.

Problem 5.3.9
Among undergraduate students living on a college campus, 20% have an
automobile. Among undergraduate students living off campus, 60% have an
automobile. Among undergraduate students, 30% live on campus. Give the
probabilities of the following events when a student is selected at random:
(a) Student lives off campus
(b) Student lives on campus and has an automobile
(c) Student lives on campus and does not have an automobile
(d) Student lives on campus or has an automobile
(e) Student lives on campus given that he/she does not have an automobile.
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Problem 5.3.10
Let A, B, and C be three mutually independent events such that P (A) =
0.1, P (B) = 0.3 and P (C) = 0.4. Find P (A ∪Bc ∪ Cc).

Problem 5.3.11
We toss a coin twice. Let A be the event that a head occurs on the first toss.
Let B be the event that two heads turn up. Are A and B independent?

Problem 5.3.12
Let A be an event in a sample space S. Show that A and S are independent.

Problem 5.3.13
Throw a dice twice. Let A be the event the sum of the points is 7. Let
B be the event the first throw came up 3. Let C be the event the second
throw came up 4. Show that A,B, and C are pairwise independent but not
mutually independent.

Problem 5.3.14
Throw a dice twice. Let A be the event the first throw came up 1, 2, or 3. Let
B be the event that the first throw came up 3,4, or 5. Let C be the event that
the sum of the two throws is 9. Show that P (A∩B ∩C) = P (A)P (B)P (C)
but A,B, and C are not pairwise independent.

Problem 5.3.15 ‡
In a certain game of chance, a square board with area 1 is colored with sectors
of either red or blue. A player, who cannot see the board, must specify a
point on the board by giving an x−coordinate and a y−coordinate. The
player wins the game if the specified point is in a blue sector. The game can
be arranged with any number of red sectors, and the red sectors are designed
so that

Ri =

(
9

20

)i
where Ri is the area of the ith red sector.
Calculate the minimum number of red sectors that makes the chance of a
player winning less than 20%.

Problem 5.3.16 ‡
Two fair dice, one red and one blue, are rolled.
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Let I be the event that the number rolled on the red die is odd.
Let J be the event that the number rolled on the blue die is odd.
Let H be the event that the sum of the numbers rolled on the two dice is odd.

Determine which of the following is true.

(A) I, J, and H are not mutually independent, but each pair is indepen-
dent.
(B) I, J, and H are mutually independent.
(C) Exactly one pair of the three events is independent.
(D) Exactly two of the three pairs are independent.
(E) No pair of the three events is independent.

Problem 5.3.17 ‡
A company sells two types of life insurance policies (P and Q) and one type
of health insurance policy. A survey of potential customers revealed the
following:
i) No survey participant wanted to purchase both life policies.
ii) Twice as many survey participants wanted to purchase life policy P as
life policy Q.
iii) 45% of survey participants wanted to purchase the health policy.
iv) 18% of survey participants wanted to purchase only the health policy.
v) The event that a survey participant wanted to purchase the health policy
was independent of the event that a survey participant wanted to purchase
a life policy.
Calculate the probability that a randomly selected survey participant wanted
to purchase exactly one policy.

Problem 5.3.18 ‡
Let A,B, and C be events such that P (A) = 0.2, P (B) = 0.1, and P (C) =
0.3. The events A and B are independent, the events B and C are indepen-
dent, and the events A and C are mutually exclusive. Calculate P (A∪B∪C).

Problem 5.3.19 ‡
Events E and F are independent with P (E) = 0.84 and P (F ) = 0.65.
Calculate the probability that exactly one of the two events occurs.

Problem 5.3.20 ‡
In a shipment of 20 packages, 7 packages are damaged. The packages are
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randomly inspected, one at a time, without replacement, until the fourth
damaged package is discovered. Calculate the probability that exactly 12
packages are inspected.
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5.4 Odds Versus Probability

What’s the difference between probabilities and odds? To answer this ques-
tion, let’s consider a game that involves rolling a die. If one gets the face
1 then he wins the game, otherwise he loses. The probability of winning is
1
6

whereas the probability of losing is 5
6
. The odds of winning is 1:5(read 1

to 5). This expression means that the probability of losing is five times the
probability of winning. Thus, probabilities describe the frequency of a favor-
able result in relation to all possible outcomes whereas the odds in favor
of an event compare the favorable outcomes to the unfavorable outcomes.
More formally,

odds in favor = number of favorable outcomes
number of unfavorable outcomes

.

If E is the event of all favorable outcomes then its complementary, Ec, is the
event of unfavorable outcomes. Hence,

odds in favor = #(E)
#(Ec)

Also, we define the odds against an event as

odds against = number of unfavorable outcomes
number of favorable outcomes

= #(Ec)
#(E)

.

Any probability can be converted to odds, and any odds can be converted to
a probability.

Converting Odds to Probability
Suppose that the odds in favor for an event E is a:b. Thus, #(E) = ak and
#(Ec) = bk where k is a positive integer. Since S = E ∪Ec and E ∩Ec = ∅,
by Theorem 1.2.4(b) we have #(S) = #(E) + #(Ec). Therefore,

P (E) = #(E)
#(S)

= #(E)
#(E)+#(Ec)

= ak
ak+bk

= a
a+b

and

P (Ec) = #(Ec)
#(S)

= #(Ec)
#(E)+#(Ec)

= bk
ak+bk

= b
a+b

.

Example 5.4.1
If the odds in favor of an event E is 5:4, compute P (E) and P (Ec).

Solution.
We have
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P (E) = 5
5+4

= 5
9

and P (Ec) = 4
5+4

= 4
9

Converting Probability to Odds
Given P (E), we want to find the odds in favor of E and the odds against E.
The odds in favor of E are

#(E)

#(Ec)
=

#(E)

#(S)
· #(S)

#(Ec)

=
P (E)

P (Ec)

=
P (E)

1− P (E)

and the odds against E are

#(Ec)

#(E)
=

1− P (E)

P (E)

Example 5.4.2
For each of the following, find the odds in favor of the event’s occurring:
(a) Rolling a number less than 5 on a die.
(b) Tossing heads on a fair coin.
(c) Drawing an ace from an ordinary 52-card deck.

Solution.
(a) The probability of rolling a number less than 5 is 4

6
and that of rolling 5

or 6 is 2
6
. Thus, the odds in favor of rolling a number less than 5 is 4

6
÷ 2

6
= 2

1

or 2:1
(b) Since P (H) = 1

2
and P (T ) = 1

2
, the odds in favor of getting heads is(

1
2

)
÷
(

1
2

)
or 1:1

(c) We have P(ace) = 4
52

and P(not an ace) =48
52

so that the odds in favor of
drawing an ace is

(
4
52

)
÷
(

48
52

)
= 1

12
or 1:12

Remark 5.4.1
A probability such as P (E) = 5

6
is just a ratio. The exact number of favorable

outcomes and the exact total of all outcomes are not necessarily known.
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Practice Problems

Problem 5.4.1
If the probability of a boy being born is 1

2
, and a family plans to have four

children, what are the odds against having all boys?

Problem 5.4.2
If the odds against Nadia’s winning first prize in a chess tournament are 3:5,
what is the probability that she will win first prize?

Problem 5.4.3
What are the odds in favor of getting at least two heads if a fair coin is tossed
three times?

Problem 5.4.4
If the probability of snow for the day is 60%, what are the odds against
snowing?

Problem 5.4.5
On a tote board at a race track, the odds for Smarty Harper are listed as
26:1. Tote boards list the odds that the horse will lose the race. If this is the
case, what is the probability of Smarty Harper’s winning the race?

Problem 5.4.6
If a die is tossed, what are the odds in favor of the following events?
(a) Getting a 4
(b) Getting a prime
(c) Getting a number greater than 0
(d) Getting a number greater than 6.

Problem 5.4.7
Find the odds against E if P (E) = 3

4
.

Problem 5.4.8
Find P (E) in each case.
(a) The odds in favor of E are 3:4
(b) The odds against E are 7:3
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Problem 5.4.9
A jar contains 5 red balls, 3 green balls, and 7 yellow balls. Without re-
placement, three balls are chosen randomly. Find the odds against choosing
3 balls, each of a different color.

Problem 5.4.10
A game between two teams A and B is scheduled next week. You are told
that the odds against Team A is 300:1 and that against Team B is 100:1.
True or false: The chances that Team A not winning is three times greater
than Team B.
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Chapter 6

Discrete Random Variables

This chapter is one of two chapters dealing with random variables. After
introducing the notion of a random variable, we discuss discrete random
variables. Continuous random variables are left to the next chapter.

181
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6.1 Random Variables

By definition, a random variable X is a function with domain the sample
space and range a subset of the real numbers. For example, in rolling two
dice X might represent the sum of the points on the two dice. Similarly, in
taking samples of college students X might represent the number of hours
per week a student studies, a student’s GPA, or a student’s height.
The notation X(s) = x means that x is the value associated with the out-
come s by the random variable X.
There are three types of random variables: discrete random variables, con-
tinuous random variables, and mixed random variables.
A discrete random variable is a random variable whose range is either finite
or countably infinite1. A continuous random variable is a random variable
whose range is an interval in R. A mixed random variable is partially dis-
crete and partially continuous.
In this chapter, we will just consider discrete random variables.

Example 6.1.1
State whether the random variables are discrete, continuous or mixed.
(a) A coin is tossed ten times. The random variable X is the number of tails
that are noted.
(b) The random variable Y measures the lifetime (in hours) of a light bulb.
(c) Z : [0, 1]→ R where

Z(s) =

{
1− s, 0 ≤ s < 1

2
1
2
, 1

2
≤ s ≤ 1.

Solution.
(a) X can only take the values 0, 1, ..., 10, so X is a discrete random variable.
(b) Y can take any positive real value, so Y is a continuous random variable.
(c) Z is a mixed random variable since Z is continuous in the interval [0, 1

2
[

and discrete on the interval [1
2
, 1]

Example 6.1.2
The sample space of the experiment of tossing a coin 3 times is given by

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

Let X = # of Heads in 3 tosses. Find the range of X.

1See page 5.
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Solution.
We have

X(HHH) = 3 X(HHT ) = 2 X(HTH) = 2 X(HTT ) = 1
X(THH) = 2 X(THT ) = 1 X(TTH) = 1 X(TTT ) = 0

Thus, the range of X consists of {0, 1, 2, 3} so that X is a discrete random
variable

We use upper-case letters X, Y, Z, etc. to represent random variables. We
use small letters x, y, z, etc to represent possible values that the correspond-
ing random variables X, Y, Z, etc. can take. The statement X = x defines an
event consisting of all outcomes with X-measurement equal to x which is the
set {s ∈ S : X(s) = x}. For instance, considering the random variable of the
previous example, the statement “X = 2” is the event {HHT,HTH, THH}.
Because the value of a random variable is determined by the outcomes of the
experiment, we may assign probabilities to the possible values of the random
variable. For example, P (X = 2) = 3

8
where X is the random variable of

Example 6.1.2.

Example 6.1.3
Consider the experiment consisting of 2 rolls of a dice. Let X be a random
variable, equal to the maximum of the 2 rolls. Complete the following table:

x 1 2 3 4 5 6
P (X = x)

Solution.
The sample space of this experiment consists of 36 ordered pairs (i, j) where
i, j ∈ {1, 2, 3, 4, 5, 6}. Thus,

x 1 2 3 4 5 6
P (X = x) 1

36
3
36

5
36

7
36

9
36

11
36

Example 6.1.4
A class consisting of five male students and five female students has taken
the GRE examination. All ten students got different scores on the test.
The students are ranked according to their scores on the test. Assume that
all possible rankings are equally likely. Let X denote the highest ranking
achieved by a male student. Find P (X = i), i = 1, 2, · · · , 10.
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Solution.
The sample space of this experiment consists of all possible rankings of the
10 students. The number of outcomes of this experiment is 10! Now, 6 is the
lowest possible rank attainable by the highest-scoring male. Thus, we must
have P (X = 7) = P (X = 8) = P (X = 9) = P (X = 10) = 0.
For X = 1 (male is highest-ranking scorer), we have 5 possible choices out
of 10 for the top spot that satisfy this requirement and 9! for the remaining
spots. Hence,

P (X = 1) =
5 · 9!

10!
=

1

2
.

For X = 2 (male is 2nd-highest scorer), we have 5 possible choices for the
top female, then 5 possible choices for the male who ranked 2nd overall, and
then any arrangement of the remaining 8 individuals is acceptable (out of
10! possible arrangements of 10 individuals); hence,

P (X = 2) =
5 · 5 · 8!

10!
=

5

18
.

For X = 3 (male is 3rd-highest scorer), acceptable configurations yield
(5)(4)=20 possible choices for the top 2 females, 5 possible choices for the
male who ranked 3rd overall, and 7! different arrangement of the remaining
7 individuals (out of a total of 10! possible arrangements of 10 individuals);
hence,

P (X = 3) =
5 · 4 · 5 · 7!

10!
=

5

36
.

Similarly, we have

P (X = 4) =
5 · 4 · 3 · 5 · 6!

10!
=

5

84

P (X = 5) =
5 · 4 · 3 · 2 · 5 · 5!

10!
=

5

252

P (X = 6) =
5 · 4 · 3 · 2 · 1 · 5 · 4!

10!
=

1

252

Functions of a Discrete Random Variable
If we apply a function g(·) to a random variable X, the result is another ran-
dom variable Y = g(X). For example, X2, logX, 1

X
are all random variables

derived from the original random variable X. Indeed, we have
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Theorem 6.1.1
Let X be a discrete random variable and let Y = g(X) where g : R → R
is a given function. Then Y is a discrete random variable with Y (s) =
g[X(s)], s ∈ S, i.e., Im(Y ) = g(Im(X)).

Proof.
We must show that Im(Y ) is either finite or countable. Suppose that Im(X) =
{x1, x2, · · · , xn}. Then Im(Y ) = {g(x1), g(x2), · · · , g(xn)}. That is, if Im(X)
is finite then Im(Y ) is also finite. Now, suppose that Im(X) is infinitely
countable. That is, Im(X) = {x1, x2, · · · }. Then Im(Y ) = {g(x1), g(x2), · · · }.
That is, Im(Y ) is infinitely countable. It follows that Y is a discrete random
variable



186 CHAPTER 6. DISCRETE RANDOM VARIABLES

Practice Problems

Problem 6.1.1
Determine whether the random variable is discrete, continuous or mixed.
(a) X is a randomly selected number in the interval (0, 1).
(b) Y is the number of heart beats per minute.
(c) Z is the number of calls at a switchboard in a day.
(d) U : (0, 1)→ R defined by U(s) = 2s− 1.
(e) V : (0, 1)→ R defined by V (s) = 2s− 1 for 0 < s < 1

2
and V (s) = 1 for

1
2
≤ s < 1.

Problem 6.1.2
Let X be a random variable with probability distribution table given below

x 0 10 20 50 100
P (X = x) 0.4 0.3 0.15 0.1 0.05

Find P (X < 50).

Problem 6.1.3
A couple is expecting the arrival of a new boy. They are deciding on a name
from the list S = { Steve, Stanley, Joseph, Elija }. Let X(ω) = first letter in
name. Find P (X = S).

Problem 6.1.4 ‡
The number of injury claims per month is modeled by a random variable N
with

P (N = n) =
1

(n+ 1)(n+ 2)
, n ≥ 0.

Determine the probability of at least one claim during a particular month,
given that there have been at most four claims during that month.

Problem 6.1.5
Let X be a discrete random variable with the following probability table

x 1 5 10 50 100
P (X = x) 0.02 0.41 0.21 0.08 0.28

Compute P (X > 4|X ≤ 50).
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Problem 6.1.6
Suppose that two fair dice are rolled so that the sample space is S = {(i, j) :
1 ≤ i, j ≤ 6}. Let X be the random variable X(i, j) = i+ j. Find P (X = 6).

Problem 6.1.7
Let X be a discrete random variable with range {0, 1, 2, 3, · · · }. Suppose that

P (X = 0) = P (X = 1), P (X = k + 1) =
1

k
P (X = k), k = 1, 2, 3, · · ·

Find P (0). Hint: Recall that ex =
∑∞

n=0
xn

n!
.

Problem 6.1.8 ‡
Under an insurance policy, a maximum of five claims may be filed per year
by a policyholder. Let pn be the probability that a policyholder files n claims
during a given year, where n = 0, 1, 2, 3, 4, 5. An actuary makes the following
observations:
(i) pn ≥ pn+1 for 0 ≤ n ≤ 4.
(ii) The difference between pn and pn+1 is the same for 0 ≤ n ≤ 4.
(iii) Exactly 40% of policyholders file fewer than two claims during a given
year.
Calculate the probability that a random policyholder will file more than three
claims during a given year.

Problem 6.1.9
A committee of 4 is to be selected from a group consisting of 5 men and 5
women. Let X be the random variable that represents the number of women
in the committee. Complete the following table

x 0 1 2 3 4
p(x)

Problem 6.1.10
Consider the experiment of rolling a fair die twice. Let X(i, j) = max{i, j}.
Find a formula of P (X = x) in terms of x.

Problem 6.1.11
Let X be a discrete random variable such that P (X = n) = 1

3

(
2
3

)n
, where

n = 0, 1, 2, · · · . Find a formula for the function F (n) = P (X ≤ n).
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Problem 6.1.12
Toss a pair of fair dice. Let X denote the sum of the dots on the two faces.
Find P (X = x) for all the possible values of x.

Problem 6.1.13
A box of six apples has one rotten apple. Randomly draw one apple from
the box, without replacement, until the rotten apple is found. Let X denote
the number of apples drawn until the rotten apple is found. Find P (X = x).

Problem 6.1.14
In the experiment of rolling two dice, let X be the random variable repre-
senting the number of even numbers that appear. Find X(s), where s =
(dice1,dice2).

Problem 6.1.15
In the experiment of rolling two dice, let X be the random variable repre-
senting the number of even numbers that appear. Find P (X = x).

Problem 6.1.16
A game consists of randomly selecting two balls without replacement from
an urn containing 3 red balls and 4 blue balls. If the two selected balls are
of the same color then you win $2. If they are of different colors then you
lose $1. Let X denote your gain/lost. Find P (X = x).

Problem 6.1.17 ‡
Two fair dice are rolled. Let X be the absolute value of the difference between
the two numbers on the dice. Calculate the probability that X < 3.

Problem 6.1.18 ‡
On a block of ten houses, k are not insured. A tornado randomly damages
three houses on the block. The probability that none of the damaged houses
are insured is 1/120. Calculate the probability that at most one of the
damaged houses is insured.

Problem 6.1.19 ‡
Four letters to different insureds are prepared along with accompanying en-
velopes. The letters are put into the envelopes randomly. Calculate the
probability that at least one letter ends up in its accompanying envelope.
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6.2 Probability Mass Function and Cumula-

tive Distribution Function

For a discrete random variable X, we define the probability distribution
or the probability mass function(abbreviated pmf) by the equation

p(x) = P (X = x).

That is, a probability mass function gives the probability that a discrete
random variable is exactly equal to some value.
The pmf can be an equation, a table, or a graph that shows how probability
is assigned to possible values of the random variable.

Example 6.2.1
Suppose a variable X can take the values 1, 2, 3, or 4. The probability mass
function is given by the following table:

x 1 2 3 4
p(x) 0.1 0.3 0.4 0.2

and p(x) = 0 for x 6= 1, 2, 3, 4. Draw the probability histogram.

Solution.
The probability histogram is shown in Figure 6.2.1

Figure 6.2.1
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Example 6.2.2
A committee of 4 is to be selected from a group consisting of 5 men and 5
women. Let X be the random variable that represents the number of women
in the committee. Create the probability mass distribution.

Solution.
For x = 0, 1, 2, 3, 4 we have

p(x) =

(
5
x

)(
5

4− x

)
(

10
4

) .

The probability mass function can be described by the table

x 0 1 2 3 4
p(x) 5

210
50
210

100
210

50
210

5
210

and 0 otherwise

Example 6.2.3
Consider the experiment of rolling a fair die twice. Let X(i, j) = max{i, j}.
Find the equation of p(x).

Solution.
The pmf of X is

p(x) =

{
2x−1

36
if x = 1, 2, 3, 4, 5, 6

0 otherwise

=
2x− 1

36
I{1,2,3,4,5,6}(x)

where

I{1,2,3,4,5,6}(x) =

{
1 if x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

In general, we define the indicator function of a set A to be the function

IA(x) =

{
1 if x ∈ A
0 otherwise.
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Note that if the range of a random variable X is Im(X) = {x1, x2, · · · } then

p(x) ≥ 0, x ∈ Im(X)

and ∑
x∈Im(X)

p(x) = 1.

All random variables (discrete, continuous or mixed) have a distribution
function or a cumulative distribution function, abbreviated cdf. It is
a function giving the probability that the random variable X is less than or
equal to x, for every value x. For a discrete random variable, the cumulative
distribution function is found by summing up the probabilities. That is,

F (a) = P (X ≤ a) =
∑
x≤a

p(x).

Example 6.2.4
Given the following pmf

p(x) =

{
1, if x = a
0, otherwise.

Find a formula for F (x) and sketch its graph.

Solution.
A formula for F (x) is given by

F (x) =

{
0, if x < a
1, otherwise.

Its graph is given in Figure 6.2.2

Figure 6.2.2
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For discrete random variables the cumulative distribution function will al-
ways be a step function with jumps at each value of x that has probability
greater than 0. Note that the value of F (x) is assigned to the top of the
jump. That is, F (x) is right-continuous at the jump.

Example 6.2.5
Consider the following probability mass distribution

x 1 2 3 4
p(x) 0.25 0.5 0.125 0.125

and 0 otherwise. Find a formula for F (x) and sketch its graph.

Solution.
The cdf is given by

F (x) =


0 x < 1

0.25 1 ≤ x < 2
0.75 2 ≤ x < 3
0.875 3 ≤ x < 4

1 4 ≤ x.

Its graph is given in Figure 6.2.3

Figure 6.2.3

Note that the size of the jump at any of the values 1,2,3,4 is equal to the
probability that X assumes that particular value. This is true for any cdf as
shown next.
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Theorem 6.2.1
If the range of a discrete random variable X consists of the values x1 < x2 <
· · · < xn then p(x1) = F (x1) and

p(xi) = F (xi)− F (xi−1), i = 2, 3, · · · , n.

Proof.
Because F (x) = 0 for x < x1, then F (x1) = P (X ≤ x1) = P (X < x1) +
P (X = x1) = P (X = x1) = p(x1). Now, for i = 2, 3, · · · , n, let A = {s ∈ S :
X(s) > xi−1} and B = {s ∈ S : X(s) ≤ xi}. Thus, A ∪B = S. We have

P (xi−1 < X ≤ xi) =P (A ∩B)

=P (A) + P (B)− P (A ∪B)

=1− F (xi−1) + F (xi)− 1

=F (xi)− F (xi−1)

Example 6.2.6
The cumulative distribution function of X is given by

F (x) =



0 x < 0
1
16

0 ≤ x < 1
5
16

1 ≤ x < 2
11
16

2 ≤ x < 3
15
16

3 ≤ x < 4.
1 x ≥ 4.

Find the pmf of X.

Solution.
Making use of the previous theorem, we get p(0) = F (0) = 1

16
, p(1) =

F (1) − F (0) = 1
4
, p(2) = F (2) − F (1) = 3

8
, p(3) = F (3) − F (2) = 1

4
, p(4) =

F (4)− F (3) = 1
16
, and p(x) = 0 for x ≥ 5

Probability Mass Function of a Function of a Discrete Random
Variable
If X is a discrete random variable and g : R → R is any function then
Y = g(X) is also a discrete random variable by Theorem 6.1.1. The next
theorem deals with the pmf of Y = g(X).
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Theorem 6.2.2
Let X be a discrete random variable and let Y = g(X) where g : R → R is
a given function. Then

pY (y) =
∑

x∈g−1(y)

P (X = x). (6.2.1)

Proof.
For y ∈ Im(y), we have

pY (y) = P (Y = y) = P (g(X) = y) = P ({s ∈ S : g(X(s)) = y}) .

Define Ay = {x ∈ Im(X) : g(x) = y} = g−1(y). Since g may not be one-
to-one, Ay might have more than one element. We will show that {s ∈
S : g(X(s)) = y} =

⋃
x∈Ay

{s ∈ S : X(s) = x}. The prove is by double

inclusions. Let s ∈ S be such that g(X(s)) = y. Since X(s) ∈ Im(X),
there is an x ∈ Im(X) such that x = X(s) and g(x) = y. This shows that
s ∈ ∪x∈Ay{s ∈ S : X(s) = x}. For the converse, let s ∈ ∪x∈Ay{s ∈ S :
X(s) = x}. Then there exists x ∈ Im(X) such that g(x) = y and X(s) = x.
Hence, g(X(s)) = g(x) = y and this implies that s ∈ {s ∈ S : g(X(s)) = y}.
Next, we show that ∪x∈Ay{s ∈ S : X(s) = x} is a union of disjoint sets.
Indeed, if x1 and x2 are two distinct elements of Ay and w ∈ {s ∈ S : X(s) =
x1}∩{t ∈ S : X(t) = x2} then this leads to x1 = x2, a contradiction. Hence,
{s ∈ S : X(s) = x1} ∩ {t ∈ S : X(t) = x2} = ∅.
From, the above discussion, we have

pY (y) =
∑
x∈Ay

P (X = x) =
∑
x∈Ay

p(x)

Remark 6.2.1
In case Im(X) is infinite, the above summation is a series that converges
absolutely. See Section 3.2.

Example 6.2.7
Let X be a discrete random variable with range {−1, 0, 1} and probabilities
P (X = −1) = 0.2, P (X = 0) = 0.5, P (X = 1) = 0.3 and 0 otherwise.
Compute pY where Y = X2.

Solution.
The range of Y is {0, 1}. Thus, py(0) = P (Y = 0) = P (X = 0) = 0.5 and
pY (1) = P (Y = 1) = P (X = −1) + P (X = 1) = 0.2 + 0.3 = 0.5
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Practice Problems

Problem 6.2.1
Consider the experiment of tossing a fair coin three times. Let X denote the
random variable representing the total number of heads.
(a) Describe the probability mass function by a table.
(b) Describe the probability mass function by a histogram.

Problem 6.2.2
In the previous problem, describe the cumulative distribution function by a
formula and by a graph.

Problem 6.2.3
Let X be a random variable with pmf

p(n) =
1

3

(
2

3

)n
, n = 0, 1, 2, · · ·

and 0 otherwise. Find a formula for F (n).

Problem 6.2.4
A box contains 100 computer mice of which 95 are defective.
(a) One mouse is taken from the box at a time (without replacement) until
a non-defective mouse is found. Let X be the number of mouses you have
to take out in order to find one that is not defective. Find the probability
distribution of X.
(b) Exactly 10 mouses were taken from the box and then each of the 10
mouses is tested. Let Y denote the number of non-defective mouses among
the 10 that were taken out. Find the probability distribution of Y.

Problem 6.2.5
Let X be a discrete random variable with cdf given by

F (x) =


0 x < −4
3
10
−4 ≤ x < 1

7
10

1 ≤ x < 4
1 x ≥ 4.

Find a formula of p(x).
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Problem 6.2.6
A game consists of randomly selecting two balls without replacement from
an urn containing 3 red balls and 4 blue balls. If the two selected balls are of
the same color then you win $2. If they are of different colors then you lose
$1. Let X denote your gain/lost. Find the probability mass function of X.

Problem 6.2.7
An unfair coin is tossed three times. The probability of tails on any particular
toss is known to be 2

3
. Let X denote the number of heads.

(a) Find the probability mass function.
(b) Graph the cumulative distribution function for X.

Problem 6.2.8
A lottery game consists of matching three numbers drawn (without replace-
ment) from a set of 15 numbers. Let X denote the random variable repre-
senting the numbers on your tickets that match the winning numbers. Find
the probability distribution of X.

Problem 6.2.9
The cumulative distribution function of X is given by

F (x) =



0 x < 2
1
36

2 ≤ x < 3
3
36

3 ≤ x < 4
6
36

4 ≤ x < 5
10
36

5 ≤ x < 6
15
36

6 ≤ x < 7
21
36

7 ≤ x < 8
26
36

8 ≤ x < 9
30
36

9 ≤ x < 10
33
36

10 ≤ x < 11
35
36

11 ≤ x < 12
1 x ≥ 12.

Find the probability distribution of X.

Problem 6.2.10
An urn contains 30 marbles of which 8 are black, 12 are red, and 10 are blue.
Randomly, select four marbles without replacement. Let X be the number
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black marbles in the sample of four.
(a) What is the probability that no black marble was selected?
(b) What is the probability that exactly one black marble was selected?
(c) Find a formula for p(x).

Problem 6.2.11
The distribution function of a discrete random variable X is given by

F (x) =



0 x < −2
0.2 −2 ≤ x < 0
0.5 0 ≤ x < 2.2
0.6 2.2 ≤ x < 3

0.6 + q 3 ≤ x < 4
1 x ≥ 4.

Suppose that P (X > 3) = 0.1.
(a) Determine the value of q?
(b) Compute P (X2 > 2).
(c) Find p(0), p(1) and p(P (X ≤ 0)).
(d) Find the formula of the probability mass function p(x).

Problem 6.2.12
An urn contains 10 marbles in which 3 are black. Four of the marbles are
selected at random (without replacement) and are tested for the black color.
Define the random variable X to be the number of the selected marbles that
are not black.
(a) Find the probability mass function of X.
(b) What is the cumulative distribution function of X?

Problem 6.2.13
Suppose that X is a discrete random variable with probability mass function

p(x) = cx2, x = 1, 2, 3, 4

and 0 otherwise. Find the value of c.

Problem 6.2.14
A discrete random variable X has the following probability mass function
defined in tabular form
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x -1 1 2
p(x) 2c 3c 4c

and 0 otherwise.
(a) Find the value of c.
(b) Compute p(−1), p(1), and p(2).

Problem 6.2.15
Let X be a discrete random variable with range {1, 2, 3, 4, 5, 6}. Suppose that
p(x) = kx for some positive constant k and 0 otherwise.
(a) Determine the value of k.
(b) Find P (X = x) for x even.

Problem 6.2.16
An insurance company sells a one-year automobile policy with a deductible
of 2 . The probability that the insured will incur a loss is 0.05 . If there is
a loss, the probability of a loss of amount N is K

N
, for N = 1, · · · , 5 and K

a constant. These are the only possible loss amounts and no more than one
loss can occur.
(a) Find the value of K.
(b) Find a formula for p(n) = P (N = n).

Problem 6.2.17 ‡
Four distinct integers are chosen randomly and without replacement from the
first twelve positive integers. Let X be the random variable representing the
second largest of the four selected integers, and let p(x) be the probability
mass function of X. Determine p(x), for integer values of x, where p(x) > 0.

Problem 6.2.18 ‡
A health insurance policy covers visits to a doctors office. Each visit costs
100. The annual deductible on the policy is 350. For a policy, the number of
visits per year has the following probability distribution:

Number of Visits 0 1 2 3 4 5 6
Probability 0.6 0.15 0.10 0.08 0.04 0.02 0.01

A policy is selected at random from those where costs exceed the deductible.
Calculate the probability that this policyholder had exactly five office visits.
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6.3 Expected Value of a Discrete Random

Variable

A cube has three red faces, two green faces, and one blue face. A game
consists of rolling the cube twice. You pay $2 to play. If both faces are the
same color, you are paid $5(that is you win $3). If not, you lose the $2 it
costs to play. Will you win money in the long run? Let W denote the event
that you win. Then W = {RR,GG,BB} and

P (W ) = P (RR) + P (GG) + P (BB) =
1

2
· 1

2
+

1

3
· 1

3
+

1

6
· 1

6
=

7

18
≈ 39%.

Thus, P (L) = 11
18

= 61%. Hence, if you play the game 18 times you expect
to win 7 times and lose 11 times on average. So your winnings in dollars will
be 3 × 7 − 2 × 11 = −1. That is, you can expect to lose $1 if you play the
game 18 times. On the average, you will lose $ 1

18
per game (about 6 cents).

This can be found also using the equation

3× 7

18
− 2× 11

18
= − 1

18
.

If we let X denote the winnings of this game then the range of X consists of
the two numbers 3 and −2 which occur with respective probability 0.39 and
0.61. Thus, we can write

E(X) = 3× 7

18
− 2× 11

18
= − 1

18
.

We call this number the expected value of X. More formally, let the range of
a discrete random variable X be a sequence of numbers x1, x2, · · · , xk, and
let p(x) be the corresponding probability mass function. Then the expected
value of X is

E(X) = x1p(x1) + x2p(x2) + · · ·+ xkp(xk).

The following is a justification of the above formula. Suppose that X has k
possible values x1, x2, · · · , xk and that

pi = P (X = xi) = p(xi), i = 1, 2, · · · , k
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and 0 otherwise. Suppose that in n repetitions of the experiment, the number
of times that X takes the value xi is ni. Then the sum of the values of X
over the n repetitions is

n1x1 + n2x2 + · · ·+ nkxk

and the average value of X is

n1x1 + n2x2 + · · ·+ nkxk
n

=
n1

n
x1 +

n2

n
x2 + · · ·+ nk

n
xk.

But p(xi) = P (X = xi) = limn→∞
ni
n
. Thus, the average value of X ap-

proaches
E(X) = x1p(x1) + x2p(x2) + · · ·+ xkp(xk).

The expected value of X is also known as the mean value.

Example 6.3.1
A game consists of rolling two dice. The sum of the two faces is a positive
integer between 2 and 12. For each such a value, you win an amount of
money as shown in the table below.

Score 2 3 4 5 6 7 8 9 10 11 12
$ won 4 6 8 10 20 40 20 10 8 6 4

Compute the expected value of the game.

Solution.
Let X denote the winnings of the game. Then the expected value of X is

E(X) = 4× 1

36
+ 6× 2

36
+ 8× 3

36
+ 10× 4

36
+ 20× 5

36

+ 40× 6

36
+ 20× 5

36
+ 10× 4

36
+ 8× 3

36
+ 6× 2

36
+ 4× 1

36
=

50

3
≈ $16.67

Example 6.3.2
Let A be a nonempty set. Consider the random variable I with range 0 and
1 and with pmf the indicator function IA where

IA(x) =

{
1 if x ∈ A
0 otherwise.

Find E(I).
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Solution.
Since IA(I = 1) = P (A) and IA(I = 0) = P (Ac), we have

E(I) = 1 · IA(I = 1) + 0 · IA(I = 0) = 1 · P (A) + 0 · P (Ac) = P (A).

That is, the expected value of I is just the probability of A

Example 6.3.3
An insurance policy provides the policyholder with a payment of $1,000 if a
death occurs within 5 years. Let X be the random variable of the amount
paid by an insurance company to the policyholder. Suppose that the proba-
bility of death of the policyholder within 5 years is estimated to be 0.15.
(a) Find the probability distribution of X.
(b) What is the most the policyholder should be willing to pay for this policy?

Solution.
(a) P (X = 1, 000) = 0.15, P (X = 0) = 0.85 and 0 otherwise.
(b) E(X) = 1000 × 0.15 + 0 × 0.85 = 150. Thus, the policyholder expected
payout is $150, so he/she should not be willing to pay more than $150 for
the policy

Example 6.3.4
You have a fancy car video system in your car and you feel you want to insure
it against theft. An insurance company offers you a $2000 1-year coverage
for a premium of $225. The probability that the theft will occur is 0.1. What
is your expected return from this policy?

Solution.
Let X be the random variable of the profit/loss from this policy to poli-
cyholder. Then either X = 1, 775 with probability 0.1 or X = −225 with
probability 0.9. Thus, the expected return of this policy is

E(X) = 1, 775(0.1) + (−225)(0.9) = −$25.

That is, by insuring the car video system for many years, and under the same
circumstances, you will expect a net loss of $25 per year to the insurance
company
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Remark 6.3.1
The expected value (or mean) is related to the physical property of center
of mass. If we have a weightless rod in which weights of mass p(x) located
at a distance x from the left endpoint of the rod then the point at which
the rod is balanced is called the center of mass. If α is the center of
mass then we must have

∑
x(x − α)p(x) = 0. This equation implies that

α =
∑

x xp(x) = E(X). Thus, the expected value tells us something about
the center of the probability mass function. The mean is one of the measures
of central tendency.
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Practice Problems

Problem 6.3.1
Consider the experiment of rolling two dice. Let X be the random variable
representing the sum of the two faces. Find E(X).

Problem 6.3.2 ‡
Suppose that an insurance company has broken down yearly automobile
claims for drivers from age 16 through 21 as shown in the following table.

Amount of claim Probability
$ 0 0.80

$ 2000 0.10
$ 4000 0.05
$ 6000 0.03
$ 8000 0.01
$ 10000 0.01

How much should the company charge as its average premium in order to
break even on costs for claims?

Problem 6.3.3
A game consists of rolling two dice. The game costs $2 to play. If a sum of
7 appears you win $12 otherwise you lose your $2. Would you be making
money, losing money, or coming out about even if you keep playing this
game? Explain.

Problem 6.3.4
A game consists of rolling two dice. The game costs $8 to play. You get
paid the sum of the numbers in dollars that appear on the dice. What is the
expected value of this game (long-run average gain or loss per game)?

Problem 6.3.5
A storage company provides insurance coverage for items stored on its premises.
For items valued at $800, the probability that $400 worth of items of being
stolen is 0.01 while the probability the whole items being stolen is 0.0025.
Assume that these are the only possible kinds of expected loss. How much
should the storage company charge for people with this coverage in order
to cover the money they pay out and to make an additional $20 profit per
person on the average?
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Problem 6.3.6
A game consists of spinning a spinner with payoff as shown in Figure 6.3.1.
The cost of playing is $2 per spin. What is the expected return to the owner
of this game?

Figure 6.3.1

Problem 6.3.7
Consider a game that costs $1 to play. The probability of losing is 0.7. The
probability of winning $50 is 0.1, and the probability of winning $35 is 0.2.
Would you expect to win or lose if you play this game 10 times?

Problem 6.3.8
A lottery type game consists of matching the correct three numbers that are
selected from the numbers 1 through 12. The cost of one ticket is $1. If your
ticket matched the three selected numbers, you win $100. What are your
expected earnings?

Problem 6.3.9 ‡
Two life insurance policies, each with a death benefit of 10,000 and a one-
time premium of 500, are sold to a couple, one for each person. The policies
will expire at the end of the tenth year. The probability that only the wife
will survive at least ten years is 0.025, the probability that only the husband
will survive at least ten years is 0.01, and the probability that both of them
will survive at least ten years is 0.96 .
What is the expected excess of premiums over claims, given that the husband
survives at least ten years?

Problem 6.3.10
An urn contains 30 marbles of which 8 are black, 12 are red, and 10 are blue.
Randomly, select four marbles without replacement. Let X be the number
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black marbles in the sample of four.
(a) What is the probability that no black marble was selected?
(b) What is the probability that exactly one black marble was selected?
(c) Compute E(X).

Problem 6.3.11
The distribution function of a discrete random variable X is given by

F (x) =



0 x < −2
0.2 −2 ≤ x < 0
0.5 0 ≤ x < 2.2
0.6 2.2 ≤ x < 3

0.6 + q 3 ≤ x < 4
1 x ≥ 4

Suppose that P (X > 3) = 0.1.
(a) Determine the value of q?
(b) Compute P (X2 > 2).
(c) Find p(0), p(1) and p(P (X ≤ 0)).
(d) Find the formula of the probability mass function p(x).
(e) Compute E(X).

Problem 6.3.12
A computer store specializes in selling used laptops. The laptops can be
classified as either in good condition or in fair condition. Assume that the
store salesperson is able to tell whether a laptop is in good or fair condition.
However, a buyer in the store can not tell the difference. Suppose that buyers
are aware that the probability of a laptop of being in good condition is 0.4.
A laptop in good condition costs the store $400 and a buyer is willing to pay
$525 for it whereas a laptop in fair condition costs the store $200 and a buyer
is willing to pay for $300 for it.
(a) Find the expected value of a used laptop to a buyer who has no extra
information.
(b) Assuming that buyers will not pay more than their expected value for a
used laptop, will sellers ever sell laptops in good condition?

Problem 6.3.13
An urn contains 10 marbles in which 3 are black. Four of the marbles are
selected at random (without replacement) and are tested for the black color.
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Define the random variable X to be the number of the selected marbles that
are not black.
(a) Find the probability mass function of X.
(b) What is the cumulative distribution function of X?
(c) Find the expected value of X.

Problem 6.3.14 ‡
An auto insurance company is implementing a new bonus system. In each
month, if a policyholder does not have an accident, he or she will receive a
5.00 cash-back bonus from the insurer.
Among the 1,000 policyholders of the auto insurance company, 400 are clas-
sified as low-risk drivers and 600 are classified as high-risk drivers.
In each month, the probability of zero accidents for high-risk drivers is 0.80
and the probability of zero accidents for low-risk drivers is 0.90.
Calculate the expected bonus payment from the insurer to the 1000 policy-
holders in one year.

Problem 6.3.15
Suppose that X is a discrete random variable with probability mass function

p(x) = cx2, x = 1, 2, 3, 4

and 0 otherwise.
(a) Find the value of c.
(b) Find E(X).

Problem 6.3.16
A random variable X has the following probability mass function defined in
tabular form

x -1 1 2
p(x) 2c 3c 4c

and 0 otherwise.
(a) Find the value of c.
(b) Compute p(−1), p(1), and p(2).
(c) Find E(X).

Problem 6.3.17
Let X be a random variable with range {1, 2, 3, 4, 5, 6}. Suppose that p(x) =
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kx for some positive constant k and 0 otherwise.
(a) Determine the value of k.
(b) Find P (X = x) for x even.
(c) Find the expected value of X.

Problem 6.3.18
A box contains 7 marbles of which 3 are red and 4 are blue. Randomly select
two marbles without replacement. If the marbles are of the same color then
you win $2, otherwise you lose $1. Let X be the random variable representing
your net winnings.
(a) Find the probability mass function of X.
(b) Compute E(X).

Problem 6.3.19
A probability distribution of the claim size X for an auto insurance policy is
given in the table below:

Claim size Probability
20 0.15
30 0.10
40 0.05
50 0.20
60 0.10
70 0.10
80 0.30

Find E(X).

Problem 6.3.20 ‡
At a polling booth, ballots are cast by ten voters, of whom three are Re-
publicans, two are Democrats, and five are Independents. A local journalist
interviews two of these voters, chosen randomly.
Calculate the expectation of the absolute value of the difference between
the number of Republicans interviewed and the number of Democrats inter-
viewed.

Problem 6.3.21 ‡
The number of claims X on a health insurance policy is a random variable
with E(X2) = 61 and E[(X − 1)2] = 47. Calculate the standard deviation of
the number of claims.
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6.4 Expected Value of a Function of a Dis-

crete Random Variable

If we apply a function g(·) to a discrete random variable X, the result is
another discrete random variable Y = g(X) as shown in Theorem 6.1.1.
In this section, we are interested in finding the expected value of this new
random variable. But first we look at an example.

Example 6.4.1
Let X be a discrete random variable with range {−1, 0, 1} and probabilities
P (X = −1) = 0.2, P (X = 0) = 0.5, P (X = 1) = 0.3 and 0 otherwise.
Compute E(X2).

Solution.
Let Y = X2. Then the range of Y is {0, 1}. Also, P (Y = 0) = P (X =
0) = 0.5 and P (Y = 1) = P (X = −1) + P (X = 1) = 0.2 + 0.3 = 0.5 Thus,
E(X2) = 0(0.5)+1(0.5) = 0.5. Note that E(X) = −1(0.2)+0(0.5)+1(0.3) =
0.1 so that E(X2) 6= (E(X))2

Now, if X is a discrete random variable and g(x) = x then we know that

E(g(X)) = E(X) =
∑

x∈Im(X)

xp(x)

where Im(X) is the range of X and p(x) is its probability mass function.
This suggests the following result for finding E(g(X)).

Theorem 6.4.1
If X is a discrete random variable with range Im(X) and pmf p(x), then the
expected value of the random variable g(X) is computed by

E(g(X)) =
∑

x∈Im(X)

g(x)p(x)

where g : R −→ R is a real function.

Proof.
Let pY denote the probability mass function of the random variable Y =
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g(X). Then the expected value of Y is

E(g(X)) =E(Y ) =
∑

y∈Im(Y )

ypY (y) =
∑

y∈Im(y)

y
∑

x∈g−1(y)

p(x)

=
∑

y∈Im(Y )

∑
x∈g−1(y)

g(x)p(x) =
∑

x∈Im(X)

g(x)p(x)

Remark 6.4.1
In case D is infinite, the convergence of the sum is absolutely convergent.

Example 6.4.2
Let X be the number of points on the side that comes up when rolling a fair
die. Find the expected value of g(X) = 2X2 + 1.

Solution.
Since each possible outcome has the probability 1

6
, we get

E[g(X)] =
6∑
i=1

(2i2 + 1) · 1

6

=
1

6

(
6 + 2

6∑
i=1

i2

)

=
1

6

(
6 + 2

6(6 + 1)(2 · 6 + 1)

6

)
=

94

3

As a consequence of the above theorem we have the following result.

Corollary 6.4.1
If X is a discrete random variable, then for any constants a and b we have

E(aX + b) = aE(X) + b.

Proof.
Let D denote the range of X. Then

E(aX + b) =
∑
x∈D

(ax+ b)p(x)

=a
∑
x∈D

xp(x) + b
∑
x∈D

p(x)

=aE(X) + b
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A similar argument establishes

E(aX2 + bX + c) = aE(X2) + bE(X) + c.

Example 6.4.3
Let X be a random variable with E(X) = 6 and E(X2) = 45, and let
Y = 20− 2X. Find E(Y ) and E(Y 2)− [E(Y )]2.

Solution.
By the properties of expectation,

E(Y ) =E(20− 2X) = 20− 2E(X) = 20− 12 = 8

E(Y 2) =E(400− 80X + 4X2) = 400− 80E(X) + 4E(X2) = 100

E(Y 2)− (E(Y ))2 = 100− 64 = 36

We conclude this section with the following definition. If g(x) = xn then we
call E(Xn) =

∑
x x

np(x) the nth moment about the origin of X or the
nth raw moment. Thus, E(X) is the first moment of X.

Example 6.4.4
Show that E(X2) = E(X(X − 1)) + E(X).

Solution.
Let D be the range of X. We have

E(X2) =
∑
x∈D

x2p(x)

=
∑
x∈D

(x(x− 1) + x)p(x)

=
∑
x∈D

x(x− 1)p(x) +
∑
x∈D

xp(x) = E(X(X − 1)) + E(X)

Remark 6.4.2
In our definition of expectation the set D can be countably infinite. It is
possible to have a random variable with undefined expectation as seen in the
next example.
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Example 6.4.5
The probability mass distribution of X is given by

p(x) =

(
1

2

)x
, x = 1, 2, 3, · · ·

and 0 otherwise. Show that E(2X) does not exist.

Solution.
We have

E(2X) = (21)
1

21
+ (22)

1

22
+ · · · =

∞∑
n=1

1

The series on the right is divergent so that E(2X) does not exist
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Practice Problems

Problem 6.4.1
Suppose that X is a discrete random variable with probability mass function

p(x) = cx2, x = 1, 2, 3, 4

and 0 otherwise.
(a) Find the value of c.
(b) Find E(X).
(c) Find E(X(X − 1)).

Problem 6.4.2
A random variable X has the following probability mass function defined in
tabular form

x -1 1 2
p(x) 2c 3c 4c

and 0 otherwise.
(a) Find the value of c.
(b) Compute p(−1), p(1), and p(2).
(c) Find E(X) and E(X2).

Problem 6.4.3
Let X be a discrete random variable. Show that E(aX2+bX+c) = aE(X2)+
bE(X) + c.

Problem 6.4.4
Consider a random variable X whose probability mass function is given by

p(x) =



0.1 x = −3
0.2 x = 0
0.3 x = 2.2
0.1 x = 3
0.3 x = 4
0 otherwise.

Let F (x) be the corresponding cdf. Find E(F (X)).
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Problem 6.4.5 ‡
An insurance policy pays 100 per day for up to 3 days of hospitalization and
50 per day for each day of hospitalization thereafter.
The number of days of hospitalization, X, is a discrete random variable with
probability function

p(k) =

{
6−k
15

k = 1, 2, 3, 4, 5
0 otherwise.

Determine the expected payment for hospitalization under this policy.

Problem 6.4.6 ‡
An insurance company sells a one-year automobile policy with a deductible
of 2 . The probability that the insured will incur a loss is 0.05 . If there is
a loss, the probability of a loss of amount N is K

N
, for N = 1, · · · , 5 and K

a constant. These are the only possible loss amounts and no more than one
loss can occur.
Determine the net premium for this policy.

Problem 6.4.7
Consider a random variable X whose probability mass function is given by

p(x) =



0.2 x = −1
0.3 x = 0
0.1 x = 0.2
0.1 x = 0.5
0.3 x = 4
0 otherwise.

Find E(p(x)).

Problem 6.4.8
A box contains 7 marbles of which 3 are red and 4 are blue. Randomly select
two marbles without replacement. If the marbles are of the same color then
you win $2, otherwise you lose $1. Let X be the random variable representing
your net winnings.
(a) Find the probability mass function of X.
(b) Compute E(2X).
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Problem 6.4.9
Three kinds of tickets are sold at a movie theater: children (for $3), adult
(for $8), and seniors (for $5). Let C denote the number of children tickets
sold, A number of adult tickets, and S number of senior tickets. You are
given: E[C] = 45, E[A] = 137, E[S] = 34. Assume the number of tickets
sold is independent.
Any particular movie costs $300 to show, regardless of the audience size.
(a) Write a formula relating C,A, and S to the theater’s profit P for a
particular movie.
(b) Find E(P ).

Problem 6.4.10
A probability distribution of the claim size X for an auto insurance policy is
given in the table below:

Claim size Probability
20 0.15
30 0.10
40 0.05
50 0.20
60 0.10
70 0.10
80 0.30

Find E(X2)− (E(X))2.

Problem 6.4.11
A discrete random variable, X, has probability mass function

p(x) = c(x− 3)2, x = −2,−1, 0, 1, 2

and 0 otherwise.
(a) Find the value of the constant c.
(b) Find E(X2)− (E(X))2.

Problem 6.4.12
An urn contains 10 marbles in which 3 are black. Four of the marbles are
selected at random and are tested for the black color. Define the random
variable X to be the number of the selected marbles that are not black.
(a) Find the probability mass function of X.
(b) Find E(X2)− (E(X))2.



6.4. EXPECTED VALUE OF A FUNCTIONOF ADISCRETE RANDOMVARIABLE215

Problem 6.4.13
Suppose that X is a discrete random variable with probability mass function

p(x) = cx2, x = 1, 2, 3, 4

and 0 otherwise.
(a) Find the value of c.
(b) Find E(X) and E(X(X − 1)).
(c) Find E(X2)− (E(X))2.

Problem 6.4.14
Suppose X is a random variable with E(X) = 4 and E(X2)− (E(X))2 = 9.
Let Y = 4X + 5. Compute E(Y 2)− (E(Y ))2.

Problem 6.4.15
A box contains 3 red and 4 blue marbles. Two marbles are randomly selected
without replacement. If they are the same color then you win $2. If they are
of different colors then you lose $ 1. Let X denote the amount you win.
(a) Find the probability mass function of X.
(b) Compute E(X2)− (E(X))2.

Problem 6.4.16
Let X be a discrete random variable with probability mass function is given
by

x -4 1 4
p(x) 0.3 0.4 0.3

and 0 otherwise. Find E(X2)− (E(X))2.

Problem 6.4.17
Let X be a discrete random variable with probability distribution p(0) =
1− p, p(1) = p, and 0 otherwise, where 0 < p < 1. Find E(X2)− (E(X))2.

Problem 6.4.18
Let X be a discrete random variable with probability mass function

p(r) =

(
n
r

)
pr(1− p)n−r, r = 0, 1, 2, · · · , n

and 0 otherwise, where n is a positive integer. Find E(X), E(X(X−1)) and
E(X2). Hint: Use the Binomial Theorem.
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Problem 6.4.19 ‡
A policy covers a gas furnace for one year. During that year, only one of
three problems can occur:
i) The igniter switch may need to be replaced at a cost of 60. There is a 0.10
probability of this.
ii) The pilot light may need to be replaced at a cost of 200. There is a 0.05
probability of this.
iii) The furnace may need to be replaced at a cost of 3000. There is a 0.01
probability of this.
Calculate the deductible that would produce an expected claim payment of
30.
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6.5 Variance and Standard Deviation of a Dis-

crete Random Variable

In the previous section we learned how to find the expected values of various
functions of random variables. The expected value gives an idea about the
center of the probability mass function. In contrast, the variance and the
standard deviation give an idea about how spread out the probability mass
function is about its expected value.
The expected squared distance between the random variable and its mean is
called the variance of the random variable. The positive square root of the
variance is called the standard deviation of the random variable. If σX
denotes the standard deviation then the variance is given by the formula

Var(X) = σ2
X = E [(X − E(X))2] .

If {x1, x2, · · · , xn} is the range ofX and p(x) is the pmf ofX then by Theorem
6.4.1, we have

Var(X) =
n∑
i=1

(xi − E(X))2p(xi) ≥ 0.

The variance of a random variable is typically calculated using the following
formula:

Var(X) =E[(X − E(X))2]

=E[X2 − 2XE(X) + (E(X))2]

=E(X2)− 2E(X)E(X) + (E(X))2

=E(X2)− (E(X))2

where we have used the result of Problem 6.4.3.

Example 6.5.1
Find the variance of the random variable X with probability distribution
P (X = 1) = P (X = −1) = 1

2
and 0 otherwise.

Solution.
Since E(X) = 1 × 1

2
− 1 × 1

2
= 0 and E(X2) = 12 × 1

2
+ (−1)2 × 1

2
= 1, we

find Var(X) = 1− 0 = 1
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Example 6.5.2
A discrete random variable, X, has probability mass function

p(x) = c(x− 3)2, x = −2,−1, 0, 1, 2

and 0 otherwise.
(a) Find the value of the constant c.
(b) Find the mean and variance of X.

Solution.
(a) We must have

∑2
x=−2 c(x− 3)2 = 1. SOlving for c we find c = 1

55
.

(b) The mean (or expected value) of X is

E(X) =− 2× 25

55
− 1× 16

25
+ 0× 9

55
+ 1× 4

55
+ 2× 1

55

=
−50− 16 + 0 + 4 + 2

55
= −60

55
= −12

11
≈ −1.09

Now

E(X2) =4× 25

55
+ 1× 16

25
+ 0× 9

55
+ 1× 4

55
+ 4× 1

55

=
100 + 16 + 0 + 4 + 4

55
=

124

55

Thus,

Var(X) = E(X2)− (E(X))2 =
124

155
− 144

121
=

644

605
≈ 1.064

A useful identity is given in the following result.

Theorem 6.5.1
If X is a discrete random variable then for any constants a and b we have

Var(aX + b) = a2Var(X).

Proof.
Since E(aX + b) = aE(X) + b, we have

Var(aX + b) =E
[
(aX + b− E(aX + b))2

]
=E[a2(X − E(X))2]

=a2E((X − E(X))2)

=a2Var(X)
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Remark 6.5.1
Note that the units of Var(X) is the square of the units of X. This motivates
the definition of the standard deviation σX =

√
Var(X) which is measured

in the same units as X.

Example 6.5.3
In a recent study, it was found that tickets cost to the Dallas Cowboys football
games averages $80 with a variance of 105 square dollar. What will be the
variance of the cost of tickets if 3% tax is charged on all tickets?

Solution.
Let X be the current ticket price and Y be the new ticket price. Then
Y = 1.03X. Hence,

Var(Y ) = Var(1.03X) = 1.032Var(X) = (1.03)2(105) = 111.3945

Example 6.5.4
In the experiment of rolling one die, let X be the number on the face that
comes up. Find the variance and standard deviation of X.

Solution.
We have

E(X) = (1 + 2 + 3 + 4 + 5 + 6) · 1

6
=

21

6
=

7

2

and

E(X2) = (12 + 22 + 32 + 42 + 52 + 62) · 1

6
=

91

6
.

Thus,

Var(X) =
91

6
− 49

4
=

35

12
.

The standard deviation is

σX =

√
35

12
≈ 1.7078
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Practice Problems

Problem 6.5.1 ‡
A probability distribution of the claim sizes for an auto insurance policy is
given in the table below:

Claim size Probability
20 0.15
30 0.10
40 0.05
50 0.20
60 0.10
70 0.10
80 0.30

What percentage of the claims are within one standard deviation of the mean
claim size?

Problem 6.5.2 ‡
The annual cost of maintaining and repairing a car averages 200 with a
variance of 260. what will be the variance of the annual cost of maintaining
and repairing a car if 20% tax is introduced on all items associated with the
maintenance and repair of cars?

Problem 6.5.3
An urn contains 10 marbles in which 3 are black. Four of the marbles are
selected at random and are tested for the black color. Define the random
variable X to be the number of the selected marbles that are not black.
(a) Find the probability mass function of X.
(b) Find the variance of X.

Problem 6.5.4
Suppose that X is a discrete random variable with probability mass function

p(x) = cx2, x = 1, 2, 3, 4

and 0 otherwise.
(a) Find the value of c.
(b) Find E(X) and E(X(X − 1)).
(c) Find Var(X).
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Problem 6.5.5
A box contains 3 red and 4 blue marbles. Two marbles are randomly selected
without replacement. If they are the same color then you win $2. If they are
of different colors then you lose $ 1. Let X denote the amount you win.
(a) Find the probability mass function of X.
(b) Compute E(X) and E(X2).
(c) Find Var(X).

Problem 6.5.6
Let X be a discrete random variable with probability mass function is given
by

x -4 1 4
p(x) 0.3 0.4 0.3

and 0 otherwise. Find the variance and the standard deviation of X.

Problem 6.5.7
Let X be a random variable with probability distribution p(0) = 1−p, p(1) =
p, and 0 otherwise, where 0 < p < 1. Find E(X) and V ar(X).

Problem 6.5.8
Let X be a discrete random variable with probability mass function

p(r) = P (X = r) = C(n, r)prqn−r, r = 0, 1, 2, · · · , n

and 0 otherwise, where n is a positive integer and p+ q = 1. Find Var(X).

Problem 6.5.9
A random variable X is said to be a Poisson random variable with parameter
λ > 0 if its probability mass function has the form

p(k) = P (X = k) = e−λ
λk

k!
, k = 0, 1, 2, · · ·

and 0 otherwise.
(a) Find E(X), E(X(X − 1)) and E(X2).
(b) Find Var(X).
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Problem 6.5.10
A geometric random variable X with parameter p, 0 < p < 1 has a proba-
bility mass function

p(n) = P (X = n) = p(1− p)n−1, n = 1, 2, · · ·

and 0 otherwise.
(a) Using the geometric series f(x) =

∑∞
n=0 x

n = 1
1−x , find f ′(1 − p) and

f ′′(1− p).
(b) Find E(X), E(X(X − 1)), and E(X2).
(c) Find Var(X).

Problem 6.5.11
The cumulative distribution function of X is given by

F (x) = P (X ≤ x) =


0 x < −4

0.3 −4 ≤ x < 1
0.7 1 ≤ x < 4
1 x ≥ 4.

(a) Find the probability mass function.
(b) Find the variance and the standard deviation of X.

Problem 6.5.12
The probability mass function of a discrete random variable X is given by

p(x) =



0 x < 4
0.1 x = 4
0.3 x = 5
0.3 x = 6
0.2 x = 8
0.1 x = 9
0 x > 9.

Find Var(X).

Problem 6.5.13
Let X be the random variable of the previous problem. Define Y = 5− 2X.
Find Var(Y ).
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Problem 6.5.14
A uniform discrete random variable X with parameter n is a random
variable with probability mass function given by

p(x) =
1

n
, x = 1, 2, · · · , n

and 0 otherwise. Find E(X) and Var(X). An example of such a random
variable is the roll of a fair die where X denotes the face of the die.

Problem 6.5.15
In the experiment of rolling one die, let X be the number on the face that
comes up. Find the mean and the variance of X using the previous problem.

Problem 6.5.16
A uniform discrete random variable X with parameters a and b, where
a, b ∈ N, a < b, is a random variable with probability mass function given
by

p(x) =
1

b− a+ 1
, x = a, a+ 1, · · · , b

and 0 otherwise, where b − a + 1 is the number of values that X may take.
Find E(X), E(X2) and Var(X).

Problem 6.5.17
Let X be a discrete random variable and g : R→ R be a real function. Show
that Var(ag(X) + b) = a2Var(g(X)) where a and b are constants.

Problem 6.5.18
Let X be a random variable. Define Z = X−E(X)

σX
. Find E(Z) and Var(Z).

Problem 6.5.19 ‡
An airport purchases an insurance policy to offset costs associated with ex-
cessive amounts of snowfall. For every full ten inches of snow in excess of
40 inches during the winter season, the insurer pays the airport 300 up to a
policy maximum of 700. The following table shows the probability function
for the random variable X of annual (winter season) snowfall, in inches, at
the airport.

Inches [0,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,∞)

Probability 0.06 0.18 0.26 0.22 0.14 0.06 0.04 0.04 0.00
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Calculate the standard deviation of the amount paid under the policy.

Problem 6.5.20 ‡
An insurance company has an equal number of claims in each of three terri-
tories. In each territory, only three claim amounts are possible: 100, 500, and
1000. Based on the company’s data, the probabilities of each claim amount
are:

Claim Amount
100 500 1000

Territory 1 0.90 0.08 0.02
Territory 2 0.80 0.11 0.09
Territory 3 0.70 0.20 0.10

Calculate the standard deviation of a randomly selected claim amount.



Chapter 7

Commonly Used Discrete
Random Variables

In this chapter, we consider the discrete random variables listed in the exam’s
syllabus: uniform, binomial, negative binomial, geometric, hyper-geometric,
and Poisson.

225
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7.1 Uniform Discrete Random Variable

Uniform discrete random variables are the simplest discrete random vari-
ables. Let X be a discrete random variable defined on a sample space S
such that Im(X) = {x1, x2, · · · , xn}. Suppose that P (X = xi) = α for all
i = 1, 2, · · · , n. This and the fact that

∑n
i=1 P (X = xi) = 1 imply that

α = 1
n
. Hence, the the probability mass function of X is

p(xi) =
1

n
, i = 1, 2, · · · , n

and 0 otherwise. X is called a uniform discrete random variable. For
example, consider the experiment of rolling a dice. Let X denote the number
of dots on the face that comes up. Then the range of X is the set Im(X) =
{1, 2, 3, 4, 5, 6}. Moreover, p(x) = 1

6
for x ∈ Im(X).

The expected value of X is

E(X) =
n∑
i=1

xip(xi) =
n∑
i=1

xi
n

=
x1 + x2 + · · ·+ xn

n

and the second moment of X is

E(X2) =
n∑
i=1

x2
i p(xi) =

n∑
i=1

x2
i

n
=
x2

1 + x2
2 + · · ·+ x2

n

n
.

The variance of X is

Var(X) =
x2

1 + x2
2 + · · ·+ x2

n

n
− (x1 + x2 + · · ·+ xn)2

n2
.

Example 7.1.1
Let a and h be real numbers and n a positive integer. Let X be a uniform
discrete random variable that takes the integer values a, a+h, a+2h, · · · , a+
(n − 1)h. We assume that all these values are equally likely so that the
probability mass function of X is

p(x) =
1

n
, x = a, a+ h, a+ 2h, · · · , a+ (n− 1)h

and 0 otherwise. Find E(X), E(X2), and Var(X).
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Solution.
The expected value of X is

E(X) =

∑n−1
k=0(a+ kh)

n
=
na+ h

∑n−1
k=0 k

n

=a+
h

n
· n(n− 1)

2

=a+
h(n− 1)

2
.

The second moment of X is

E(X2) =
n−1∑
k=0

(a+ kh)2p(a+ kh)

=
1

n

n−1∑
k=0

(a2 + 2akh+ k2h2)

=
1

n

[
na2 + 2ah

n−1∑
k=0

k + h2

n−1∑
k=0

k2

]

=
1

n

[
na2 + 2ah

n(n− 1)

2
+ h2n(n− 1)(2n− 1)

6

]
=a2 + ah(n− 1) + h2 (n− 1)(2n− 1)

6

and the variance of X is

Var(X) =a2 + ah(n− 1) + h2 (n− 1)(2n− 1)

6
−
(
a+

1

2
h(n− 1)

)2

=a2 + ah(n− 1) + h2 (n− 1)(2n− 1)

6
− a2 − ah(n− 1)− 1

4
h2(n− 1)2

=h2(n− 1)

[
2n− 1

6
− (n− 1)

4

]
=h2(n− 1)

[
4n− 2

12
− 3n− 3

12

]
=
h2(n2 − 1)

12

Example 7.1.2
Let a and b be two positive integers with a < b. Let X be the uniform discrete
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random variable that takes the integer values a, a+1, a+2, · · · , b. We assume
that all these values are equally likely. Find E(X), E(X2), and Var(X).

Solution.
Note that b = a + (b − a). Using the previous example with h = 1 and
n = b− a+ 1, we find

E(X) =a+
b− a

2
=
a+ b

2

E(X2) =a2 + a(b− a) +
(b− a)(2b− 2a+ 1)

6

and the variance of X is

Var(X) =
(b− a+ 1)2 − 1

12
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Practice Problems

Problem 7.1.1
Roll two dice and let X be the sum of the two dice. Is X a uniform discrete
random variable?

Problem 7.1.2
A roulette wheel consists of the numbers {0, 1, · · · , 36}. Roll the wheel and
let X be the number that lands. Is X uniform discrete random variable?

Problem 7.1.3
Sketch the probability histogram of the uniform discrete random variable X
on the values x = 1, 2, · · · , 6.

Problem 7.1.4
Find the mean and the variance of the uniform discrete random variable X
whose range is Im(X) = {3, 4, 5, 6, 7, 8, 9, 10}.

Problem 7.1.5
Let X be a uniform discrete random variable on the values x = a, a+1, · · · , b.
Define the function F (x) = P (X ≤ x). Find a formula of F (x) for x =
a, a+ 1, · · · , b.

Problem 7.1.6
Let X be a uniform discrete random variable with parameters x = 1, 2, · · · , n.
Find E(X) and Var(X).

Problem 7.1.7
Suppose that X is a discrete random variable that is uniformly distributed
on the odd integers x = 1, 3, 5, ..., 21. Find E(X) and Var(X).

Problem 7.1.8
Let X be a uniform discrete random variable on the even integers x =
0, 2, 4, · · · , 22. Find P (X = 18).

Problem 7.1.9
LetX be a uniform discrete random variable on the values x = 0, 1, 2, 3, 4, 5, 6.
Find P (X < E(X)).
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Problem 7.1.10
Let X be a discrete uniform distribution on the values x = a, a + 1, · · · , b.
Find a formula for MX(t) = E(etX).

Problem 7.1.11
The first digit of a product’s serial number is likely to be any one of the
digits 0 to 9. If one product is selected randomly and X is the first digit of
serial number, then X has a discrete uniform distribution. Find E(X) and
Var(X).

Problem 7.1.12
Let X be a discrete uniform distribution on the values x = a, a + 1, · · · , b
such that E(X) = 6.5 and Var(X) = 5.25. Find the values of a and b.

Problem 7.1.13
Let X be a discrete uniform distribution on the values x = −4,−3, · · · , 4.
Find the probability mass function p(x) and the cumulative distribution func-
tion F (x).

Problem 7.1.14
Let X be a discrete uniform random variable on the values x = −2,−1, 0, 1, 2.
Let Y = |X|. Find pY (y).

Problem 7.1.15
Let X be a discrete uniform distribution on the values x = 1, 2, · · · , n. Find
the cumulative distribution function F (x).

Problem 7.1.16
Let X be a discrete uniform distribution on the set {1, 2, · · · , 10}. Let Y =
5X + 3. Find E(Y ) and Var(Y ).

Problem 7.1.17
LetX and Y be two discrete uniform random variables on the set {1, 2, · · · , n}.
Suppose that X and Y satisfy the condition P (X = i, Y = j) = P (X =
i)P (Y = j) where i, j ∈ {1, 2, · · · , n}. Show that the random variable
Z = X + Y is not uniform.

Problem 7.1.18
Let X be uniformly distributed on the set {−3,−1, 1, 3}. Find E(X2).
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Problem 7.1.19
Let X be uniformly distributed on the set {−3,−1, 1, 3}. Find E[(2X+10)2].

Problem 7.1.20 ‡
A theme park conducts a study of families that visit the park during a year.
The fraction of such families of size m is 8−m

28
, m = 1, 2, 3, 4, 5, 6, and 7.

For a family of size m that visits the park, the number of members of the
family that ride the roller coaster follows a discrete uniform distribution on
the set {1, · · · ,m}.
Calculate the probability that a family visiting the park has exactly six mem-
bers, given that exactly five members of the family ride the roller coaster
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7.2 Binomial Random Variable

A Bernoulli trial is an experiment with exactly two outcomes: Success and
failure. The probability of a success is denoted by p and that of a failure
by q. Moreover, p and q are related by the formula

p+ q = 1, 0 < p, q < 1.

Example 7.2.1
Consider the experiment of rolling a fair die where a success is the face that
comes up shows a number divisible by 2. Find p and q.

Solutions.
The numbers on the die that are divisible by 2 are 2,4, and 6. Thus, p = 3

6
= 1

2

and q = 1− p = 1− 1
2

= 1
2

A binomial experiment1 is a finite sequence of independent2 Bernoulli
trials.
Consider a binomial experiment with n independent Bernoulli trials. An
outcome in this experiment has the form S1S2 · · ·Sn where Si = S (a suc-
cess) or Si = F (a failure). Let X denotes the number of successes in each
outcome. For example, if n = 3 then X(SFS) = 2 whereas X(FFS) = 1
and X(FFF ) = 0. Then X is said to be a binomial random variable
with parameters (n, p). If n = 1 then X is said to be a Bernoulli random
variable.
The central question of a binomial experiment is to find the probability of r
successes out of n independent trials, where r is a non-negative integer. In
the next paragraph well see how to compute such a probability.

Example 7.2.2
We roll a fair die 5 times. A success is when the face that comes up shows a
prime number. We are interested in the probability of obtaining three prime
numbers. What are p, q, n, and r?

1The prefix bi in Binomial experiment refers to the fact that there are two possible
outcomes (e.g., head or tail, true or false, working or defective) to each trial.

2That is, what happens to one trial does not affect the probability of a success in any
other trial.
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Solutions.
This is a binomial experiment with 5 trials. The prime numbers on the die
are 2, 3, 5 so that p = q = 1

2
. Also, we have n = 5 and r = 3

Binomial Distribution Function
To find the probability of r successes out of n independent trials, where r
is a non-negative integer, we proceed as follows. Let Ar be the event whose
outcomes are those sequences with exactly r successes and n − r failures.
But to position r slots of successes in n slots, there are nCr ways. That is,
#(Ar) =n Cr. Hence, P (Ar) is a sum of terms of the form P(S1S2 · · ·Sn)
where Si = S for r values of i and Si = F for the remaining n− r values.
Now, using independence, we can write

P (S1S2 · · ·Sn) = P (S1)P (S2) · · ·P (Sn) = prqn−r.

Thus,

P (X = r) = P (Ar) =n Crp
rqn−r.

To illustrate, suppose n = 3 and r = 2. Then A2 = {SSF, SFS, FSS} and
#(A2) =3 C2. Moreover,

P (A2) = P (SSF ) + P (SFS) + P (FSS).

Using independence, we have P (SSF ) = P (S)P (S)P (F ) = p2q = P (SFS) =
P (FSS). Thus,

P (X = 2) = P (A2) =3 C2p
2q.

It follows, that the binomial mass function of X is given by

p(r) = P (X = r) =n Crp
rqn−r

and 0 otherwise. Note that by letting a = p and b = 1 − p in the binomial
formula we find

n∑
k=0

p(k) =
n∑
k=0

nCkp
k(1− p)n−k = (p+ 1− p)n = 1.
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The histogram of the binomial distribution is given in Figure 7.2.1.

Figure 7.2.1

The cumulative distribution function is given by

F (x) = P (X ≤ x) =


0, x < 0

bxc∑
k=0

nCkp
k(1− p)n−k, 0 ≤ x < n

1, x ≥ n

where bkc is the floor function3.

Example 7.2.3
Suppose that in a box of 100 computer chips, the probability of a chip to be
defective is 3%. Inspection process for defective chips consists of selecting
with replacement 5 randomly chosen chips in the box and to send the box
for shipment if none of the five chips is defective. Write down the random
variable, the corresponding probability distribution and then determine the
probability that the box described here will be allowed to be shipped.

Solution.
Let X be the number of defective chips in the box. Then X is a binomial
random variable with probability distribution

p(x) = P (X = x) = 5Cx(0.03)x(0.97)5−x, x = 0, 1, 2, 3, 4, 5

and 0 otherwise. Now,

P (box allowed to be shipped) = P (X = 0) = (0.97)5 = 0.859

3bxc = the largest integer less than or equal to x.
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Example 7.2.4
Suppose that 40% of the voters in a city are in favor of a ban of smoking in
public buildings. Suppose 5 voters are to be randomly sampled. Find the
probability that
(a) 2 favor the ban.
(b) less than 4 favor the ban.
(c) at least 1 favor the ban.

Solution.
(a) P (X = 2) = 5C2(0.4)2(0.6)3 ≈ 0.3456.
(b) P (X < 4) = p(0)+p(1)+p(2)+p(3) = 5C0(0.4)0(0.6)5 +5C1(0.4)1(0.6)4 +

5C2(0.4)2(0.6)3 + 5C3(0.4)3(0.6)2 ≈ 0.913.
(c) P (X ≥ 1) = 1− P (X < 1) = 1− 5C0(0.4)0(0.6)5 ≈ 0.922

Example 7.2.5
A student takes a test consisting of 10 true-false questions.
(a) What is the probability that the student answers at least six questions
correctly?
(b) What is the probability that the student answers at most two questions
correctly?

Solution.
(a) Let X be the number of correct responses. Then X is a binomial random
variable with parameters n = 10 and p = 1

2
. So, the desired probability is

P (X ≥ 6) =P (X = 6) + P (X = 7) + P (X = 8) + P (X = 9) + P (X = 10)

=
10∑
x=6

10Cx(0.5)x(0.5)10−x ≈ 0.3769.

(b) We have

P (X ≤ 2) =
2∑

x=0

10Cx(0.5)x(0.5)10−x ≈ 0.0547

Example 7.2.6
A study shows that 30 percent of people aged 50-60 in a certain town have
high blood pressure. What is the probability that in a sample of fourteen
individuals aged between 50 and 60 tested for high blood pressure, more than
six will have high blood pressure?
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Solution.
Let X be the number of people in the town aged 50-60 with high blood
pressure. Then X is a binomial random variable with n = 14 and p = 0.3.
Thus,

P (X > 6) =1− P (X ≤ 6)

=1−
6∑
i=0

14Ci(0.3)i(0.7)14−i

≈0.0933
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Practice Problems

Problem 7.2.1
Mark is a car salesman with a 10% chance of persuading a randomly selected
customer to buy a car. Out of 8 customers that were serviced by Mark, what
is the probability that exactly one agreed to buy a car?

Problem 7.2.2
The probability of a newly born child to get a genetic disease is 0.25. If
a couple carry the disease and wish to have four children then what is the
probability that 2of the children will get the disease?

Problem 7.2.3
A skyscraper has three elevators. Each elevator has a 50% chance of being
down, independently of the others. Let X be the number of elevators which
are down at a particular time. Find the probability mass function (pmf) of
X.

Problem 7.2.4 ‡
A hospital receives 1/5 of its flu vaccine shipments from Company X and the
remainder of its shipments from other companies. Each shipment contains a
very large number of vaccine vials.
For Company X shipments, 10% of the vials are ineffective. For every other
company, 2% of the vials are ineffective. The hospital tests 30 randomly
selected vials from a shipment and finds that one vial is ineffective.
What is the probability that this shipment came from Company X?

Problem 7.2.5 ‡
A company establishes a fund of 120 from which it wants to pay an amount,
C, to any of its 20 employees who achieve a high performance level during the
coming year. Each employee has a 2% chance of achieving a high performance
level during the coming year, independent of any other employee.
Determine the maximum value of C for which the probability is less than 1%
that the fund will be inadequate to cover all payments for high performance.

Problem 7.2.6 ‡
A company prices its hurricane insurance using the following assumptions:
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(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05 .
(iii) The number of hurricanes in any calendar year is independent of the

number of hurricanes in any other calendar year.

Using the company’s assumptions, calculate the probability that there are
fewer than 3 hurricanes in a 20-year period.

Problem 7.2.7
The probability of winning a game is 1

300
. If you play this game 200 times,

what is the probability that you win at least twice?

Problem 7.2.8
Suppose a local bus service accepted 12 reservations for a commuter bus with
10 seats. Seven of the ten reservations went to regular commuters who will
show up for sure. The other 5 passengers will show up with a 50% chance,
independently of each other.
(a) Find the probability that the bus will be overbooked.
(b) Find the probability that there will be empty seats.

Problem 7.2.9
Suppose that 3% of flashlight batteries produced by a certain machine are
defective. The batteries are put into packages of 20 batteries for distribution
to retailers.
What is the probability that a randomly selected package of batteries will
contain at least 2 defective batteries?

Problem 7.2.10
The probability of late arrival of flight 701 in any day is 0.20 and is indepen-
dent of the late arrival in any other day. The flight can be late only once per
day. Calculate the probability that the flight is late two or more times in ten
days.

Problem 7.2.11
Ashley finds that she beats Carla in tennis 70% of the time. The two play
3 times in a particular month. Assuming independence of outcomes, what is
the probability Ashley wins at least 2 of the 3 matches?
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Problem 7.2.12
The probability of a computer chip to be defective is 0.05. Consider a package
of 6 computer chips.
(a) What is the probability one chip will be defective?
(b) What is the probability at least one chip will be defective?
(c) What is the probability that more than one chip will be defective, given
at least one is defective?

Problem 7.2.13
In a promotion, a popcorn company inserts a coupon for a free Red Box
movie in 10% of boxes produced. Suppose that we buy 10 boxes of popcorn,
what is the probability that we get at least 2 coupons?

Problem 7.2.14
A quiz for a Math class consists of 5 questions. The questions are multiple-
choice with 4 possible answers each in which one is the correct answer. A
student randomly guesses on all 5 questions.
What is the probability of that student getting a passing grade (Assume 60%
correct is passing)?

Problem 7.2.15
Let X be a discrete random variable with probability mass function

p(r) = P (X = r) =n Crp
rqn−r, r = 0, 1, 2, · · · , n

and 0 otherwise, where n is a positive integer and p+ q = 1. Find E(X) and
E(X(X − 1)).

Problem 7.2.16
Let X be a discrete random variable with probability mass function

p(r) = P (X = r) =n Crp
rqn−r, r = 0, 1, 2, · · · , n

and 0 otherwise, where n is a positive integer and p+ q = 1. Find Var(X).

Problem 7.2.17
When randomly guessing on a multiple choice test with 8 questions, where
each question has 4 options, what is the expected number of questions a
student will get correct without studying for the exam?
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Problem 7.2.18
The probability of a student passing an exam is 0.2. Ten students took the
exam.
(a) What is the probability that at least two students passed the exam?
(b) What is the expected number of students who passed the exam?

Problem 7.2.19
Let X be a Binomial random variable with parameters (n, p). Show that

p(k) =
p

1− p
n− k + 1

k
p(k − 1), k = 1, 2, 3, · · · , n.

Problem 7.2.20 ‡
An actuary has done an analysis of all policies that cover two cars. 70% of
the policies are of type A for both cars, and 30% of the policies are of type B
for both cars. The number of claims on different cars across all policies are
mutually independent. The distributions of the number of claims on a car
are given in the following table.

Number of Claims Type A Type B
0 40% 25%
1 30% 25%
2 20% 25%
3 10% 25%

Four policies are selected at random. Calculate the probability that exactly
one of the four policies has the same number of claims on both covered cars.

Problem 7.2.21 ‡
A factory tests 100 light bulbs for defects. The probability that a bulb
is defective is 0.02. The occurrences of defects among the light bulbs are
mutually independent events. Calculate the probability that exactly two are
defective given that the number of defective bulbs is two or fewer.



7.3. THE EXPECTEDVALUE ANDVARIANCE OF THE BINOMIAL DISTRIBUTION241

7.3 The Expected Value and Variance of the

Binomial Distribution

In this section, we find the expected value and the variance of a binomial
random variable X with parameters (n, p).

The expected value is found as follows.

E(X) =
n∑
k=1

k
n!

k!(n− k)!
pk(1− p)n−k = np

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

=np
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj(1− p)n−1−j = np(p+ 1− p)n−1 = np

where we used the Binomial Theorem and the substitution j = k − 1. Also,
we have

E(X(X − 1)) =
n∑
k=0

k(k − 1)
n!

k!(n− k)!
pk(1− p)n−k

=n(n− 1)p2

n∑
k=2

(n− 2)!

(k − 2)!(n− k)!
pk−2(1− p)n−k

=n(n− 1)p2

n−2∑
j=0

(n− 2)!

j!(n− 2− j)!
pj(1− p)n−2−j

=n(n− 1)p2(p+ 1− p)n−2 = n(n− 1)p2.

This implies E(X2) = E(X(X−1))+E(X) = n(n−1)p2 +np. The variance
of X is then

Var(X) = E(X2)− (E(X))2 = n(n− 1)p2 + np− n2p2 = np(1− p).

Example 7.3.1
The probability of a student passing an exam is 0.2. Ten students took the
exam.
(a) What is the probability that at least two students passed the exam?
(b) What is the expected number of students who passed the exam?
(c) How many students must take the exam to make the probability at least
0.99 that a student will pass the exam?
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Solution.
Let X be the number of students who passed the exam. X has a binomial
distribution with n = 10 and p = 0.2.
(a) The event that at least two students passed the exam is {X ≥ 2}. So,

P (X ≥ 2) =1− P (X < 2) = 1− p(0)− p(1)

=1− 10C0(0.2)0(0.8)10 − 10C1(0.2)1(0.8)9

≈0.6242.

(b) E(X) = np = 10 · (0.2) = 2.
(c) Suppose that n students are needed to make the probability at least 0.99
that a student will pass the exam. Let A denote the event that a student
pass the exam. Then, Ac means that all the students fail the exam. We have,

P (A) = 1− P (Ac) = 1− (0.8)n ≥ 0.99.

Solving the inequality, we find that n ≥ ln (0.01)
ln (0.8)

≈ 20.6. So, the required
number of students is 21

Example 7.3.2
Let X be a binomial random variable with parameters (12, 0.5). Find the
variance and the standard deviation of X.

Solution.
We have n = 12 and p = 0.5. Thus, Var(X) = np(1 − p) = 6(1 − 0.5) = 3.
The standard deviation is σX =

√
3

Example 7.3.3
A multiple choice exam consists of 25 questions each with five choices with
once choice is correct. Randomly select an answer for each question. Let X
be the random variable representing the total number of correctly answered
questions.
(a) What is the probability that you get exactly 16, or 17, or 18 of the
questions correct?
(b) What is the probability that you get at least one of the questions correct.
(c) Find the expected value of the number of correct answers.

Solution.
(a) Let X be the number of correct answers. We have

P (X = 16 or X = 17 or X = 18) =25C16(0.2)16(0.8)9 + 25C17(0.2)17(0.8)8

+25C18(0.2)18(0.8)7 = 2.06× 10−6.
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(b) P (X ≥ 1) = 1− P (X = 0) = 1− 25C0(0.8)25 = 0.9962.
(c) We have E(X) = 25(0.2) = 5

A useful fact about the binomial distribution is a recursion formula for cal-
culating the probability mass function.

Theorem 7.3.1
Let X be a binomial random variable with parameters (n, p). Then for k =
1, 2, 3, · · · , n

p(k) =
p

1− p
n− k + 1

k
p(k − 1).

Proof.
We have

p(k)

p(k − 1)
=

nCkp
k(1− p)n−k

nCk−1pk−1(1− p)n−k+1

=

n!
k!(n−k)!

pk(1− p)n−k
n!

(k−1)!(n−k+1)!
pk−1(1− p)n−k+1

=
(n− k + 1)p

k(1− p)
=

p

1− p
n− k + 1

k

Binomial Random Variable Histogram
The histogram of a binomial random variable is constructed by putting the r
values on the horizontal axis and p(r) values on the vertical axis. The width
of the bar is 1 and its height is p(r). The bars are centered at the r values.

Example 7.3.4
Construct the binomial mass function for the total number of heads in four
flips of a balanced coin. Make a histogram.

Solution.
The binomial distribution is given by the following table

r 0 1 2 3 4
p(r) 1

16
4
16

6
16

4
16

1
16
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and 0 otherwise. The corresponding histogram is shown in Figure 7.3.1

Figure 7.3.1

The following theorem sheds information about the histogram of a binomial
distribution.

Theorem 7.3.2
Let X be a binomial random variable with parameters (n, p). Then p(k) has
a unique global maximum at k = b(n+ 1)pc if (n+ 1)p is not an integer. If
(n+ 1)p is an integer then p has maxima at (n+ 1)p and (n+ 1)p− 1.

Proof.
From Theorem 7.3.1, we have

p(k)

p(k − 1)
=

p

1− p
n− k + 1

k
= 1 +

(n+ 1)p− k
k(1− p)

for k ∈ {1, 2, · · · , n}. Accordingly, p(k) > p(k − 1) when k < (n + 1)p and
p(k) < p(k − 1) when k > (n + 1)p. Suppose that (n + 1)p is not an integer
and let m = b(n+ 1)pc. Then m ∈ {1, 2, · · · , n} and m < (n+ 1)p < m+ 1.
If k < m < (n+ 1)p then p(k) is increasing. If k > m then k + 1 > (n+ 1)p
and therefore p(k + 1) < p(k). That is, p(k) is decreasing. Hence, p(k) has a
global maximum at m.
Now, if (n + 1)p = m is an integer then p(m) = p(m − 1). In this case, the
histogram has two maxima at (n+ 1)p and (n+ 1)p− 1 as shown in Figure
7.3.2
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Figure 7.3.2
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Practice Problems

Problem 7.3.1
If X is the number of “6”’s that turn up when 72 ordinary dice are indepen-
dently thrown, find the expected value of X2.

Problem 7.3.2 ‡
A tour operator has a bus that can accommodate 20 tourists. The operator
knows that tourists may not show up, so he sells 21 tickets. The probability
that an individual tourist will not show up is 0.02, independent of all other
tourists.
Each ticket costs 50, and is non-refundable if a tourist fails to show up. If
a tourist shows up and a seat is not available, the tour operator has to pay
100 (ticket cost + 50 penalty) to the tourist.
What is the expected revenue of the tour operator?

Problem 7.3.3
Let Y be a binomial random variable with parameters (n, 0.2). Define the
random variable

S = 100 + 50Y − 10Y 2.

Give the expected value of S when n = 1, 2, and 3.

Problem 7.3.4
A recent study shows that the probability of a marriage will end in a divorce
within 10 years is 0.4. Let X be the number of divorces within 10 years.
Find the mean and the standard deviation for the binomial distribution X
involving 1000 marriages.

Problem 7.3.5
The probability of a person contracting the flu on exposure is 0.4. Let a
success be a person contracting the flu. Consider the Binomial distribution
for a group of 5 people that has been exposed.
(a) Find the probability mass function.
(b) Compute p(x) for x = 0, 1, 2, 3, 4, 5.
(c) Draw a histogram for the distribution.
(d) Find the mean and the standard deviation.
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Problem 7.3.6
A fair die is rolled twice. A success is when the face that comes up shows 3
or 6.
(a) Write the function defining the distribution.
(b) Construct a table for the distribution.
(c) Construct a histogram for the distribution.
(d) Find the mean and the standard deviation for the distribution.

Problem 7.3.7
A motorist makes three driving errors, each independently resulting in an
accident with probability 0.25. Calculate the expected value and the variance
of the number of accidents.

Problem 7.3.8
A student takes a multiple-choice test with 40 questions. The probability
that the student answers a given question correctly is 0.5, independent of
all other questions. Calculate the expected value and the variance of the
number of correct answers.

Problem 7.3.9 ‡
An electronic system contains three cooling components that operate inde-
pendently. The probability of each component’s failure is 0.05. The system
will overheat if and only if at least two components fail.
(a) Find the expected value and the variance of the number of failed compo-
nents.
(b) Calculate the probability that the system will overheat.

Problem 7.3.10
In a group of 15 health insurance policyholders diagnosed with cancer, each
policyholder has probability 0.90 of receiving radiation and probability 0.40
of receiving chemotherapy. Radiation and chemotherapy treatments are in-
dependent events for each policyholder.
(a) Find the expected value and the variance of the number of policyholders
who undergo radiation.
(b) Find the expected value and the variance of the number of policyholders
who undergo chemotherapy.
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Problem 7.3.11
Let X be a binomial random variable with parameters (n, p). Find a formula
for the function MX(t) = E(etX) where t is a real number.

Problem 7.3.12
Let MX(t) be as defined in Problem 7.3.11. Show that E(X) = M ′

X(0).

Problem 7.3.13
Let MX(t) be as defined in Problem 7.3.11. Show that E(X2) = M ′′

X(0).

Problem 7.3.14
Let X be a binomial random variable with n = 10 and p = 0.4. Find
P [E(X)− σX ≤ X ≤ E(X) + σX ].

Problem 7.3.15
A laser production facility is known to have a 75% yield; that is, 75% of the
lasers manufactured by the facility pass the quality test. Suppose that today
the facility is scheduled to produce 15 lasers.
(a) What is the expected number of lasers to pass the test?
(b) What is the variance?

Problem 7.3.16
A company establishes a fund of 120 from which it wants to pay an amount,
C, to any of its 100 employees who achieve a high performance level during the
coming year. Each employee has a 2% chance of achieving a high performance
level during the coming year. The events of different employees achieving a
high performance level during the coming year are mutually independent.
What is the expected number of employees with high performance level?

Problem 7.3.17
A company prices its hurricane insurance using the following assumptions:

(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05 .
(iii) The number of hurricanes in any calendar year is independent of the

number of hurricanes in any other calendar year.

Using the company’s assumptions, calculate the expected number of hurri-
canes in a 20-year period.



7.3. THE EXPECTEDVALUE ANDVARIANCE OF THE BINOMIAL DISTRIBUTION249

Problem 7.3.18
A study is being conducted in which the health of a group of ten policyhold-
ers is being monitored over a one-year period of time. Individual participants
in the study drop out before the end of the study with probability 0.2 (in-
dependently of the other participants). What is the expected number of
participants who complete the study?

Problem 7.3.19
A company takes out an insurance policy to cover accidents that occur at its
manufacturing plant. The probability that one or more accidents will occur
during any given month is 0.60. The numbers of accidents that occur in
different months are mutually independent. In a period of five months, what
is the expected number of months with no accidents?

Problem 7.3.20
A certain type of cables is breakable with a probability 0.1. What is the
expected number of breakable cables in a random sample of 400 cables?
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7.4 Poisson Random Variable

The Poisson random variable is most commonly used to model the number
of random occurrences of some phenomenon in a fixed interval of space or
time. For example, the number of phone calls received by a telephone oper-
ator between 9:00 AM and 11:00 AM or the number of cars passing using a
stretch of road during a day.

Derivation of the Poisson Distribution Formula
A customer service center receives inquiries from customers by phone only.
We are interested in finding the probability of a certain number of phone
calls received in a time interval [0, ω]. Let X denote the number of phone
calls received in the time interval [0, ω]. Then Im(X) = {0, 1, 2, · · · }. Thus,
X is a discrete random variable.
Now, divide the interval [0, ω] into n non-overlapping small sub-intervals
I1, I2, · · · , In each of length ω

n
. We will assume the following:

(i) the probability of more than one phone call in any sub-interval is zero;
(ii) the probability p of exactly one phone call in a sub-interval is constant
for all sub-intervals and is proportional to its length with constant of pro-
portionality λ > 0. That is, p = ω

n
λ.

The sub-intervals can be looked at as Bernoulli trials with a success if an
interval has one phone call. Note that the number of phone calls is indepen-
dent since the sub-intervals are non-overlapping, i.e., the sub-intervals are
independent Bernoulli trials.
Let Xn be the number of sub-intervals in which one phone call is received,
i.e., the number of successes. Then Xn is a binomial random variable with
parameters (n, p). Note that in the time interval [0, ω], X is fixed whereas
Xn changes with n. Clearly,

P (X = k) = lim
n→∞

P (Xn = k).

Hence,

P (X = k) = lim
n→∞ nCkp

k(1− p)n−k = lim
n→∞

n!

k!(n− k)!

(λω)k

nk

(
1− λω

n

)n−k
= lim

n→∞

n

n
· n− 1

n
· · · n− k + 1

n

(λω)k

k!

(
1− λω

n

)n(
1− λω

n

)−k
=e−λω

(λω)k

k!
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where we use the calculus result

ex = lim
n→∞

(
1 +

x

n

)n
.

A random variable X is said to be a Poisson random variable with parameter
λ > 0 if its probability mass function has the form

p(k) = P (X = k) = e−λω
(λω)k

k!
, ω > 0, k = 0, 1, 2, · · · (7.4.1)

and 0 otherwise. Note that p(k) ≥ 0 and

∞∑
k=0

p(k) = e−λω
∞∑
k=0

(λω)k

k!
= e−λωeλω = 1

so that p(k) as defined above is a valid probability mass function.

Remark 7.4.1
A Poisson random variable can take on any positive integer value. In contrast,
the binomial distribution always has a finite upper limit, i.e., the number of
Bernoulli trials of the binomial experiment.

Interpretation of λ
If X has a Poisson distribution, its expected value is found as follows.

E(X) =
∞∑
k=1

ke−λω
(λω)k

k!
= λωe−λω

∞∑
k=1

(λω)k−1

(k − 1)!

=λωe−λωeλω = λω.

Thus, λ = E(X)
ω

is the average number of successes per unit time or space.

Example 7.4.1
The number of car accidents on a certain section of highway I-40 averages
2.1 per day. Assuming that the number of accidents in a given day follows a
Poisson distribution, what is the probability that 4 accidents will occur on a
given day?
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Solution.
Let X be the number of accidents on a given day. Then X follows a Poisson
distribution with λ = 2.1. Letting ω = 1 in Equation (7.4.1), the probability
that 4 accidents will occur on a given day is given by

P (X = 4) = e−2.1 (2.1)4

4!
≈ 0.0992

Example 7.4.2
The number of people entering a movie theater averages one every two min-
utes. Assuming that a Poisson distribution is appropriate.
(a) What is the probability that no people enter between 12:00 and 12:05?
(b) Find the probability that at least 4 people enter during [12:00,12:05].

Solution.
(a) Let X be the number of people that enter between 12:00 and 12:05. We
model X as a Poisson random variable with parameter λ, the average number
of people that arrive per minute. But, if 1 person arrives every 2 minutes
then on average 0.5 person arrives per minute. Thus, λ = 0.5. Letting ω = 5
in Equation (7.4.1), we find

P (X = 0) = e−2.5 2.50

0!
= e−2.5 ≈ 0.0821.

(b) We are asked to find P (X ≥ 4). We have,

P (X ≥ 4) =1− P (X ≤ 3)

=1− P (X = 0)− P (X = 1)− P (X = 2)− P (X = 3)

=1− e−2.5 2.50

0!
− e−2.5 2.51

1!
− e−2.5 2.52

2!
− e−2.5 2.53

3!
≈0.2424

Example 7.4.3
The number of weekly life insurance sold by an insurance agent averages 3 per
week. Assuming that this number follows a Poisson distribution, calculate
the probability that in a given week the agent will sell
(a) some policies
(b) 2 or more policies but less than 5 policies.
(c) Assuming that there are 5 working days per week, what is the probability
that in a given day the agent will sell one policy?
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Solution.
(a) Let X be the number of policies sold in a week. Then X follows a Poisson
distribution with λ = 3 and ω = 1. Thus,

P (X ≥ 1) = 1− P (X = 0) = 1− e−330

0!
≈ 0.9502.

(b) We have

P (2 ≤ X < 5) =P (X = 2) + P (X = 3) + P (X = 4)

=
e−332

2!
+
e−333

3!
+
e−334

4!
≈ 0.6161.

(c) Let Y be the number of policies sold per day. Then Y follows a Poisson
distribution with λ = 3

5
= 0.6 policy per day. Thus,

P (Y = 1) =
e−0.6(0.6)

1!
≈ 0.3293

Variance of the Poisson Distribution
To find the variance, we first compute E(X2). From

E(X(X − 1)) =
∞∑
k=2

k(k − 1)e−λω
(λω)k

k!
= (λω)2e−λω

∞∑
k=2

(λω)k−2

(k − 2)!

=(λω)2e−λω
∞∑
k=0

(λω)k

k!
= (λω)2e−λωeλω = (λω)2

we find E(X2) = E(X(X − 1)) + E(X) = (λω)2 + λω. Thus, Var(X) =
E(X2)− (E(X))2 = λω.

Example 7.4.4
Misprints in a book averages one misprint per 10 pages. Suppose that the
number of misprints per page is a random variable having Poisson distribu-
tion. Let X denote the number of misprints in a stack of 50 pages. Find the
mean and the standard deviation of X.

Solution.
X is a Poisson random variable with λ = 0.1 and ω = 50. Hence, E(X) =
λω = 5 and σX =

√
5
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Practice Problems

Problem 7.4.1
The number of accidents on a certain section of a highway averages 4 per
day. Assuming that this number follows a Poisson distribution, what is the
probability of no car accident in one day? What is the probability of 1 car
accident in two days?

Problem 7.4.2
A phone operator receives calls on average of 2 calls per minute. Assuming
that the number of calls follows a Poisson distribution, what is the probability
of receiving 10 calls in 5 minutes?

Problem 7.4.3
In the first draft of a book on probability theory, there are an average of 15
spelling errors per page. Suppose that the number of errors per page follows
a Poisson distribution. What is the probability of having no errors on a page?

Problem 7.4.4
Suppose that the number of people admitted to an emergency room each day
is a Poisson random variable with parameter λ = 3.
(a) Find the probability that 3 or more people admitted to the emergency
room today.
(b) Find the probability that no people were admitted to the emergency room
today.

Problem 7.4.5
At a reception event guests arrive at an average of 2 per minute. Assume
that the number of guests arriving per minute has a Poisson distribution.
Find the probability that
(a) at most 4 will arrive at any given minute
(b) at least 3 will arrive during an interval of 2 minutes
(c) 5 will arrive in an interval of 3 minutes.

Problem 7.4.6
Suppose that the number of car accidents on a certain section of a highway
can be modeled by a random variable having Poisson distribution with stan-
dard deviation σ = 2. What is the probability that there are at least three
accidents?



7.4. POISSON RANDOM VARIABLE 255

Problem 7.4.7
A Geiger counter is monitoring the leakage of alpha particles from a con-
tainer of radioactive material. It is found that, an average of 50 particles per
minute is leaked. Assume the number of particles leaked in any given minute
is modeled by a Poisson distribution.
(a) Compute the probability that at least one particle is leaked in a partic-
ular 1-second period.
(b) Compute the probability that at least two particles is leaked in a partic-
ular 2-second period.

Problem 7.4.8 ‡
An actuary has discovered that policyholders are three times as likely to file
two claims as to file four claims.
If the number of claims filed has a Poisson distribution, what is the variance
of the number of claims filed?

Problem 7.4.9 ‡
A company buys a policy to insure its revenue in the event of major snow-
storms that shut down business. The policy pays nothing for the first such
snowstorm of the year and $10,000 for each one thereafter, until the end of
the year. The number of major snowstorms per year that shut down business
is assumed to have a Poisson distribution with mean 1.5 .
What is the expected amount paid to the company under this policy during
a one-year period?

Problem 7.4.10 ‡
A baseball team has scheduled its opening game for April 1. If it rains on
April 1, the game is postponed and will be played on the next day that it
does not rain. The team purchases insurance against rain. The policy will
pay 1000 for each day, up to 2 days, that the opening game is postponed.
The insurance company determines that the number of consecutive days of
rain beginning on April 1 is a Poisson random variable with mean 0.6 .
What is the standard deviation of the amount the insurance company will
have to pay?

Problem 7.4.11
The average number of trains arriving on any one day at a train station in a
certain city is known to be 12. Assuming that the number of trains arriving
on any given day follows a Poisson distribution, what is the probability that
on a given day fewer than nine trains will arrive at this station?
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Problem 7.4.12
In the inspection sheet metals produced by a machine, five defects per 10
square feet were spotted, on average. If we assume a Poisson distribution,
what is the probability that a 15-square feet sheet of the metal will have at
least six defects?

Problem 7.4.13
Let X be a Poisson random variable with mean λ. If P (X = 1|X ≤ 1) = 0.8,
what is the value of λ?

Problem 7.4.14
The number of trucks arriving at a truck depot on a given day has a Poisson
distribution with a mean of 2.5 per day.
(a) What is the probability a day goes by with no more than one truck
arriving?
(b) Give the mean and standard deviation of the number of trucks arriving
in an 8-day period.

Problem 7.4.15 ‡
Let X represent the number of customers arriving during the morning hours
and let Y represent the number of customers arriving during the afternoon
hours at a diner. You are given:
(i) X and Y are Poisson distributed.
(ii) The first moment of X is less than the first moment of Y by 8.
(iii) The second moment of X is 60% of the second moment of Y.
Calculate the variance of Y.

Problem 7.4.16
The manager of an industrial plant is planning to buy a new machine. For
each day’s operation, the number of repairs X, that the machine needs is a
Poisson random variable with mean 0.96 repairs per day. The daily cost of
operating the machine is C = 160 + 40X2. Find the expected value of the
daily cost of operating the machine.

Problem 7.4.17
It is believed that the number of bookings taken per hour at an online travel
agency follows a Poisson distribution. Past records indicate that the hourly
number of bookings has a mean of 15 and a standard deviation of 2.5. Com-
ment on the suitability of the Poisson distribution for this problem?
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Problem 7.4.18
Find a formula for MX(t) = E(etX) when X is a Poisson random variable
with parameter λ.

Problem 7.4.19 ‡
The number of traffic accidents per week at intersection Q has a Poisson
distribution with mean 3. The number of traffic accidents per week at inter-
section R has a Poisson distribution with mean 1.5.
Let A be the probability that the number of accidents at intersection Q ex-
ceeds its mean. Let B be the corresponding probability for intersection R.
Calculate B − A.

Problem 7.4.20 ‡
Company XY Z provides a warranty on a product that it produces. Each
year, the number of warranty claims follows a Poisson distribution with mean
c. The probability that no warranty claims are received in any given year is
0.60.
Company XY Z purchases an insurance policy that will reduce its overall
warranty claim payment costs. The insurance policy will pay nothing for the
first warranty claim received and 5000 for each claim thereafter until the end
of the year.
Calculate the expected amount of annual insurance policy payments to Com-
pany XY Z.

Problem 7.4.21 ‡
The number of traffic accidents occurring on any given day in Coralville is
Poisson distributed with mean 5. The probability that any such accident
involves an uninsured driver is 0.25, independent of all other such accidents.
Calculate the probability that on a given day in Coralville there are no traffic
accidents that involve an uninsured driver.

Problem 7.4.22 ‡
A company has purchased a policy that will compensate for the loss of rev-
enue due to severe weather events. The policy pays 1000 for each severe
weather event in a year after the first two such events in that year. The
number of severe weather events per year has a Poisson distribution with
mean 1. Calculate the expected amount paid to this company in one year.



258CHAPTER 7. COMMONLY USED DISCRETE RANDOMVARIABLES

Problem 7.4.23 ‡
A company provides each of its employees with a death benefit of 100. The
company purchases insurance that pays the cost of total death benefits in
excess of 400 per year. The number of employees who will die during the year
is a Poisson random variable with mean 2. Calculate the expected annual
cost to the company of providing the death benefits, excluding the cost of
the insurance.

Problem 7.4.24 ‡
The number of boating accidents X a policyholder experiences this year
is modeled by a Poisson random variable with variance 0.10. An insurer
reimburses only the first accident. Let Y be the number of non-reimbursed
accidents the policyholder experiences this year and let p be the probability
function of Y. Determine p(y).
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7.5 Poisson Approximation to the Binomial

Distribution

For the binomial distribution with large n, computing the probability mass
function is computationally nasty. Instead, one can use the Poisson distri-
bution as an estimate to the binomial distribution.
Letting ω = 1 in the derivation of the Poisson distribution formula in the pre-
vious section, we find that X can be approximated by the binomial random
variable Xn for large values of n since

lim
n→∞ nCkp

k(1− p)n−k = e−λ
λk

k!
.

In this case, λ ≈ np. Thus, for large n (and hence small p) the Poisson distri-
bution can be used as an approximation to the binomial distribution. Now,
how large n should be and how small p should be so that the approximation
is acceptable? Studies show that the Poisson distribution will provide a good
approximation to binomial probabilities when n ≥ 20 and p ≤ 0.05. In this
case, we let λ = pn.

Example 7.5.1
In a group of 100 individuals, let X be the random variable representing the
total number of people in the group with a birthday on Thanksgiving day.
Then X is a binomial random variable with parameters n = 100 and p = 1

365
.

What is the probability at least one person in the group has a birthday on
Thanksgiving day?

Solution.
We have

P (X ≥ 1) = 1− P (X = 0) = 1− 100C0

(
1

365

)0(
364

365

)100

≈ 0.2399.

Using the Poisson approximation, with λ = 100× 1
365

= 100
365

= 20
73

we find

P (X ≥ 1) = 1− P (X = 0) = 1− (20/73)0

0!
e(−

20
73) ≈ 0.2396

Example 7.5.2
Consider a contest where a participant fires at a small can placed on the top
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of box. Each time the can is hit, it is replaced by another can. Suppose
that the probability of a participant hitting the can is 1

32
. Assume that the

participant shoots 96 times, and that all shoots are independent.
(a) Find the probability mass function of the number of shoots that hit a
can.
(b) Give an approximation for the probability of the participant hitting no
more than one can.

Solution.
(a) Let X denote the number of shoots that hit a can. Then X follows a
binomial distribution:

P (X = k) = nCkp
k(1− p)n−k, n = 96, p =

1

32
.

(b) Since n is large, and p small, we can use the Poisson approximation, with
parameter λ = np = 3. Thus,

P (X ≤ 1) = P (X = 0) + P (X = 1) ≈ e−λ + λe−λ = 4e−3 ≈ 0.199
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Practice Problems

Problem 7.5.1
Let X be a binomial distribution with parameters n = 200 and p = 0.02.
We want to calculate P (X ≥ 2). Explain why a Poisson distribution can be
expected to give a good approximation of P (X ≥ 2) and then find the value
of this approximation.

Problem 7.5.2
In a TV plant, the probability of manufacturing a defective TV is 0.03. Using
Poisson approximation, find the probability of obtaining exactly one defective
TV set out of a group of 20.

Problem 7.5.3
Suppose that 1 out of 400 tires are defective. Let X denote the number of
defective tires in a group of 200 tires. What is the probability that at least
three of them are defective?

Problem 7.5.4
1000 cancer patients are receiving a clinical trial drug for cancer. Side effects
are being studied. The probability that a patient experiences side effects to
the drug is found to be 0.001. Find the probability that none of the patients
administered the trial drug experienced any side effect.

Problem 7.5.5
From a group of 120 engineering students, 3% are not in favor of studying
differential equations. Use the Poisson approximation to estimate the prob-
ability that
(a) exactly 2 students are not in favor of studying differential equations;
(b) at least two students are not in favor of studying differential equations.

Problem 7.5.6
Suppose 5% of the tires manufactured at a particular plant are defective.
Find the probability that exactly one tire is defective in a sample of 20 tires.

Problem 7.5.7
The probability that a person will develop an infection even after taking a
vaccine that was supposed to prevent the infection is 0.03. In a random sam-
ple of 200 people in a community who got the vaccine, what is the probability
that six or fewer people will be infected?
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Problem 7.5.8
Given that 5% of a population are left-handed, use the Poisson distribution
to estimate the probability that a random sample of 100 people contains 2
or more left-handed people.

Problem 7.5.9 ‡
A life insurance company has found there is a 3% probability that a randomly
selected application contains an error. Assume applications are mutually
independent in this respect. An auditor randomly selects 100 applications.
Calculate the probability that 95% or less of the selected applications are
error-free.



7.6. GEOMETRIC RANDOM VARIABLE 263

7.6 Geometric Random Variable

A geometric random variable models the number of successive independent
Bernoulli trials that must be performed to obtain the “first” success. For
example, the number of flips of a fair coin until the first head appears follows
a geometric distribution.
Let X be the number of trials needed to achieve the first success. Then the
probability mass function of X is

p(n) =P (X = n) = P (X1 = F,X2 = F, · · · , Xn−1 = F,Xn = S)

=P (X1 = F )P (X2 = F ) · · ·P (Xn−1 = F )P (Xn = S)

=p(1− p)n−1

and 0 otherwise. Note that the second line follows from the fact that the
events {X1 = F}, · · · , {Xn = S} are independent.
Note that p(n) ≥ 0 and

∞∑
n=1

p(1− p)n−1 =
p

1− (1− p)
= 1

so that p(n) is a valid probability mass function. Note that the above sum is
a geometric series. We call X a geometric random variable with parameter
p.

Example 7.6.1
Consider the experiment of rolling a pair of fair dice.
(a) What is the probability of getting a sum of 11?
(b) If you roll the dice repeatedly, what is the probability that the first 11
occurs on the 8th roll?

Solution.
(a) A sum of 11 occurs when the pair of dice show either (5, 6) or (6, 5) so
that the required probability is 2

36
= 1

18
.

(b) Let X be the number of rolls on which the first 11 occurs. Then X is a
geometric random variable with parameter p = 1

18
. Thus,

P (X = 8) =

(
1

18

)(
1− 1

18

)7

≈ 0.0372
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To find the expected value and variance of a geometric random variable we
proceed as follows. First we recall from calculus the geometric series

f(x) =
∞∑
n=0

xn =
1

1− x
, |x| < 1.

Differentiating f(x) twice we find

f ′(x) =
∞∑
n=1

nxn−1 = (1−x)−2 and f ′′(x) =
∞∑
n=1

n(n−1)xn−2 = 2(1−x)−3.

Evaluating f ′(x) and f ′′(x) at x = 1− p, we find

f ′(1− p) =
∞∑
n=1

n(1− p)n−1 = p−2

and

f ′′(1− p) =
∞∑
n=1

n(n− 1)(1− p)n−2 = 2p−3.

We next apply these equalities in finding E(X) and E(X2). Indeed, we have

E(X) =
∞∑
n=1

n(1− p)n−1p = p
∞∑
n=1

n(1− p)n−1 = p · p−2 = p−1

and

E(X(X − 1)) =
∞∑
n=1

n(n− 1)(1− p)n−1p

=p(1− p)
∞∑
n=1

n(n− 1)(1− p)n−2

=p(1− p) · (2p−3) = 2p−2(1− p).

Thus,

E(X2) = E[X(X − 1)] + E(X) = 2p−2(1− p) + p−1 = (2− p)p−2.

The variance is then given by

Var(X) = E(X2)− (E(X))2 = (2− p)p−2 − p−2 =
1− p
p2

.



7.6. GEOMETRIC RANDOM VARIABLE 265

Next, observe that for k = 1, 2, · · · we have

P (X ≥ k) =
∞∑
n=k

p(1−p)n−1 = p(1−p)k−1

∞∑
n=0

(1−p)n =
p(1− p)k−1

1− (1− p)
= (1−p)k−1

and
P (X ≤ k) = 1− P (X ≥ k + 1) = 1− (1− p)k.

From this, one can find the cdf of X given by

F (x) = P (X ≤ x) =

{
0 x < 1
1− (1− p)bxc x ≥ 1.

Example 7.6.2
Used watch batteries are tested one at a time until a good battery is found.
Let X denote the number of batteries that need to be tested in order to find
the first good one. Find the expected value of X, given that P (X > 3) = 0.5.

Solution.
X has geometric distribution, so P (X > 3) = P (X ≥ 4) = (1− p)3. Setting

this equal to 1/2 and solving for p gives p = 1− 2−
1
3 . Therefore,

E(X) =
1

p
=

1

1− 2−
1
3

≈ 4.8473

Example 7.6.3
From past experience it is noted that 3% of customers at an ATM machine
make deposits at the start of a new business day.
(a) What is the probability that the first deposit was made with the 5th

customer who used the ATM?
(b) What is the probability that the first deposit was made when 5 customers
used the ATM?

Solution.
(a) Let X be the number of customers who used the ATM before the first
deposit was made. Then X is a geometric random variable with p = 0.03.
If 5 customers used the ATM before a deposit was made, then the first four
customers did not make a deposit and the fifth customer made the deposit.
Hence,

P (X = 5) = 0.03(0.97)4 = 0.02656.

(b)
P (X ≤ 5) = 1− 0.975 ≈ 0.1413
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Practice Problems

Problem 7.6.1
A box of candies contains 5 Kit Kat, 4 M&M, and 1 Crunch. Candies are
drawn, with replacement, until a Crunch is found. IfX is the random variable
counting the number of trials until a Crunch appears, then
(a) What is the probability that the Crunch appears on the first trial?
(b) What is the probability that the Crunch appears on the second trial?
(c) What is is the probability that the Crunch appears on the nth trial.

Problem 7.6.2
The probability that a computer chip is defective is 0.10. Each computer is
checked for inspection as it is produced. Find the probability that at least
10 computer chips must be checked to find one that is defective.

Problem 7.6.3
Suppose a certain exam is classified as either difficult (with probability 90/92)
or fair (with probability 2/92). Exams are taken one after the other. What
is the probability that at least 4 difficult exams will occur before the first fair
one?

Problem 7.6.4
Assume that every time you eat hot salsa, there is a 0.001 probability that
you will get heartburn, independent of all other times you had eaten hot
salsa.
(a) What is the probability you will eat hot salsa two or less times until your
first heartburn?
(b) What is the expected number of times you will eat hot salsa until you
get your first heartburn?

Problem 7.6.5
Consider the experiment of flipping three coins simultaneously. Let a success
be when the three outcomes are the same. What is the probability that
(a) exactly three rounds of flips are needed for the first success?
(b) more than four rounds are needed?

Problem 7.6.6
You roll a fair die repeatedly. Let a success be when the die shows either a 1
or a 3. Let X be the number of times you roll the die before the first success.
(a) What is P (X = 3)? What is P (X = 50)?
(b) Find the expected value of X.
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Problem 7.6.7
A study of car batteries shows that 3% of car batteries produced by a certain
machine are defective. The batteries are put into packages of 20 batteries for
distribution to retailers.
(a) What is the probability that a randomly selected package of batteries will
contain at least 2 defective batteries?
(b) Suppose we continue to select packages of batteries randomly from the
production site. What is the probability that it will take fewer than five
packages to find a package with at least 2 defective batteries?

Problem 7.6.8
Show that the Geometric distribution with parameter p satisfies the equation

P (X > i+ j|X > i) = P (X > j).

This says that the Geometric distribution satisfies the memoryless prop-
erty

Problem 7.6.9 ‡
As part of the underwriting process for insurance, each prospective policy-
holder is tested for high blood pressure. Let X represent the number of tests
completed when the first person with high blood pressure is found. The ex-
pected value of X is 12.5.
Calculate the probability that the sixth person tested is the first one with
high blood pressure.

Problem 7.6.10
Suppose that the probability for an applicant to get a job offer after an
interview is 0.1. An applicant plans to keep trying out for more interviews
until she gets offered. Assume outcomes of interviews are independent.
(a) How many interviews does she expect to have to take in order to get a
job offer?
(b) What is the probability she will need to attend more than 2 interviews?

Problem 7.6.11
In each of the following you are to determine whether the problem is a bi-
nomial type problem or a geometric type. In each case, find the probability
mass function p(x). Assume outcomes of individual trials are independent
with constant probability of success.
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(a) An arch shooter will aim at the target until one successfully hits it. The
underlying probability of success is 0.40.
(b) A clinical trial enrolls 20 patients with a rare disease. Each patient is
given an experimental therapy, and the number of patients showing marked
improvement is observed. The true underlying probability of success is 0.60.

Problem 7.6.12
A lab network consisting of 20 computers was attacked by a computer virus.
This virus enters each computer with probability 0.4, independently of other
computers. A computer manager checks the lab computers, one after an-
other, to see if they were infected by the virus. What is the probability that
she has to test at least 6 computers to find the first infected one?

Problem 7.6.13
A representative from the National Football League’s Marketing Division
randomly selects people on a random street in Kansas City, Kansas until
he finds a person who attended the last home football game. Let p, the
probability that he succeeds in finding such a person, equal 0.20. And, let X
denote the number of people he selects until he finds his first success. How
many people should we expect the marketing representative needs to select
before he finds one who attended the last home football game?

Problem 7.6.14
A plane’s engines start successfully at a given attempt with a probability of
0.75. Any time that the mechanics are unsuccessful in starting the engines,
they must wait five minutes before trying again. Find probability that the
plane is launched within 10 minutes.

Problem 7.6.15
Let X be a geometric distribution with parameter p. Find a formula for
MX(t) = E(etX).

Problem 7.6.16
Let X be a geometric random variable with parameter p. Let Y be the
random variable representing the number of failures before a first success.
Then Y = X − 1. Find E(Y ) and Var(Y ).

Problem 7.6.17
At an orchard in Maine, “20-lb” bags of apples are weighed. Suppose that



7.6. GEOMETRIC RANDOM VARIABLE 269

four percent of the bags are underweight and that each bag weighed is inde-
pendent. Let X be the number of bags observed to find the first underweight
bag. Find E(X) and σX .

Problem 7.6.18 ‡
An insurance policy on an electrical device pays a benefit of 4000 if the
device fails during the first year. The amount of the benefit decreases by
1000 each successive year until it reaches 0 . If the device has not failed by
the beginning of any given year, the probability of failure during that year
is 0.4.
What is the expected benefit under this policy?

Problem 7.6.19 ‡
A company has five employees on its health insurance plan. Each year, each
employee independently has an 80% probability of no hospital admissions.
If an employee requires one or more hospital admissions, the number of ad-
missions is modeled by a geometric distribution with a mean of 1.50. The
numbers of hospital admissions of different employees are mutually indepen-
dent. Each hospital admission costs 20,000.
Calculate the probability that the company’s total hospital costs in a year
are less than 50,000.

Problem 7.6.20 ‡
A group of 100 patients is tested, one patient at a time, for three risk factors
for a certain disease until either all patients have been tested or a patient
tests positive for more than one of these three risk factors. For each risk
factor, a patient tests positive with probability p, where 0 < p < 1. The
outcomes of the tests across all patients and all risk factors are mutually
independent.
Determine an expression for the probability that exactly n patients are tested,
where n is a positive integer less than 100.

Problem 7.6.21 ‡
A representative of a market research firm contacts consumers by phone in
order to conduct surveys. The specific consumer contacted by each phone
call is randomly determined. The probability that a phone call produces a
completed survey is 0.25.
Calculate the probability that more than three phone calls are required to
produce one completed survey.



270CHAPTER 7. COMMONLY USED DISCRETE RANDOMVARIABLES

Problem 7.6.22 ‡
Patients in a study are tested for sleep apnea, one at a time, until a patient
is found to have this disease. Each patient independently has the same
probability of having sleep apnea. Let r represent the probability that at
least four patients are tested.
Determine the probability that at least twelve patients are tested given that
at least four patients are tested.
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7.7 Negative Binomial Random Variable

The geometric distribution is the distribution of the number of Bernoulli tri-
als needed to get the first success. In this section, we consider an extension
of this distribution. We will study the distribution of the number of inde-
pendent Bernoulli trials needed to get the rth success.
Consider a Bernoulli experiment where a success occurs with probability p
and a failure occurs with probability q = 1− p. Assume that the experiment
continues, that is the trials are performed independently, until the rth success
occurs. For example, in the rolling of a fair die, let a success be when the
die shows a 5. We roll the die repeatedly until the fourth time the face 5
appears. In this case, p = 1

6
and r = 4.

Let X be the random variable representing the number of trials needed to get
the rth success. Then X is called a negative binomial distribution with
parameters r and p. It is worth mentioning the difference between the bi-
nomial distribution and the negative binomial distribution: In the binomial
distribution, X is the number of success in a fixed number of independent
Bernoulli trials n. In the negative binomial distribution, X is the number of
trials needed to get a fixed number of successes r.
For the rth success to occur on the nth trial, there must have been r − 1
successes among the first n − 1 trials. The number of ways of distributing
r − 1 successes among n− 1 trials is n−1Cr−1. But the probability of having
r−1 successes and n−r failures in the n−1 trials is pr−1(1−p)n−r. Since the
probability of the rth success is p, the product of these three terms ( using
independence) is the probability that there are r successes and n− r failures
in the n trials, with the rth success occurring on the nth trial. Hence, the
probability mass function of X is

p(n) = P (X = n) = n−1Cr−1p
r(1− p)n−r,

and 0 otherwise, where n = r, r + 1, · · · (In order to have r successes there
must be at least r trials.)
Note that if r = 1 then X is a geometric random variable with parameter p.
The negative binomial distribution is sometimes defined in terms of the ran-
dom variable Y = number of failures before the rth success. This formulation
is statistically equivalent to the one given above in terms of X = number of
trials at which the rth success occurs, since Y = X − r. The alternative form
of the negative binomial distribution is

pY (y) = P (Y = y) = P (X = y+r) = y+r−1Cr−1p
r(1−p)y = y+r−1Cyp

r(1−p)y
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for y = 0, 1, 2, · · · . In this form, the negative binomial distribution is used
when the number of successes is fixed and we are interested in the number
of failures before reaching the fixed number of successes.
Note that the binomial coefficient

y+r−1Cy =
(y + r − 1)!

y!(r − 1)!
=

(y + r − 1)(y + r − 2) · · · (r + 1)r

y!

can be alternatively written in the following manner, justifying the name
“negative binomial”’:

y+r−1Cy = (−1)y
(−r)(−r − 1) · · · (−r − y + 1)

y!
= (−1)y−rCy

which is the defining equation for binomial coefficient with negative integers.
Now, recalling the Taylor series expansion of the function f(t) = (1− t)−r at
t = 0,

(1− t)−r =
∞∑
k=0

(−1)k−rCkt
k =

∞∑
k=0

r+k−1Ckt
k, − 1 < t < 1.

Thus,

∞∑
y=0

P (Y = y) =
∞∑
y=0

r+y−1Cyp
r(1− p)y = pr

∞∑
y=0

r+y−1Cy(1− p)y

=pr · p−r = 1.

This shows that pY (y) is a valid probability mass function.

Example 7.7.1
A research study is concerned with the side effects of a new drug. The drug is
given to patients, one at a time, until two patients develop side effects. If the
probability of getting a side effect from the drug is 1

6
, what is the probability

that eight patients are needed?

Solution.
Let Y be the number of patients who do not show side effects. Then Y
follows a negative binomial distribution with r = 2, y = 6, and p = 1

6
. Thus,

P (Y = 6) = 2+6−1C6

(
1

6

)2(
5

6

)6

≈ 0.0651
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Example 7.7.2
A person is conducting a phone survey. Define “success” as the event a person
completes the survey and let Y be the number of failures before the third
success. What is the probability that there are 10 failures before the third
success? Assume that 1 out of 6 people contacted completed the survey.

Solution.
The probability that there are 10 failures before the third success is given by

P (Y = 10) = 3+10−1C10

(
1

6

)3(
5

6

)10

≈ 0.0493

Example 7.7.3
A four-sided die is rolled repeatedly. A success is when the die shows a 1.
What is the probability that the tenth success occurs in the 40th attempt?

Solution.
Let X number of attempts at which the tenth success occurs. Then X is a
negative binomial random variable with parameters r = 10 and p = 0.25.
Thus,

P (X = 40) = 40−1C10−1(0.25)10(0.75)30 ≈ 0.0360911

Expected value and Variance
The expected value of Y is

E(Y ) =
∞∑
y=0

r+y−1Cyp
r(1− p)yy

=
∞∑
y=1

(r + y − 1)!

(y − 1)!(r − 1)!
pr(1− p)y

=r(1− p)pr
∞∑
y=1

r+y−1Cy−1(1− p)y−1

=r(1− p)pr
∞∑
z=0

(r+1)+z−1Cz(1− p)z

=r(1− p)prp−(r+1) =
r(1− p)

p
.
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It follows that
E(X) = E(Y + r) = E(Y ) + r =

r

p
.

Similarly,

E[Y (Y − 1)] =
∞∑
y=0

r+y−1Cyp
r(1− p)yy(y − 1) =

∞∑
y=2

(r + y − 1)!

(y − 2)!(r − 1)!
pr(1− p)y

=r(r + 1)(1− p)2pr
∞∑
y=2

r+y−1Cy−2(1− p)y−2

=r(r + 1)(1− p)2pr
∞∑
z=0

(r+2)+z−1Cz(1− p)z

=r(r + 1)(1− p)2prp−(r+2) =
r(r + 1)(1− p)2

p2
.

Hence,

E(Y 2) = E(Y (Y−1))+E(Y ) =
r(r + 1)(1− p)2

p2
+
r(1− p)

p
=
r2(1− p)2

p2
+
r(1− p)
p2

.

The variance of Y is

Var(Y ) = E(Y 2)− [E(Y )]2 =
r(1− p)
p2

.

Since X = Y + r,

Var(X) = Var(Y ) =
r(1− p)
p2

.

Example 7.7.4
A person is conducting a phone survey. Suppose that 1 of 6 people contacted
will complete the survey. Define “success” as the event a person completes
the survey and let Y be the number of failures before the third success. Find
E(Y ) and Var(Y ).

Solution.
The expected value of Y is

E(Y ) =
r(1− p)

p
=

3(1− 1/6)

(1/6)
= 15

and the variance is

Var(Y ) =
r(1− p)
p2

=
3(1− 1/6)

(1/6)2
= 90
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Practice Problems

Problem 7.7.1
Consider a biased coin with the probability of getting heads is 0.1. Let X be
the number of flips needed to get the 8th heads.
(a) What is the probability of getting the 8th heads on the 50th toss?
(b) Find the expected value and the standard deviation of X.

Problem 7.7.2
Recently it is found that the bottom of the Mediterranean sea near Cyprus
has potential of oil discovery. Suppose that a well oil drilling has 20% chance
of striking oil. Find the probability that the third oil strike comes on the 5th

well drilled.

Problem 7.7.3
Consider a 52-card deck. Repeatedly draw a card with replacement and
record its face value. Let X be the number of trials needed to get three
kings.
(a) What is the distribution of X?
(b) What is the probability that X = 39?

Problem 7.7.4
Repeatedly roll a fair die until the outcome 3 has occurred for the 4th time.
Let X be the number of times needed in order to achieve this goal. Find
E(X) and Var(X).

Problem 7.7.5
Find the probability of getting the fourth head on the ninth flip of a fair coin.

Problem 7.7.6
There is 75% chance to pass the written test for a driver’s license. What is
the probability that a person will pass the test on the second try?

Problem 7.7.7 ‡
A company takes out an insurance policy to cover accidents that occur at its
manufacturing plant. The probability that one or more accidents will occur
during any given month is 3

5
.

The number of accidents that occur in any given month is independent of
the number of accidents that occur in all other months.
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Calculate the probability that there will be at least four months in which
no accidents occur before the fourth month in which at least one accident
occurs.

Problem 7.7.8
Somehow waiters at a cafe are extremely distracted today and are mixing
orders giving customers decaf coffee when they ordered regular coffee. Sup-
pose that there is 60% chance of making such a mistake in the order. What
is the probability of getting the second decaf on the seventh order of regular
coffee?

Problem 7.7.9
A machine that produces computer chips produces 3 defective chips out of
100. Computer chips are delivered to retailers in packages of 20 chips each.
(a) A package is selected randomly. What is the probability that the package
will contain at least 2 defective chips?
(b) What is the probability that the tenth package selected is the third to
contain at least two defective chips?

Problem 7.7.10
Let X be a negative binomial distribution with r = 2 and p = 0.1. Find
E(X) and σX .

Problem 7.7.11
Suppose that the probability of a child exposed to the flu will catch the flu
is 0.40. What is the probability that the tenth child exposed to the flu will
be the third to catch it?

Problem 7.7.12
In rolling a fair die repeatedly (and independently on successive rolls), find
the probability of getting the third “3” on the nth roll.

Problem 7.7.13 ‡
Each time a hurricane arrives, a new home has a 0.4 probability of experi-
encing damage. The occurrences of damage in different hurricanes are inde-
pendent. Calculate the mode of the number of hurricanes it takes for the
home to experience damage from two hurricanes. Hint: The mode of X is
the number that maximizes the probability mass function of X.
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Problem 7.7.14
A pediatrician wishes to recruit 5 couples, each of whom is expecting their
first child, to participate in a new natural childbirth regimen. The probability
that a couple agree to participate in the study is 0.2. What is the probability
that 15 couples must be asked before 5 are found who agree to participate?

Problem 7.7.15
The probability that a basketball player makes a free-throw shots is 60%.
The player was asked not to leave practice unless he makes 10 shots. Let Y
be the number of free-throws missed prior to the 10th shots. Find the mean
and the variance of Y.

Problem 7.7.16
An oil company conducts a geological study that indicates that an exploratory
oil well should have a 20% chance of striking oil. What is the probability
that the third strike comes on the seventh well drilled?

Problem 7.7.17
An oil company conducts a geological study that indicates that an exploratory
oil well should have a 20% chance of striking oil. Find the mean and the vari-
ance of the number of wells that must be drilled if the oil company wants to
set up three producing wells?

Problem 7.7.18
Let X be a negative binomial distribution with parameters r and p. Find a
formula for MX(t) = E(etX).

Problem 7.7.19
Find E(X) by using the function MX(t) of the previous problem.

Problem 7.7.20
Find the variance of X by using the function MX(t).

Problem 7.7.21 ‡
On any given day, a certain machine has either no malfunctions or exactly
one malfunction. The probability of malfunction on any given day is 0.40.
Machine malfunctions on different days are mutually independent. Calculate
the probability that the machine has its third malfunction on the fifth day,
given that the machine has not had three malfunctions in the first three days.
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7.8 Hyper-geometric Random Variable

Consider a population of N objects where the objects can be divided exactly
into two types: Type A and Type B. For example, the sex gender of students
in a certain college. Suppose that the number of objects of Type A is n. Then
the number objects of Type B is N − n .
A random sample of size r is selected without replacement in such a way that
each subset of size r is equally likely to be chosen. The Hyper-geometric
random variable X counts the total number of objects of Type A in the
sample.
If r ≤ n then the sample could have at most r objects of Type A . If r > n,
then there can be at most n objects of Type A in the sample. Thus, the
value min{r, n} is the maximum possible number of objects of Type A in the
sample.
On the other hand, if r ≤ N − n, then the smallest number of objects of
Type A is 0. If r > N − n, then the smallest number of objects of Type A is
r− (N−n). Thus, the value max{0, r− (N−n)} is the least possible number
of objects of Type A in the sample.
What is the probability of having exactly k objects of Type A in the sample,
where max{0, r − (N − n)} ≤ k ≤ min{r, n}? This is a type of problem
that we have done before: In a group of N people there are n men (and
the rest women). If we appoint a committee of r persons from this group at
random, what is the probability there are exactly k men on it? The number
of subsets of the group with cardinality r is NCr. The number of subsets of
the men with cardinality k is nCk and the number of subsets of the women
with cardinality r− k is N−nCr−k. Thus, the probability of getting exactly k
men on the committee is

p(k) = P (X = k) =
nCk · N−nCr−k

NCr
, k = 0, 1, · · · , r.

This is the probability mass function of X. Note that p(k) ≥ 0 and

r∑
k=0

nCk · N−nCr−k
NCr

= 1.

The proof of this result follows from



7.8. HYPER-GEOMETRIC RANDOM VARIABLE 279

Theorem 7.8.1 (Vendermonde’s identity)

n+mCr =
r∑

k=0

nCk · mCr−k.

Proof.
Suppose a committee consists of n men and m women. In how many ways
can a subcommittee of r members be formed? The answer is n+mCr. But on
the other hand, the answer is the sum over all possible values of k, of the
number of subcommittees consisting of k men and r − k women

Example 7.8.1
An urn contains 70 red marbles and 30 green marbles. If we draw out 20
without replacement, what is the probability of getting exactly 14 red mar-
bles?

Solution.
If X is the number of red marbles, then X is a hyper-geometric random
variable with parameters N = 100, r = 20, n = 70. Thus,

P (X = 14) =
70C14 · 30C6

100C20

≈ 0.21

Example 7.8.2
A barn consists of 13 cows, 12 pigs and 8 horses. A group of 8 will be selected
to participate in the city fair. What is the probability that exactly 5 of the
group will be cows?

Solution.
Let X be the number of cows in the group. Then X is hyper-geometric
random variable with parameters N = 33, r = 8, n = 13. Thus,

P (X = 5) =
13C5 · 20C3

33C8

≈ 0.10567

Expected Value and Variance
Next, we find the expected value of a hyper-geometric random variable with
parameters N, n, r. First, we notice the following

nCk =
n!

k!(n− k)!
=
n

k

(n− 1)!

(k − 1)!(n− k)!
=
n

k
n−1Ck−1
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and

NCr =
N !

r!(N − r)!
=
N

r

(N − 1)!

(r − 1)!(N − r)!
=
N

r
N−1Cr−1.

Thus,

E(X) =
r∑

k=0

kP (X = k)

=
r∑

k=1

k
nCk · N−nCr−k

NCr

=
rn

N

r∑
k=1

(n−1Ck−1)(N−1−(n−1)Cr−1−(k−1))

N−1Cr−1

=
rn

N

r−1∑
i=0

(n−1Ci)(N−1−(n−1)Cr−1−i)

N−1Cr−1

.

The sum in this equation is 1 as it is the sum over all probabilities of a
hyper-geometric distribution with parameters (N −1, r−1, n−1). Therefore
we have

E(X) =
rn

N
.

Next, we find the second moment of X. We have

E(X2) =
r∑

k=0

k2P (X = k)

=
r∑

k=1

k2 nCk · N−nCr−k
NCr

=n
r∑

k=1

k(n−1Ck−1)(N−1−(n−1)Cr−1−(k−1))

NCr

=n
r−1∑
i=0

(i+ 1)
(n−1Ci)(N−1−(n−1)Cr−1−i)

NCr

=n

[
r−1∑
i=0

i
(n−1Ci)(N−1−(n−1)Cr−1−i)

NCr
+

r−1∑
i=0

(n−1Ci)(N−1−(n−1)Cr−1−i)

NCr

]

=n

[
r

N

r−1∑
i=0

i
(n−1Ci)(N−1−(n−1)Cr−1−i)

N−1Cr−1

+
r

N

r−1∑
i=0

(n−1Ci)(N−1−(n−1)Cr−1−i)

N−1Cr−1

]
.
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The first sum is the expected value of a hyper-geometric random variable
with parameters (N −1, n−1, r−1) whereas the second sum is the sum over
all probabilities of this random variable. Thus,

r−1∑
i=0

i
(n−1Ci)(N−1−(n−1)Cr−1−i)

N−1Cr−1

=
(r − 1)(n− 1)

N − 1

and
r−1∑
i=0

(n−1Ci)(N−1−(n−1)Cr−1−i)

N−1Cr−1

= 1.

Hence,

E(X2) = n

(
r

N
· (r − 1)(n− 1)

N − 1
+

r

N

)
=
nr

N

[
(r − 1)(n− 1)

N − 1
+ 1

]
.

The variance of X is

V ar(X) =E(X2)− [E(X)]2 =
nr

N

[
(n− 1)(r − 1)

N − 1
+ 1− nr

N

]
=
nr

N
· N − r

N
· N − n
N − 1

.

Example 7.8.3
The faculty senate of a certain college has 20 members. Suppose there are
12 men and 8 women. A committee of 10 senators is selected at random.
(a) What is the probability that there will be 6 men and 4 women on the
committee?
(b) What is the expected number of men on this committee?
(c) What is the variance of the number of men on this committee?

Solution.
Let X be the number of men of the committee of 10 selected at random.
Then X is a hyper-geometric random variable with N = 20, r = 10, and
n = 12.
(a) P (X = 6) = 12C6·8C4

20C10
≈ 0.3501

(b) E(X) = nr
N

= 12(10)
20

= 6
(c) Var(X) = n · r

N
· N−r

N
· N−n
N−1
≈ 1.2632
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Example 7.8.4
A package of 15 computer chips contains 6 defective chips and 9 non-defective.
Five chips are randomly selected without replacement.
(a) What is the probability that there are 2 defective and 3 non-defective
chips in the sample?
(b) What is the probability that there are at least 3 non-defective chips in
the sample?
(c) What is the expected number of defective chips in the sample?

Solution.
(a) Let X be the number of defective chips in the sample. Then, X has
a hyper-geometric distribution with n = 6, N = 15, r = 5. The desired
probability is

P (X = 2) =
6C2 · 9C3

15C5

=
420

1001

(b) Note that the event that there are at least 3 non-defective chips in the
sample is equivalent to the event that there are at most 2 defective chips in
the sample, i.e. {X ≤ 2}. So, we have

P (X ≤ 2) =P (X = 0) + P (X = 1) + P (X = 2)

=
6C0 · 9C5

15C5

+
6C1 · 9C4

15C5

+
6C2 · 9C3

15C5

=
714

1001

(c) E(X) = rn
N

= 5 · 6
15

= 2
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Practice Problems

Problem 7.8.1
Five cards are drawn randomly and without replacement from a deck of 52
playing cards. Find the probability of getting exactly two black cards.

Problem 7.8.2
An urn contains 15 red marbles and 10 blue ones. Seven marbles were ran-
domly drawn without replacement. Find the probability of picking exactly 3
red marbles.

Problem 7.8.3
A lottery game consists of matching 6 numbers from the official six drawn
numbers out of 53 numbers. Let X equal the number of matches. Find the
probability distribution function.

Problem 7.8.4
A package of 20 computer chips contains 4 defective chips. Randomly select
10 chips without replacement. Compute the probability of obtaining exactly
3 defective chips.

Problem 7.8.5
A wallet contains 10 $50 bills and 190 $1 bills. You randomly choose 10 bills
without replacement. What is the probability that you will choose exactly 2
$50 bills?

Problem 7.8.6
A batch of 8 components contains 2 defective components and 6 good ones.
Randomly select four components without replacement.
(a) What is the probability that all four components are good?
(b) What are the mean and variance for the number of good components?

Problem 7.8.7
In Texas all vehicles are subject to annual inspection. A transportation
company has a fleet of 20 trucks in which 7 do not meet the standards for
passing inspection. Five trucks are randomly selected for inspection. What
is the probability of no more than 2 trucks that fail to have the standards
for passing inspection being selected?
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Problem 7.8.8
A recent study shows that in a certain city 2,477 cars out of 123,850 are
stolen. The city police are trying to find the stolen cars. Suppose that 100
randomly chosen cars are checked by the police. Find the expression that
gives the probability that exactly 3 of the chosen cars are stolen. You do not
need to give the numerical value of this expression.

Problem 7.8.9
Consider a suitcase with 7 shirts and 3 pants. Suppose we draw 4 items
without replacement from the suitcase. Let X be the total number of shirts
we get. Compute P (X ≤ 1).

Problem 7.8.10
A group consists of 4 women and 20 men. A committee of six is to be formed.
Using the appropriate hyper-geometric distribution, what is the probability
that none of the women are on the committee?

Problem 7.8.11
A jar contains 10 white balls and 15 black balls. Let X denote the num-
ber of white balls in a sample of 10 balls selected at random and without
replacement. Find Var(X)

E(X)
.

Problem 7.8.12
Among the 48 applicants for an actuarial position, 30 have a college degree in
actuarial science. Ten of the applicants are randomly chosen for interviews.
Let X be the number of applicants among these ten who have a college degree
in actuarial science. Find P (X ≤ 8).

Problem 7.8.13
Suppose that a lot of 25 machine parts is delivered, where a part is considered
acceptable only if it passes tolerance. We sample 10 parts and find that none
are defective (all are within tolerance). What is the probability of this event
if there are 6 defectives in the lot of 25?

Problem 7.8.14
A crate contains 50 light bulbs of which 5 are defective and 45 are not. A
Quality Control Inspector randomly samples 4 bulbs without replacement.
Let X be the number of defective bulbs selected. Find the probability mass
function, p(x), of the discrete random variable X.
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Problem 7.8.15
A population of 70 registered voters contains 40 in favor of Proposition 134
and 30 opposed. An opinion survey selects a random sample without replace-
ment of 10 voters from this population.
(a) What is the probability that there will be no one in favor of Proposition
134 in the sample?
(b) What is the probability that there will be at least one person in favor?

Problem 7.8.16
There are 9 men and 11 women in a group. 7 are chosen at random. What
is the probability you get more women than men?

Problem 7.8.17
Five individuals from an animal population thought to be near extinction
in a certain region have been caught, tagged, and released to mix into the
population. After they have had an opportunity to mix, a random sample of
10 of these animals is selected. Let X be the number of tagged animals in
the second sample. If there are actually 25 animals of this type in the region,
what is the E(X) and σX?

Problem 7.8.18
A Statistics department purchased 24 hand calculators from a dealer in order
to have a supply on hand for tests for use by students who forget to bring their
own. Although the department was not aware of this, five of the calculators
were defective and gave incorrect answers to calculations. When a test is
being written, students who have forgotten their own calculators are allowed
to select one of the Department’s (at random).
Suppose at the first test of the term, four students forgot to bring their
calculators. What is the probability that exactly one of these students selects
a defective calculator?

Problem 7.8.19 ‡
In a group of 25 factory workers, 20 are low-risk and five are high-risk. Two
of the 25 factory workers are randomly selected without replacement.
Calculate the probability that exactly one of the two selected factory workers
is low-risk.

Problem 7.8.20 ‡
In a casino game, a gambler selects four different numbers from the first
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twelve positive integers. The casino then randomly draws nine numbers
without replacement from the first twelve positive integers. The gambler wins
the jackpot if the casino draws all four of the gambler’s selected numbers.
Calculate the probability that the gambler wins the jackpot.

Problem 7.8.21 ‡
A state is starting a lottery game. To enter this lottery, a player uses a
machine that randomly selects six distinct numbers from among the first 30
positive integers. The lottery randomly selects six distinct numbers from the
same 30 positive integers. A winning entry must match the same set of six
numbers that the lottery selected. The entry fee is 1, each winning entry
receives a prize amount of 500,000, and all other entries receive no prize.
Calculate the probability that the state will lose money, given that 800,000
entries are purchased.



Chapter 8

Cumulative and Survival
Distribution Functions

In this chapter, we study the properties of two important functions in prob-
ability theory related to random variables: the cumulative distribution func-
tion and the survival distribution function.

287
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8.1 The Cumulative Distribution Function

In this section, we will discuss properties of the cumulative distribution func-
tion that are valid to a random variable of type discrete, continuous or mixed.
Recall from Section 6.2 that if X is a random variable then the cumulative
distribution function (abbreviated c.d.f) is the function

F (t) = P (X ≤ t).

First, we prove that a probability function P is a continuous set function. In
order to do that, we need the following definitions.
A sequence of sets {En}∞n=1 is said to be increasing if

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · ·

whereas it is said to be a decreasing sequence if

E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 ⊃ · · ·

If {En}∞n=1 is an increasing sequence of events we define a new event

lim
n→∞

En =
∞⋃
n=1

En.

For a decreasing sequence, we define

lim
n→∞

En =
∞⋂
n=1

En.

We next show that a probability measure is a continuous set function.

Proposition 8.1.1
If {En}n≥1 is either an increasing or decreasing sequence of events then

lim
n→∞

P (En) = P ( lim
n→∞

En)

that is
(a) for an increasing sequence, we have

P

(
∞⋃
n=1

En

)
= lim

n→∞
P (En)
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and
(b) for a decreasing sequence

P

(
∞⋂
n=1

En

)
= lim

n→∞
P (En).

Proof.
(a) Suppose first that En ⊂ En+1 for all n ≥ 1. Define the events

F1 =E1

Fn =En ∩ Ec
n−1, n > 1

Figure 8.1.1

These events are shown in the Venn diagram of Figure 8.1.1. Note that for
n > 1, Fn consists of those outcomes in En that are not in any of the earlier
Ei, i < n. Clearly, for i 6= j we have Fi ∩ Fj = ∅. Also,

⋃∞
n=1 Fn =

⋃∞
n=1 En

and for n ≥ 1 we have
⋃n
i=1 Fi =

⋃n
i=1Ei. From these properties we have

P ( lim
n→∞

En) =P (
∞⋃
n=1

En)

=P (
∞⋃
n=1

Fn) =
∞∑
n=1

P (Fn)

= lim
n→∞

n∑
i=1

P (Fi) = lim
n→∞

P (
n⋃
i=1

Fi)

= lim
n→∞

P (
n⋃
i=1

Ei) = lim
n→∞

P (En).
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(b) Now suppose that {En}n≥1 is a decreasing sequence of events. Then
{Ec

n}n≥1 is an increasing sequence of events. Hence, from part (a), we have

P (
∞⋃
n=1

Ec
n) = lim

n→∞
P (Ec

n)

By De Morgan’s Law we have
⋃∞
n=1E

c
n = (

⋂∞
n=1En)

c
. Thus,

P

((
∞⋂
n=1

En

)c)
= lim

n→∞
P (Ec

n).

Equivalently,

1− P

(
∞⋂
n=1

En

)
= lim

n→∞
[1− P (En)] = 1− lim

n→∞
P (En)

or

P

(
∞⋂
n=1

En

)
= lim

n→∞
P (En)

Proposition 8.1.2
F is an non-decreasing function; that is, if a ≤ b then F (a) ≤ F (b).

Proof.
Suppose that a ≤ b. Then {s : X(s) ≤ a} ⊆ {s : X(s) ≤ b}. This implies
that P (X ≤ a) ≤ P (X ≤ b). Hence, F (a) ≤ F (b)

Example 8.1.1
Determine whether the given values can serve as the values of a cumulative
distribution function of a random variable with the range x = 1, 2, 3, 4.

F (1) = 0.5, F (2) = 0.4, F (3) = 0.7, and F (4) = 1.0.

Solution.
Since F (2) < F (1), F is not increasing and therefore F can not be a cdf

Proposition 8.1.3
F is continuous from the right. That is, limt→b+ F (t) = F (b).
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Proof.
We will use a result from Real Analysis that says that for a function to be con-
tinuous from the right of b it suffices to show that for any decreasing sequence
{bn}, with bn ≥ b for all n, that converges to b we have limn→∞ F (bn) = F (b).
So let {bn} be a decreasing sequence that converges to b with bn ≥ b for all
n ∈ N. Define En = {s : X(s) ≤ bn}. Then {En}n≥1 is a decreasing sequence
of events such that

⋂∞
n=1En = {s : X(s) ≤ b}. By Proposition 8.1.1, we have

lim
t→b+

F (t) = lim
n→∞

F (bn) = lim
n→∞

P (En) = P

(
∞⋂
n=1

En

)
= P (X ≤ b) = F (b)

Proposition 8.1.4
(a) lim

b→−∞
F (b) = 0

(b) lim
b→∞

F (b) = 1.

Proof.
(a) Note that lim

x→−∞
F (x) = lim

n→∞
F (xn) where (xn) is a decreasing sequence

such that lim
n→∞

xn = −∞. Define En = {s ∈ S : X(s) ≤ xn}. Then we have

the nested chain E1 ⊇ E2 ⊇ E3 ⊇ · · · . Moreover,

∅ =
∞⋂
n=1

En.

For otherwise, there is an s ∈ S such that −∞ < X(s) ≤ xn which implies
that X(s) = −∞ and that contradicts X(s) < ∞ for all s ∈ S. Now, by
Proposition 8.1.1, we find

lim
x→−∞

F (x) = lim
n→∞

F (xn) = lim
n→∞

P (En) = P

(
∞⋂
n=1

En

)
= P (∅) = 0.

(b) Note that lim
x→∞

F (x) = lim
n→∞

F (xn) where (xn) is an increasing sequence

such that lim
n→∞

xn =∞. Define En = {s ∈ S : X(s) ≤ xn}. Then we have the

nested chain E1 ⊆ E2 ⊆ E3 ⊆ · · · . Moreover,

S =
∞⋃
n=1

En.
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By Proposition 8.1.1, we find

lim
x→∞

F (x) = lim
n→∞

F (xn) = lim
n→∞

P (En) = P

(
∞⋃
n=1

En

)
= P (S) = 1

Example 8.1.2
Determine whether the given values can serve as the values of a cumulative
distribution function of a random variable with the range x = 1, 2, 3, 4.

F (1) = 0.3, F (2) = 0.5, F (3) = 0.8, and F (4) = 1.2.

Solution.
No, because F (4) exceeds 1

Remark 8.1.1
Any non-negative function F (x) that satisfies Propositions 8.1.2 - 8.1.4 serves
as a cumulative distribution function.

All probability questions can be answered in terms of the c.d.f.

Proposition 8.1.5
For any random variable X and any real number a, we have

P (X > a) = 1− F (a).

Proof.
Let A = {x ∈ S : X(s) ≤ a}. Then Ac = {s ∈ S : X(s) > a}. We have
P (X > a) = P (Ac) = 1− P (A) = 1− P (X ≤ a) = 1− F (a)

Example 8.1.3
Let X have probability mass function (pmf) p(x) = 1

8
for x = 1, 2, · · · , 8.

Find
(a) the cumulative distribution function (cdf) of X;
(b) P (X > 5).

Solution.
(a) The cdf is given by

F (x) =


0 x < 1
bxc
8

1 ≤ x ≤ 8
1 x > 8

where bxc is the floor function of x.
(b) We have P (X > 5) = 1− F (5) = 1− 5

8
= 3

8
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Proposition 8.1.6
For any random variable X and any real number a, we have

P (X < a) = lim
n→∞

F

(
a− 1

n

)
= F (a−).

Proof.
For each positive integer n, define En = {s ∈ S : X(s) ≤ a− 1

n
}. Then {En}

is an increasing sequence of sets such that

∞⋃
n=1

En = {s ∈ S : X(s) < a}.

We have

P (X < a) =P

(
∞⋃
n=1

En

)
= lim

n→∞
P (En)

= lim
n→∞

P

(
X ≤ a− 1

n

)
= lim

n→∞
F

(
a− 1

n

)
= F (a−)

Note that P (X < a) does not necessarily equal F (a), since F (a) also includes
the probability that X equals a.

Corollary 8.1.1

P (X ≥ a) = 1− lim
n→∞

F

(
a− 1

n

)
= 1− F (a−).

Proposition 8.1.7
If a < b then P (a < X ≤ b) = F (b)− F (a).

Proof.
Let A = {s : X(s) > a} and B = {s : X(s) ≤ b}. Note that P (A ∪ B) = 1.
Then

P (a < X ≤ b) =P (A ∩B)

=P (A) + P (B)− P (A ∪B)

=(1− F (a)) + F (b)− 1 = F (b)− F (a)
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Proposition 8.1.8
If a < b then P (a ≤ X < b) = F (b−)− F (a−).

Proof.
Let A = {s : X(s) ≥ a} and B = {s : X(s) < b}. Note that P (A ∪ B) = 1.
We have,

P (a ≤ X < b) =P (A ∩B)

=P (A) + P (B)− P (A ∪B)

=1− F (a−) + F (b−)− 1

=F (b−)− F (a−)

Proposition 8.1.9
If a < b then P (a ≤ X ≤ b) = F (b)− F (a−).

Proof.
Let A = {s : X(s) ≥ a} and B = {s : X(s) ≤ b}. Note that P (A ∪ B) = 1.
Then

P (a ≤ X ≤ b) =P (A ∩B)

=P (A) + P (B)− P (A ∪B)

=1− F (a−) + F (b)− 1

=F (b)− F (a−)

Example 8.1.4
Show that P (X = a) = F (a)− F (a−).

Solution.
Applying the previous result we can write

P (X = a) = P (a ≤ x ≤ a) = F (a)− F (a−)

This example and Proposition 8.1.6 imply that P (X ≤ a) = P (X < a) +
P (X = a) = F (a−) + F (a)− F (a−) = F (a).

Proposition 8.1.10
If a < b then P (a < X < b) = F (b−)− F (a).



8.1. THE CUMULATIVE DISTRIBUTION FUNCTION 295

Proof.
Let A = {s : X(s) > a} and B = {s : X(s) < b}. Note that P (A ∪ B) = 1.
Then

P (a < X < b) =P (A ∩B)

=P (A) + P (B)− P (A ∪B)

=(1− F (a)) + F (b−)− 1

=F (b−)− F (a)

Figure 8.1.2 illustrates a typical F for a discrete random variable X. Note
that for a discrete random variable the cumulative distribution function will
always be a step function with jumps at each value of x that has probability
greater than 0 and the size of the step at any of the values x1, x2, x3, · · · is
equal to the probability that X assumes that particular value.

Figure 8.1.2

Example 8.1.5 (Mixed RV)
The distribution function of a random variable X, is given by

F (x) =


0, x < 0
x
2
, 0 ≤ x < 1

2
3
, 1 ≤ x < 2

11
12
, 2 ≤ x < 3

1, 3 ≤ x.

(a) Graph F (x).
(b) Compute P (X < 3).
(c) Compute P (X = 1).
(d) Compute P (X > 1

2
)

(e) Compute P (2 < X ≤ 4).
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Solution.
(a) The graph is given in Figure 8.1.3.
(b) P (X < 3) = F (3−) = 11

12
.

(c) P (X = 1) = F (1)− F (1−) = 2
3
− 1

2
= 1

6
.

(d) P (X > 1
2
) = 1− P (X ≤ 1

2
) = 1− F (1

2
) = 1− 1

4
= 3

4
.

(e) P (2 < X ≤ 4) = F (4)− F (2) = 1− 11
12

= 1
12

Figure 8.1.3

Example 8.1.6
Suppose X has the cdf

F (x) =


0, x < −1
1
4
, −1 ≤ x < 1

1
2
, 1 ≤ x < 3

3
4
, 3 ≤ x < 5

1, x ≥ 5.

Find
(a) P (X ≤ 3)
(b) P (X = 3)
(c) P (X < 3)
(d) P (X ≥ 1)
(e) P (−0.4 < X < 4)
(f) P (−0.4 ≤ X < 4)
(g) P (−0.4 < X ≤ 4)
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(h) P (−0.4 ≤ X ≤ 4)
(i) P (X = 5).

Solution.
(a) P (X ≤ 3) = F (3) = 3

4
.

(b) P (X = 3) = F (3)− F (3−) = 3
4
− 1

2
= 1

4

(c) P (X < 3) = F (3−) = 1
2

(d) P (X ≥ 1) = 1− F (1−) = 1− 1
4

= 3
4

(e) P (−0.4 < X < 4) = F (4−)− F (−0.4) = 3
4
− 1

4
= 1

2

(f) P (−0.4 ≤ X < 4) = F (4−)− F (−0.4−) = 3
4
− 1

4
= 1

2

(g) P (−0.4 < X ≤ 4) = F (4)− F (−0.4) = 3
4
− 1

4
= 1

2

(h) P (−0.4 ≤ X ≤ 4) = F (4)− F (−0.4−) = 3
4
− 1

4
= 1

2

(i) P (X = 5) = F (5)− F (5−) = 1− 3
4

= 1
4
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Practice Problems

Problem 8.1.1
In your pocket, you have 1 dime, 2 nickels, and 2 pennies. You select 2 coins
at random (without replacement). Let X represent the amount (in cents)
that you select from your pocket.
(a) Give (explicitly) the probability mass function for X.
(b) Give (explicitly) the cdf, F (x), for X.
(c) How much money do you expect to draw from your pocket?

Problem 8.1.2
We are inspecting a lot of 25 batteries which contains 5 defective batteries.
We randomly choose 3 batteries. Let X = the number of defective batteries
found in a sample of 3. Give the cumulative distribution function as a table.

Problem 8.1.3
Suppose that the cumulative distribution function is given by

F (x) =


0 x < 0
x
4

0 ≤ x < 1
1
2

+ x−1
4

1 ≤ x < 2
11
12

2 ≤ x < 3
1 3 ≤ x

(a) Find P (X = i), i = 1, 2, 3.
(b) Find P (1

2
< X < 3

2
).

Problem 8.1.4
If the cumulative distribution function is given by

F (x) =



0 x < 0
1
2

0 ≤ x < 1
3
5

1 ≤ x < 2
4
5

2 ≤ x < 3
9
10

3 ≤ x < 3.5
1 3.5 ≤ x

Calculate the probability mass function.
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Problem 8.1.5
Consider a random variable X whose distribution function (cdf ) is given by

F (x) =


0 x < −2

0.1 −2 ≤ x < 1.1
0.3 1.1 ≤ x < 2
0.6 2 ≤ x < 3
1 x ≥ 3

(a) Give the probability mass function, p(x), of X, explicitly.
(b) Compute P (2 < X < 3).
(c) Compute P (X ≥ 3).
(d) Compute P (X ≥ 3|X ≥ 0).

Problem 8.1.6
Consider a random variable X whose probability mass function is given by

p(x) =



p x = −1.9
0.1 x = −0.1
0.3 x = 20p
p x = 3
4p x = 4
0 otherwise

(a) What is p?
(b) Find F (x) and sketch its graph.
(c) What is F (0)? What is F (2)? What is F (F (3.1))?
(d) What is P (2X − 3 ≤ 4|X ≥ 2.0)?
(e) Compute E(F (X)).

Problem 8.1.7
The cdf of X is given by

F (x) =


0 x < −4

0.3 −4 ≤ x < 1
0.7 1 ≤ x < 4
1 x ≥ 4

(a) Find the probability mass function.
(b) Find the variance and the standard deviation of X.
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Problem 8.1.8
In the game of “dice-flip”, each player flips a coin and rolls one die. If the
coin comes up tails, his score is the number of dots showing on the die. If
the coin comes up heads, his score is twice the number of dots on the die.
(i.e., (tails,4) is worth 4 points, while (heads,3) is worth 6 points.) Let X be
the first player’s score.
(a) Find the probability mass function P (x).
(b) Compute the cdf F (x) for all numbers x.
(c) Find the probability that X < 4. Is this the same as F (4)?

Problem 8.1.9
A random variable X has cumulative distribution function

F (x) =


0 x < 0
x2

4
0 ≤ x < 1

1+x
4

1 ≤ x < 2
1 x ≥ 2

(a) What is the probability that X = 0? What is the probability that X = 1?
What is the probability that X = 2?
(b) What is the probability that 1

2
< X ≤ 1?

(c) What is the probability that 1
2
≤ X < 1?

(d) What is the probability that X > 1.5?

Problem 8.1.10
Let X be a random variable with the following cumulative distribution func-
tion:

F (x) =


0 x < 0
x2 0 ≤ x < 1

2

α x = 1
2

1− 2−2x x > 1
2

(a) Find P (X > 3
2
).

(b) Find P (1
4
< X ≤ 3

4
).

(c) Find α.
(d) Find P (X = 1

2
).

(e) Sketch the graph of F (x).
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Problem 8.1.11
Let X be a random variable with the following cumulative distribution func-
tion:

F (x) =


0 x < −1
x+1

2
−1 ≤ x < 1

1 x ≥ 1.

(a) Find P
(
X > 1

2

)
.

(b) Find P
(
−1

2
< X ≤ 3

4

)
.

(c) Find P
(
|X| ≤ 1

2

)
.

Problem 8.1.12
Let X be a random variable with the following cumulative distribution func-
tion:

F (x) =


0 x < −5

1
144

(x+ 5)2 −5 ≤ x < 7
1 x ≥ 7.

Find a such that P (X > a) = 2
3
.

Problem 8.1.13
Determine whether or not the following function is a cumulative distribution
function.

F (x) =


0 x ≤ 0

0.5 0 < x ≤ 1
0.75 1 < x ≤ 3

1 x ≥ 3.

Problem 8.1.14
Let X be a random variable with cumulative distribution function F (x). Find
P (X2 ≤ a), where a > 0.

Problem 8.1.15
A discrete random variable X has the cumulative distribution function

F (x) =



0 x < 0
0.1 0 ≤ x < 1
0.3 1 ≤ x < 2
0.5 2 ≤ x < 4
0.8 4 ≤ x < 5
1 x ≥ 5.

Find the probability mass function p(x).
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Problem 8.1.16 ‡
A man purchases a life insurance policy on his 40th birthday. The policy will
pay 5000 if he dies before his 50th birthday and will pay 0 otherwise. The
length of lifetime, in years from birth, of a male born the same year as the
insured has the cumulative distribution function

F (t) =

{
0, t ≤ 0

1− e 1−1.1t

1000 , t > 0.

Calculate the expected payment under this policy.

Problem 8.1.17 ‡
Individuals purchase both collision and liability insurance on their automo-
biles. The value of the insured’s automobile is V. Assume the loss L on an
automobile claim is a random variable with cumulative distribution function

F (`) =

{
3
4

(
`
V

)3
, 0 ≤ ` < V

1− 1
10
e−

`−V
V , ` ≥ V.

Calculate the probability that the loss on a randomly selected claim is greater
than the value of the automobile.
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8.2 The Survival Distribution Function

Another key function describing a random variable is the survival distribution
function. We describe this function through an example. Let X be the
random variable representing the age at death of a person and let F (x)
be the corresponding cumulative distribution function. Thus, for a positive
integer a, the number F (a) = P (X ≤ a) is the probability that a person will
die by age a. However, the number S(a) = 1 − F (a) gives the probability
that the person will survive to age a. Thus, the term “survival”.
The function S(x) is called the survival function (abbreviated SDF), also
known as a reliability function. It gives the probability that a patient,
device, or other object of interest will survive beyond any given specified
time. Thus, we define the survival distribution function by

S(x) = P (X > x) = 1− F (x).

It follows from the properties of the cumulative distribution function F (x),
that any survival function satisfies the properties: S(−∞) = 1, S(∞) =
0, S(x) is right-continuous, and that S(x) is non-increasing. These four
conditions are necessary and sufficient so that any non-negative function
S(x) that satisfies these conditions serves as a survival function.

Remark 8.2.1
For a discrete random variable, the survival function need not be left-continuous,
that is, it is possible for its graph to jump down. When it jumps, the value
is assigned to the bottom of the jump.

Example 8.2.1
Let X be a continuous random variable with survival distribution defined by
S(x) = e−0.34x for x ≥ 0 and 1 otherwise. Compute P (5 < X ≤ 10).

Solution.
We have

P (5 < X ≤ 10) = F (10)−F (5) = S(5)−S(10) = e−0.34×5−e−0.34×10 ≈ 0.149

Example 8.2.2
Let X be the continuous random variable representing the age of death of an
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individual. The survival distribution function for an individual is determined
to be

S(x) =


1, x < 0

75−x
75

, 0 ≤ x ≤ 75
0, x > 75.

(a) Find the probability that the person dies before reaching the age of 18.
(b) Find the probability that the person lives more than 55 years.
(c) Find the probability that the person dies between the ages of 25 and 70.

Solution.
(a) First, note that for a continuous random variable P (X = a) = F (a) −
F (a−) = F (a) − F (a) = 0. Thus, P (X ≤ a) = P (X < a) + P (X = a) =
P (X < a). We have

P (X < 18) = P (X ≤ 18) = F (18) = 1− S(18) = 0.24.

(b) We have
P (X > 55) = S(55) = 0.267.

(c) We have

P (25 < X < 70) = F (70)− F (25) = S(25)− S(70) = 0.60
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Practice Problems

Problem 8.2.1
Consider the continuous random variableX with survival distribution defined
by

S(x) =


1, x < 0

1
10

(100− x)
1
2 , 0 ≤ x < 100

0, x ≥ 100.

(a) Find the corresponding expression for the cumulative probability func-
tion.
(b) Compute P (65 < X ≤ 75).

Problem 8.2.2
Let X denote the age at death of an individual. The survival distribution is
given by

S(x) =


1, x < 0

1− x
100
, 0 ≤ x < 100

0, x ≥ 100.

(a) Find the probability that a person dies before reaching the age of 30.
(b) Find the probability that a person lives more than 70 years.

Problem 8.2.3
If X is a continuous random variable then the survival distribution function
is defined by

S(x) =

∫ ∞
x

f(t)dt

where f(t) is called the probability density function of X. Show that
F ′(x) = f(x).

Problem 8.2.4
Let X be a continuous random variable with cumulative distribution function

F (x) =

{
0, x < 0

1− e−λx, x ≥ 0

where λ > 0. Find the probability density function f(x).
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Problem 8.2.5
Given the cumulative distribution function

F (x) =


0, x ≤ 0
x, 0 < x < 1
1, x ≥ 1.

Find S(x).

Problem 8.2.6
A survival distribution function is defined by

S(x) =


1, x < 0

ax2 + b, 0 ≤ x < ω
0 x ≥ ω.

Determine the values of a and b.

Problem 8.2.7
Consider an age-at-death random variable X with survival distribution de-
fined by

S(x) =


1, x < 0

1
10

(100− x)
1
2 , 0 ≤ x ≤ 100

0 x > 100.

(a) Explain why this is a suitable survival function.
(b) Find the corresponding expression for the cumulative probability func-
tion.
(c) Compute the probability that a newborn with survival function defined
above will die between the ages of 65 and 75.

Problem 8.2.8
Let

S(x) =


1, x < 0(

1− x
120

) 1
6 , 0 ≤ x ≤ 120

0 x > 120.

where X is the age-at-death random variable. Determine the probability
that a newborn survives beyond age 25.
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Problem 8.2.9
The SDF of a continuous random variable is given by

S(x) =

{
1, x < 0

e−0.34x, x ≥ 0.

Find P (10 < X ≤ 23).

Problem 8.2.10
Show that the function

S(x) =

{
1, x < 0

e−0.34x, x ≥ 0.

can serve as a survival distribution function, where x ≥ 0.

Problem 8.2.11
Consider an age-at-death random variable X with survival distribution de-
fined by

S(x) =

{
1, x < 0

e−0.34x, x ≥ 0.

Compute P (5 < X < 10).

Problem 8.2.12
Find the cumulative distribution function corresponding to the survival func-
tion

S(x) =


1, x < 0

1− x2

100
, 0 ≤ x ≤ 10

0, x > 10.

Problem 8.2.13
Which of the following is a SDF?
(I) S(x) = (x+ 1)e−x, x ≥ 0 and S(x) = 1 for x < 0.
(II) S(x) = x

2x+1
, x ≥ 0 and S(x) = 1 for x < 0.

(III) S(x) = x+1
x+2

, x ≥ 0 and S(x) = 1 for x < 0.

Problem 8.2.14
The mortality pattern of a certain population may be described as follows:
Out of every 108 lives born together one dies annually until there are no sur-
vivors. Find a simple function that can be used as S(x) for this population.
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Problem 8.2.15
The density function of a random variable X is given by f(x) = xe−x for
x ≥ 0. Find the survival distribution function of X.

Problem 8.2.16
Consider an age-at-death random variable X with survival distribution de-
fined by

S(x) =

{
1, x < 0

e−0.34x, x ≥ 0.

Find the PDF and CDF of X.



Chapter 9

Continuous Random Variables

Discrete random variables are functions with domain the sample space and a
countable range. In contrast, continuous random variables are functions with
an uncountable infinite range such as an interval. For example, the height
of a randomly selected tree. In this chapter, we discuss this type of random
variables.

309
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9.1 Distribution Functions

We say that a random variable X is continuous if there exists a non-negative
function f (not necessarily continuous) defined for all real numbers and hav-
ing the property that for any set B of real numbers we have

P (X ∈ B) =

∫
B

f(x)dx.

We call the function f the probability density function (abbreviated pdf)
of the random variable X.
If we let B = (−∞,∞) then∫ ∞

−∞
f(x)dx = P [X ∈ (−∞,∞)] = 1.

Now, if we let B = [a, b] then

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

That is, areas under the probability density function represent probabilities
as illustrated in Figure 9.1.1.

Figure 9.1.1

Now, if we let a = b in the previous formula we find

P (X = a) =

∫ a

a

f(x)dx = 0.

It follows from this result that

P (a ≤ X < b) = P (a < X ≤ b) = P (a < X < b) = P (a ≤ X ≤ b)
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and

P (X ≤ a) = P (X < a) =

∫ a

−∞
f(x)dx

and

P (X ≥ a) = P (X > a) =

∫ ∞
a

f(x)dx.

The cumulative distribution function or simply the distribution func-
tion (abbreviated cdf) F (t) of the random variable X is defined as follows

F (t) = P (X ≤ t)

i.e., F (t) is equal to the probability that the variable X assumes values,
which are less than or equal to t. From this definition we can write

F (t) =

∫ t

−∞
f(y)dy.

Geometrically, F (t) is the area under the graph of f to the left of t.

Example 9.1.1
Find the distribution functions corresponding to the following density func-
tions:
(a) f(x) = 1

π(1+x2)
, −∞ < x <∞

(b) f(x) = e−x

(1+e−x)2
, −∞ < x <∞

(c) f(x) = a−1
(1+x)a

, 0 ≤ x <∞
(d) f(x) = kαxα−1e−kx

α
, 0 ≤ x <∞, k > 0, α > 0.

Solution.
(a)

F (x) =

∫ x

−∞

1

π(1 + y2)
dy

=

[
1

π
arctan y

]x
−∞

=
1

π
arctanx− 1

π
· −π

2

=
1

π
arctanx+

1

2
.
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(b)

F (x) =

∫ x

−∞

e−y

(1 + e−y)2
dy

=

[
1

1 + e−y

]x
−∞

=
1

1 + e−x

(c) For x ≥ 0

F (x) =

∫ x

0

a− 1

(1 + y)a
dy

=

[
− 1

(1 + y)a−1

]x
0

=1− 1

(1 + x)a−1
.

For x < 0 it is obvious that F (x) = 0, so we could write the result in full as

F (x) =

{
0 x < 0

1− 1
(1+x)a−1 x ≥ 0.

(d) For x ≥ 0

F (x) =

∫ x

0

kαyα−1e−ky
α

dy

=
[
−e−kyα

]x
0

=1− e−kxα .

For x < 0 we have F (x) = 0 so that

F (x) =

{
0 x < 0

1− e−kxα x ≥ 0

Example 9.1.2
If the probability density of X is given by

f(x) =

{
6x(1− x) 0 < x < 1

0 otherwise,

find the probability density of Y = X3.
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Solution.
We have

F (y) =P (Y ≤ y) = P (X3 ≤ y) = P (X ≤ y
1
3 )

=

∫ y
1
3

0

6x(1− x)dx = 3y
2
3 − 2y.

Hence, f(y) = F ′(y) = 2(y−
1
3 − 1), for 0 < y < 1 and 0 otherwise

Example 9.1.3
Suppose X is an exponential random variable with density function

f(x) =

{
λe−λx x ≥ 0

0 otherwise.

What is the density function of Y = eX?

Solution.
For y ≥ 1, we have

F (y) =P (Y ≤ y) = P (eX ≤ y) = P (X ≤ ln y)

=FX(ln y) =

∫ ln y

0

λe−λxdx

=− e−λx
∣∣ln y
0

=1− y−λ.

Thus,
fY (y) = λy−λ−1, y ≥ 1

and 0 otherwise

Next, we list the properties of the cumulative distribution function F (t) for
a continuous random variable X.

Theorem 9.1.1
The cumulative distribution function of a continuous random variable X sat-
isfies the following properties:
(a) 0 ≤ F (t) ≤ 1.
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(b) F (t) is a non-decreasing function, i.e. if a < b then F (a) ≤ F (b).
(c) F (t)→ 0 as t→ −∞ and F (t)→ 1 as t→∞.
(d) P (a < X ≤ b) = F (b)− F (a).
(e) F is continuous.
(f) F ′(t) = f(t) whenever the derivative exists.

Proof.
Properties (a) − (d) were established in Section 8.1. For part (e), we know
that F is right continuous (See Proposition 8.1.3). Left-continuity follows
from Example 8.1.4 and the fact that P (X = a) = 0. Part (f) is the result
of applying the Second Fundamental Theorem of Calculus to the function
F (x) =

∫ x
−∞ f(t)dt

Figure 9.1.2 illustrates a representative cdf.

Figure 9.1.2

Remark 9.1.1
It is important to keep in mind that a pdf does not represent a probability.
However, it can be used as a measure of how likely it is that the random
variable will be near a. To see this, let ε > 0 be a small positive number.
Then

P (a ≤ X ≤ a+ ε) = F (a+ ε)− F (a) =

∫ a+ε

a

f(t)dt ≈ εf(a).

In particular,

P
(
a− ε

2
≤ X ≤ a+

ε

2

)
=P

(
a− ε

2
≤ X ≤ a

)
+ P

(
a ≤ X ≤ ε

2

)
≈ ε

2
f(a) +

ε

2
f(a) = εf(a).
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This means that the probability that X will be contained in an interval of
length ε around the point a is approximately εf(a).

Remark 9.1.2
From Theorem 9.1.1 (c) and the fact that the graph of F (t) levels off when
t→ ±∞, we find limt→±∞ F

′(t) = 0. Using (f), we have limt→±∞ f(t) = 0.

Example 9.1.4
Suppose that the function f(t) defined below is the density function of some
random variable X.

f(t) =

{
e−t t ≥ 0,
0 t < 0.

Compute P (−10 ≤ X ≤ 10).

Solution.

P (−10 ≤ X ≤ 10) =

∫ 10

−10

f(t)dt

=

∫ 0

−10

f(t)dt+

∫ 10

0

f(t)dt

=

∫ 10

0

e−tdt

= −e−t
∣∣10

0
= 1− e−10

A pdf need not be continuous, as the following example illustrates.

Example 9.1.5
(a) Determine the value of c so that the following function is a pdf.

f(x) =


15
64

+ x
64
−2 ≤ x ≤ 0

3
8

+ cx 0 < x ≤ 3
0 otherwise

(b) Determine P (−1 ≤ X ≤ 1).
(c) Find F (x).
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Solution.
(a) Observe that f is discontinuous at the points −2 and 0, and is potentially
also discontinuous at the point 3. We first find the value of c that makes f
a pdf.

1 =

∫ 0

−2

(
15

64
+

x

64

)
dx+

∫ 3

0

(
3

8
+ cx

)
dx

=

[
15

64
x+

x2

128

]0

−2

+

[
3

8
x+

cx2

2

]3

0

=
30

64
− 2

64
+

9

8
+

9c

2

=
100

64
+

9c

2
=

25

16
+

9c

2
.

Solving for c we find c = −1
8
.

(b) The probability P (−1 ≤ X ≤ 1) is calculated as follows.

P (−1 ≤ X ≤ 1) =

∫ 0

−1

(
15

64
+

x

64

)
dx+

∫ 1

0

(
3

8
− x

8

)
dx =

69

128
.

(c) For −2 ≤ x ≤ 0 we have

F (x) =

∫ x

−2

(
15

64
+

t

64

)
dt =

x2

128
+

15

64
x+

7

16

and for 0 < x ≤ 3

F (x) =

∫ 0

−2

(
15

64
+

x

64

)
dx+

∫ x

0

(
3

8
− t

8

)
dt =

7

16
+

3

8
x− 1

16
x2.

Hence the full cdf is

F (x) =


0 x < −2

x2

128
+ 15

64
x+ 7

16
−2 ≤ x ≤ 0

7
16

+ 3
8
x− 1

16
x2 0 < x ≤ 3

1 x > 3.

Observe that at all points of discontinuity of the pdf, the cdf is continuous.
That is, even when the pdf is discontinuous, the cdf is continuous
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Remark 9.1.3
For a continuous distribution, the graph of its CDF is continuous non-
decreasing curve. For a discrete distribution, the graph of its CDF consists of
a series of horizontal lines, with jumps between them. If you see both jumps
and pieces of continuous increasing curves, you are looking at a CDF of a
mixed distribution. For example, the random variable X with cumulative
distribution function

F (x) =


0 x < 1

x2−2x+2
2

1 ≤ x < 2
1 x ≥ 2.

is a mixed random variable with the discrete portion concentrated at X = 1.
Now, we have

P (1 < X ≤ 2) = F (2)− F (1) =
1

2

and P (X > 2) = 1 − F (2) = 0. But P (X < 1) + P (X = 1) + P (1 < X ≤
2) + P (X > 2) = 1 from which we find P (X = 1) = 1

2
. Hence, the pdf of X

is

f(x) = F ′(x) =


1
2

x = 1
x− 1 1 < x < 2

0 otherwise.
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Practice Problems

Problem 9.1.1
Determine the value of c so that the following function is a pdf.

f(x) =

{ c
(x+1)3

if x ≥ 0

0 otherwise.

Problem 9.1.2
Let X denote the length of time (in minutes) of using a computer at a public
library with pdf given by

f(x) =

{
1
5
e−

x
5 if x ≥ 0

0 otherwise.

(a) What is the probability of using a computer for more than 10 minutes.
(b) Find the probability of using a computer between 5 and 10 minutes.
(c) Find the cumulative distribution function of X.

Problem 9.1.3
A probability student is always late to class and arrives within ten minutes
after the start of the class. Let X be the time that elapses between the
start of the class and the time the student arrives to class with a probability
density function

f(x) =

{
kx2 0 ≤ x ≤ 10
0 otherwise

where k > 0 is a constant. Compute the value of k and then find the
probability that the student arrives less than 3 minutes after the start of the
class.

Problem 9.1.4
The lifetime X of a battery (in hours) has a density function given by

f(x) =


2x 0 ≤ x < 1

2
3
4

2 < x < 3
0 otherwise.

Find the probability that a battery will last for more than 15 minutes?
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Problem 9.1.5
Let F : R→ R be a function defined by

F (x) =


0 x < 0
x/2 0 ≤ x < 1

(x+ 2)/6 1 ≤ x < 4
1 x ≥ 4.

(a) Show that F satisfies conditions (a),(b),(c), and (e) of Theorem 9.1.1.
(b) Find the probability density function f(x).

Problem 9.1.6
The amount of time X (in minutes) it takes a person standing in line at a
post office to reach the counter is described by the continuous probability
function:

f(x) =

{
kxe−x x > 0

0 otherwise.

where k is a constant.
(a) Determine the value of k.
(b) What is the probability that a person takes more than 1 minute to reach
the counter?

Problem 9.1.7
A mixed random variable X has the cumulative distribution function

F (x) =

{
0 x < 0
ex

ex+1
x ≥ 0.

(a) Find the probability density function.
(b) Find P (0 ≤ X ≤ 1).

Problem 9.1.8
A commercial water distributor supplies an office with gallons of water once
a week. Suppose that the weekly supplies in tens of gallons is a random
variable with pdf

f(x) =

{
5(1− x)4 0 < x < 1

0 otherwise.

At least how many gallons c should be delivered in one week so that the
probability of the supply is 0.1? Round to a whole number of gallons.
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Problem 9.1.9 ‡
The loss due to a fire in a commercial building is modeled by a random
variable X with density function

f(x) =

{
0.005(20− x) 0 < x < 20

0 otherwise.

Given that a fire loss exceeds 8, what is the probability that it exceeds 16 ?

Problem 9.1.10 ‡
The lifetime of a machine part has a continuous distribution on the interval
(0, 40) with probability density function f, where f(x) is proportional to
(10 + x)−2.
Calculate the probability that the lifetime of the machine part is less than 6.

Problem 9.1.11 ‡
A group insurance policy covers the medical claims of the employees of a
small company. The value, V, of the claims made in one year is described by

V = 100000Y

where Y is a random variable with density function

f(y) =

{
k(1− y)4 0 < y < 1

0 otherwise

where k is a constant.
What is the conditional probability that V exceeds 40,000, given that V
exceeds 10,000?

Problem 9.1.12 ‡
An insurance company insures a large number of homes. The insured value,
X, of a randomly selected home is assumed to follow a distribution with
density function

f(x) =

{
3x−4 x > 1

0 otherwise.

Given that a randomly selected home is insured for at least 1.5, what is the
probability that it is insured for less than 2 ?
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Problem 9.1.13 ‡
An insurance policy pays for a random loss X subject to a deductible of
C, where 0 < C < 1. The loss amount is modeled as a continuous random
variable with density function

f(x) =

{
2x 0 < x < 1
0 otherwise.

Given a random loss X, the probability that the insurance payment is less
than 0.5 is equal to 0.64 . Calculate C.

Problem 9.1.14
Let X have the density function

f(x) =

{
3x2

θ3
0 < x < θ

0 otherwise.

Suppose that P (X > 1) = 7
8
.

(a) Show that θ > 1.
(b) Find the value of θ.

Problem 9.1.15
Let X be a continuous random variable with density function

f(x) =

{ |x|
10
−2 ≤ x ≤ 4

0 otherwise.

Calculate
∫∞
−∞ xf(x)dx.

Problem 9.1.16
Let X be a continuous random variable with density function

f(x) =

{
1
4

8 ≤ x ≤ 12
0 otherwise.

Let Y = 10
X
. Find fY (y).

Problem 9.1.17
An insurance company’s monthly claims are modeled by a continuous, pos-
itive random variable X, whose probability density function is proportional
to (1 + x)−4, where 0 < x <∞ and 0 otherwise.
Calculate

∫∞
−∞ xf(x)dx.
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Problem 9.1.18
A continuous random variable X has a density function

f(x) =

{
1
5

0 < x < 5
0 otherwise.

Calculate
∫∞
−∞min (x, 4)f(x)dx and

∫∞
−∞min (x, 4)2f(x)dx.

Problem 9.1.19 ‡
Let X be a continuous random variable with cumulative distribution function

F (x) =

{
1−

(
2
x

)2
x > 2

0, otherwise.

Let Y = X2. Find the density function of Y.

Problem 9.1.20 ‡
The monthly profit of Company I can be modeled by a continuous random
variable with density function f. Company II has a monthly profit that is
twice that of Company I.
Let g be the density function for the distribution of the monthly profit of
Company II.
Determine g(y) where it is not zero.

Problem 9.1.21 ‡
Damages to a car in a crash are modeled by a random variable with density
function

f(x) =

{
c(x2 − 60x+ 800), 0 < x < 20

0, otherwise

where c is a constant. A particular car is insured with a deductible of 2.
This car was involved in a crash with resulting damages in excess of the
deductible. Calculate the probability that the damages exceeded 10.

Problem 9.1.22 ‡
The distribution of the size of claims paid under an insurance policy has
probability density function

f(x) =

{
cxa, 0 < x < 5
0, otherwise,
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where a > 0 and c > 0.
For a randomly selected claim, the probability that the size of the claim is
less than 3.75 is 0.4871. Calculate the probability that the size of a randomly
selected claim is greater than 4.

Problem 9.1.23 ‡
Let X be a continuous random variable with probability density function

f(x) =

{
λe−λx, x > 0

0, otherwise

where λ > 0. Let Y be the smallest integer greater than or equal to X.
Determine the probability mass function of Y.
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9.2 The Expected Value of a Continuous Ran-

dom Variable

As with discrete random variables, the expected value of a continuous ran-
dom variable is a measure of location. It defines the balancing point of the
distribution.
Suppose that a continuous random variable X has a density function f(x)
defined in [a, b]. Let’s try to estimate E(X) by cutting [a, b] into n equal sub-

intervals, each of width ∆x, so ∆x = (b−a)
n
. Let xi = a + i∆x, i = 0, 1, ..., n,

be the partition points between the sub-intervals. Then, the probability of
X assuming a value in [xi, xi+1] is

P (xi ≤ X ≤ xi+1) =

∫ xi+1

xi

f(x)dx ≈ ∆xf

(
xi + xi+1

2

)
where we used the midpoint rule to estimate the integral. An estimate of the
desired expectation is approximately

E(X) ≈
n−1∑
i=0

(
xi + xi+1

2

)
∆xf

(
xi + xi+1

2

)
.

A better estimate is obtained by letting n→∞. Thus, we obtain

E(X) =

∫ b

a

xf(x)dx.

The above argument applies if either a or b are infinite. In this case, one has
to make sure that all improper integrals in question converge.
Since the domain of f consists of all real numbers, we define the expected
value of X by the improper integral

E(X) =

∫ ∞
−∞

xf(x)dx

provided that the improper integral converges.

Example 9.2.1
A continuous random variable has the pdf

f(x) =

{
600
x2
, 100 < x < 120

0, otherwise.
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(a) Determine the mean of X.
(b) Find P (X > 110).

Solution.
(a) We have

E(X) =

∫ 120

100

x · 600x−2dx = 600 ln x|120
100 ≈ 109.39.

(b) The desired probability is

P (X > 110) =

∫ 120

110

600x−2dx =
5

11

Sometimes for theoretical purposes the following theorem is useful. It ex-
presses the expectation in terms of an integral of probabilities. It is most
often used for random variables X that have only positive values; in that
case the second term is of course zero.

Theorem 9.2.1
Let X be a continuous random variable with probability density function f.
Then

E(X) =

∫ ∞
0

P (X > y)dy −
∫ 0

−∞
P (X < y)dy.

Proof.
From the definition of E(X) we have

E(X) =

∫ ∞
0

xf(x)dx+

∫ 0

−∞
xf(x)dx

=

∫ ∞
0

∫ y=x

y=0

dyf(x)dx−
∫ 0

−∞

∫ y=0

y=x

dyf(x)dx

Interchanging the order of integration as shown in Figure 9.2.1 we can write∫ ∞
0

∫ y=x

y=0

dyf(x)dx =

∫ ∞
0

∫ ∞
y

f(x)dxdy

and ∫ 0

−∞

∫ y=0

y=x

dyf(x)dx =

∫ 0

−∞

∫ y

−∞
f(x)dxdy.

The result follows by putting the last two equations together and recalling
that
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y
f(x)dx = P (X > y) and

∫ y
−∞ f(x)dx = P (X < y)

Figure 9.2.1

Just as with discrete random variables, if X is a continuous random variable
and g is a function defined for the values of X and with real values, then
we can define a new continuous random variable Y = g(X). The following
theorem gives the expected value of Y.

Theorem 9.2.2
If X is continuous random variable with a probability density function f(x),
and if Y = g(X) is a function of the random variable, then the expected
value of the function g(X) is

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx.

Proof.
By the previous theorem we have

E(g(X)) =

∫ ∞
0

P [g(X) > y]dy −
∫ 0

−∞
P [g(X) < y]dy.

If we let By = {x : g(x) > y} then from the definition of a continuous random
variable we can write

P [g(X) > y] =

∫
By

f(x)dx =

∫
{x:g(x)>y}

f(x)dx.
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Thus,

E(g(X)) =

∫ ∞
0

[∫
{x:g(x)>y}

f(x)dx

]
dy −

∫ 0

−∞

[∫
{x:g(x)<y}

f(x)dx

]
dy.

Now we can interchange the order of integration to obtain

E(g(X)) =

∫
{x:g(x)>0}

∫ g(x)

0

f(x)dydx−
∫
{x:g(x)<0}

∫ 0

g(x)

f(x)dydx

=

∫
{x:g(x)>0}

g(x)f(x)dx+

∫
{x:g(x)<0}

g(x)f(x)dx =

∫ ∞
−∞

g(x)f(x)dx.

Figure 9.2.2 helps understanding the process of interchanging the order of
integration that we used in the proof above

Figure 9.2.2

Example 9.2.2
Let T be a continuous random variable with pdf

f(t) =

{
1
10
e−

t
10 , t ≥ 0

0, otherwise.

Define the continuous random variable by

X =


100 0 < T ≤ 1
50 1 < T ≤ 3
0 T > 3.

Find E(X).
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Solution.
By Theorem 9.2.2, we have

E(X) =

∫ 1

0

100
1

10
e−

t
10dt+

∫ 3

1

50
1

10
e−

t
10dt

=100(1− e−
1
10 ) + 50(e−

1
10 − e−

3
10 )

=100− 50e−
1
10 − 50e−

3
10

Corollary 9.2.1
For any constants a and b

E(aX + b) = aE(X) + b.

Proof.
Let g(x) = ax+ b in Theorem 9.2.2 to obtain

E(aX + b) =

∫ ∞
−∞

(ax+ b)f(x)dx

=a

∫ ∞
−∞

xf(x)dx+ b

∫ ∞
−∞

f(x)dx

=aE(X) + b
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Practice Problems

Problem 9.2.1
Let X have the density function given by

f(x) =


0.2 −1 < x ≤ 0

0.2 + cx 0 < x ≤ 1
0 otherwise.

(a) Find the value of c.
(b) Find F (x).
(c) Find P (0 ≤ x ≤ 0.5).
(d) Find E(X).

Problem 9.2.2
The density function of X is given by

f(x) =

{
a+ bx2 0 ≤ x ≤ 1

0 otherwise.

Suppose that E(X) = 3
5
.

(a) Find a and b.
(b) Determine the cdf, F (x), explicitly.

Problem 9.2.3
Compute E(X) if X has the density function given by
(a)

f(x) =

{
1
4
xe−

x
2 x > 0

0 otherwise.

(b)

f(x) =

{
c(1− x2) −1 < x < 1

0 otherwise.

(c)

f(x) =

{
5
x2

x > 5
0 otherwise.

Problem 9.2.4
A continuous random variable has a pdf

f(x) =

{
1− x

2
0 < x < 2

0 otherwise.

Find the expected value of X.



330 CHAPTER 9. CONTINUOUS RANDOM VARIABLES

Problem 9.2.5
Let X denote the lifetime (in years) of a computer chip. Let the probability
density function be given by

f(x) =

{
4(1 + x)−5 x ≥ 0

0 otherwise.

(a) Find the mean.
(b) What is the probability that a randomly chosen computer chip expires
in less than a year?

Problem 9.2.6
Let X be a continuous random variable with pdf

f(x) =

{
1
x

1 < x < e
0 otherwise.

Find E(lnX).

Problem 9.2.7
Let X have a pdf

f(x) =

{
1 1 < x < 2
0 otherwise.

Find the expected value of Y = X2.

Problem 9.2.8 ‡
Let X be a continuous random variable with density function

f(x) =

{ |x|
10
−2 ≤ x ≤ 4

0 otherwise.

Calculate the expected value of X.

Problem 9.2.9 ‡
An insurance company’s monthly claims are modeled by a continuous, pos-
itive random variable X, whose probability density function is proportional
to (1 + x)−4, where 0 < x <∞ and 0 otherwise.
Determine the company’s expected monthly claims.
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Problem 9.2.10 ‡
A device that continuously measures and records seismic activity is placed
in a remote region. The time, T, to failure of this device has the density
function

f(t) =

{
1
3
e−

t
3 0 ≤ x ≤ ∞

0 otherwise.

Since the device will not be monitored during its first two years of service,
the time to discovery of its failure is X = max (T, 2).
Calculate E(X).

Problem 9.2.11
Find E(X) when the density function of X is

f(x) =

{
2x if 0 ≤ x ≤ 1
0 otherwise.

Problem 9.2.12 ‡
An insurance policy reimburses a loss up to a benefit limit of 10 . The
policyholder’s loss, X, follows a distribution with density function:

f(x) =

{
2
x3

x > 1
0 otherwise.

What is the expected value of the benefit paid under the insurance policy?

Problem 9.2.13 ‡
A manufacturer’s annual losses follow a distribution with density function

f(x) =

{
2.5(0.6)2.5

x3.5
x > 0.6

0 otherwise.

To cover its losses, the manufacturer purchases an insurance policy with an
annual deductible of 2.
What is the mean of the manufacturer’s annual losses not paid by the insur-
ance policy?

Problem 9.2.14 ‡
A piece of equipment is being insured against early failure. The time from
purchase until failure of the equipment has density function

f(t) =

{
1
10
e−

t
10 0 < t <∞

0 otherwise.
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The insurance will pay an amount x if the equipment fails during the first
year, and it will pay 0.5x if failure occurs during the second or third year. If
failure occurs after the first three years, no payment will be made.
Calculate x such that the expected payment made under this insurance is
1000.

Problem 9.2.15 ‡
An insurance policy is written to cover a loss, X, where X has the density
function

f(x) =

{
1

1000
0 ≤ x ≤ 1000

0 otherwise.

The policy has a deductible, d, and the expected payment under the policy
is 25% of what it would be with no deductible.
Calculate d.

Problem 9.2.16 ‡
Let X be a continuous random variable with density function

f(x) =

{
p−1
xp
, x > 1

0, otherwise.

Calculate the value of p such that E(X) = 2.

Problem 9.2.17 ‡
The figure below shows the cumulative distribution function of a random
variable, X.

Calculate E(X).
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9.3 The Variance of a Continuous Random

Variable

The variance of a random variable is a measure of the “spread” of the
random variable about its expected value. In essence, it tells us how much
variation there is in the values of the random variable from its mean value.
The variance of the random variable X, is determined by calculating the
expectation of the function g(X) = (X − E(X))2. That is,

Var(X) = E
[
(X − E(X))2

]
.

Theorem 9.3.1
(a) An alternative formula for the variance is given by

Var(X) = E(X2)− [E(X)]2.

(b) For any constants a and b, Var(aX + b) = a2Var(X).

Proof.
(a) By Theorem 9.2.2 we have

Var(X) =

∫ ∞
−∞

(x− E(X))2f(x)dx

=

∫ ∞
−∞

(x2 − 2xE(X) + (E(X))2)f(x)dx

=

∫ ∞
−∞

x2f(x)dx− 2E(X)

∫ ∞
−∞

xf(x)dx+ (E(X))2

∫ ∞
−∞

f(x)dx

=E(X2)− (E(X))2.

(b) We have

Var(aX+ b) = E[(aX+ b−E(aX+ b))2] = E[a2(X−E(X))2] = a2Var(X)

Example 9.3.1
Let X be a random variable with probability density function

f(x) =

{
2− 4|x| −1

2
< x < 1

2
,

0 otherwise.

(a) Find the variance of X.
(b) Find the c.d.f. F (x) of X.
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Solution.
(a) Since the function xf(x) is odd in −1

2
< x < 1

2
, we have E(X) = 0. Thus,

Var(X) =E(X2) =

∫ 0

− 1
2

x2(2 + 4x)dx+

∫ 1
2

0

x2(2− 4x)dx

=
1

24
.

(b) Since the range of f is the interval (−1
2
, 1

2
), we have F (x) = 0 for x ≤ −1

2

and F (x) = 1 for x ≥ 1
2
. Thus it remains to consider the case when −1

2
<

x < 1
2
. For −1

2
< x ≤ 0,

F (x) =

∫ x

− 1
2

(2 + 4t)dt = 2x2 + 2x+
1

2
.

For 0 ≤ x < 1
2
, we have

F (x) =

∫ 0

− 1
2

(2 + 4t)dt+

∫ x

0

(2− 4t)dt = −2x2 + 2x+
1

2
.

Combining these cases, we get

F (x) =


0 x < −1

2

2x2 + 2x+ 1
2
−1

2
≤ x < 0

−2x2 + 2x+ 1
2

0 ≤ x < 1
2

1 x ≥ 1
2

Example 9.3.2
Let X be a continuous random variable with pdf

f(x) =

{
4xe−2x, x > 0

0 otherwise.

For this example, you might find the identity
∫∞

0
tne−tdt = n! useful.

(a) Find E(X).
(b) Find the variance of X.
(c) Find the probability that X < 1.
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Solution.
(a) Using the substitution t = 2x we find

E(X) =

∫ ∞
0

4x2e−2xdx =
1

2

∫ ∞
0

t2e−tdt =
2!

2
= 1.

(b) First, we find E(X2). Again, letting t = 2x we find

E(X2) =

∫ ∞
0

4x3e−2xdx =
1

4

∫ ∞
0

t3e−tdt =
3!

4
=

3

2
.

Hence,

Var(X) = E(X2)− (E(X))2 =
3

2
− 1 =

1

2
.

(c) We have

P (X < 1) =P (X ≤ 1) =

∫ 1

0

4xe−2xdx =

∫ 2

0

te−tdt

= −(t+ 1)e−t
∣∣2
0

= 1− 3e−2

Example 9.3.3
Let X be the random variable representing the cost of maintaining a car.
Suppose that E(X) = 200 and Var(X) = 260. If a tax of 20% is introduced
on all items associated with the maintenance of the car, what will the variance
of the cost of maintaining a car be?

Solution.
The new cost is 1.2X, so its variance is Var(1.2X) = 1.22Var(X) = (1.44)(260) =
374.

Finally, we define the standard deviation X to be the square root of the
variance.

Example 9.3.4
A random variable has a Pareto distribution with parameters α > 0 and
x0 > 0 if its density function has the form

f(x) =

{
αxα0
xα+1 x > x0

0 otherwise.

(a) Show that f(x) is indeed a density function.
(b) Find E(X) and Var(X).
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Solution.
(a) By definition f(x) > 0. Also,∫ ∞

x0

f(x)dx =

∫ ∞
x0

αxα0
xα+1

dx = −
(x0

x

)∣∣∣∞
x0

= 1

(b) We have

E(X) =

∫ ∞
x0

xf(x)dx =

∫ ∞
x0

αxα0
xα

dx =
α

1− α

(
xα0
xα−1

)∣∣∣∣∞
x0

=
αx0

α− 1

provided α > 1. Similarly,

E(X2) =

∫ ∞
x0

x2f(x)dx =

∫ ∞
x0

αxα0
xα−1

dx =
α

2− α

(
xα0
xα−2

)∣∣∣∣∞
x0

=
αx2

0

α− 2

provided α > 2. Hence,

Var(X) =
αx2

0

α− 2
− α2x2

0

(α− 1)2
=

αx2
0

(α− 2)(α− 1)2
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Practice Problems

Problem 9.3.1
A continuous random variable has a pdf

f(x) =

{
1− x

2
0 < x < 2

0 otherwise.

Find the variance of X.

Problem 9.3.2
Let X denote the lifetime (in years) of a computer chip. Let the probability
density function be given by

f(x) =

{
4(1 + x)−5 x ≥ 0

0 otherwise.

Find the standard deviation of X.

Problem 9.3.3
Let X have a cdf

F (x) =

{
1− 1

x6
x ≥ 1

0 otherwise.

Find Var(X).

Problem 9.3.4
Let X have a pdf

f(x) =

{
1 1 < x < 2
0 otherwise.

Find the variance of Y = X2.

Problem 9.3.5 ‡
A random variable X has the cumulative distribution function

F (x) =


0 x < 1

x2−2x+2
2

1 ≤ x < 2
1 x ≥ 2.

Calculate the variance of X. Hint: See Remark 9.1.3.
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Problem 9.3.6
Let X have the density function

f(x) =

{
2x
k2

0 ≤ x ≤ k
0 otherwise.

For what value of k is the variance of X equal to 2?

Problem 9.3.7 ‡
An actuary determines that the claim size for a certain class of accidents is
a continuous random variable, X, with moment generating function

MX(t) =
1

(1− 2500t)4
.

Calculate the standard deviation of the claim size for this class of accidents.

Problem 9.3.8 ‡
A recent study indicates that the annual cost of maintaining and repairing a
car in a town in Ontario averages 200 with a variance of 260. A tax of 20%
is introduced on all items associated with the maintenance and repair of cars
(i.e., everything is made 20% more expensive).
Calculate the variance of the annual cost of maintaining and repairing a car
after the tax is introduced.

Problem 9.3.9 ‡
The proportionX of yearly dental claims that exceed 200 is a random variable
with probability density function

f(x) =

{
60x3(1− x)2, 0 < x < 1

0, otherwise.

Calculate Var
[

X
1−X

]
.
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9.4 Median, Mode, and Percentiles

Recall that the mean of a random variable is the measure of the center of the
data (i.e. a measure of central tendency) whereas the standard deviation is
a measure of how data is scattered around the mean (i.e. measure of disper-
sion). In this section, we consider other measures of central tendency such
as the median, the mode and the percentile.

Median of a Random Variable
In statistics, the median of a set of data is the number where half of the
data should fall below it. In the context of a discrete random variable X,
the median is the value M of X such that F (M) = P (X ≤ M) ≥ 0.5 and
P (X ≥M) ≥ 0.5.

Example 9.4.1
Given the pmf of a discrete random variable X.

x 0 1 2 3 4 5
p(x) 0.35 0.20 0.15 0.15 0.10 0.05

Find the median of X.

Solution.
Since P (X ≤ 1) = 0.55 > 0.5 and P (X ≥ 1) = 0.65 > 0.5, 1 is the median
of X

Example 9.4.2
Let X be the discrete random variable with pmf given by p(x) =

(
1
2

)x
, x =

1, 2, · · · and 0 otherwise. Find the median of X.

Solution.
Since P (X ≤ 1) = 0.5 and P (X ≥ 1) = 1 > 0.5, the median of X is 1

In the case of a continuous random variable X, since the total area un-
der the graph of f(x) is 1, the median is the number M such that P (X ≤
M) = P (X ≥M) = 0.5. That is, F (M) = 0.5, where F (x) is the cumulative
distribution function of X.

Example 9.4.3
Let X be a continuous random variable with pdf f(x) = 1

b−a for a < x < b
and 0 otherwise. Find the median of X.
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Solution.
We must find a number M such that

∫M
a

dx
b−a = 0.5. This leads to the equa-

tion M−a
b−a = 0.5. Solving this equation we find M = a+b

2

Mode of a Random Variable
The mode is defined as the value of X that maximizes the probability mass
function p(x) (discrete case) or the probability density function f(x) (contin-
uous case.) In the discrete case, the mode is the value that is most likely to
be sampled, i.e., where p(x) is maximum. In the continuous case, the mode
is where f(x) is at its peak.

Example 9.4.4
Let X be the discrete random variable with pmf given by p(x) =

(
1
2

)x
, x =

1, 2, · · · and 0 otherwise. Find the mode of X.

Solution.
The value of x that maximizes p(x) is x = 1. Thus, the mode of X is 1

Example 9.4.5
Let X be the continuous random variable with pdf given by f(x) = 0.75(1−
x2) for −1 ≤ x ≤ 1 and 0 otherwise. Find the mode of X.

Solution.
The graph of f(x) is a parabola that opens down with vertex at x = 0. Hence,
the pdf is maximum for x = 0. Thus, the mode of X is 0

Percentiles, Quantiles and Quartiles
In statistics, a percentile is the value of a variable below which a certain
percent of observations fall. For example, if a score is in the 85th percentile,
it is higher than 85% of the other scores. For a random variable X and
0 < p < 1, the 100pth percentile (or the pth quantile) is the number x such
P (X ≤ x) ≥ p and P (X ≥ x) ≥ 1− p.
For a continuous random variable, this is the solution to the equation F (x) =
p. The 25th percentile is also known as the first quartile, the 50th percentile
as the median or second quartile, and the 75th percentile as the third quartile.

Example 9.4.6
A loss random variable X has the density function

f(x) =

{
2.5(200)2.5

x3.5
x > 200

0 otherwise.
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Calculate the difference between the 25th and 75th percentiles of X.

Solution.
First, the cdf is given by

F (x) =

∫ x

200

2.5(200)2.5

t3.5
dt.

If Q1 > 200 is the 25th percentile then it satisfies the equation

F (Q1) =
1

4

or equivalently

1− F (Q1) =
3

4
.

This leads to

3

4
=

∫ ∞
Q1

2.5(200)2.5

t3.5
dt = −

(
200

t

)2.5
∣∣∣∣∣
∞

Q1

=

(
200

Q1

)2.5

.

Solving for Q1 we find Q1 = 200(4/3)0.4 ≈ 224.4. Similarly, the third quartile
(i.e. 75th percentile) is given by Q3 = 348.2, The interquartile range
(i.e., the difference between the 25th and 75th percentiles) is Q3 − Q1 =
348.2− 224.4 = 123.8

Example 9.4.7
Let X be the random variable with pdf f(x) = 1

b−a for a < x < b and 0

otherwise. Find the pth quantile of X.

Solution.
We have

p = P (X ≤ x) =

∫ x

a

dt

b− a
=
x− a
b− a

.

Solving this equation for x, we find x = a+ (b− a)p

Example 9.4.8
What percentile is 0.63 quantile?

Solution.
0.63 quantile is 63rd percentile
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Practice Problems

Problem 9.4.1
Suppose the random variable X has pmf

p(n) =
1

3

(
2

3

)n
, n = 0, 1, 2, · · ·

Find the median and the 70th percentile.

Problem 9.4.2
Suppose the random variable X has pdf

f(x) =

{
e−x x ≥ 0
0 otherwise.

Find the 50th percentile.

Problem 9.4.3
Let Y be a continuous random variable with cumulative distribution function

F (y) =

{
0 y ≤ a

1− e− 1
2

(y−a)2 otherwise

where a is a constant. Find the 75th percentile of Y.

Problem 9.4.4
Let X be a random variable with density function

f(x) =

{
λe−λx x > 0

0 otherwise

Find λ if the median of X is 1
3
.

Problem 9.4.5
People are dispersed on a linear beach with a density function f(y) =
4y3, 0 < y < 1, and 0 elsewhere. An ice cream vendor wishes to locate
her cart at the median of the locations (where half of the people will be on
each side of her). Where will she locate her cart?
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Problem 9.4.6
Let X be a continuous random variable with density function

f(x) =

{
1
9
x(4− x) 0 < x < 3

0 otherwise.

Find the mode of X.

Problem 9.4.7
Find the pth quantile of the exponential distribution defined by the cumula-
tive distribution function F (x) = 1− e−x for x ≥ 0 and 0 otherwise.

Problem 9.4.8
A continuous random variable has the pdf f(x) = 1

2
e−|x| for x ∈ R. Find the

pth quantile of X.

Problem 9.4.9
Let X be a loss random variable with cdf

F (x) =

{
1−

(
θ

θ+x

)α
, x ≥ 0

0, x < 0.

The 10th percentile is θ − k. The 90th percentile is 5θ − 3k. Determine the
value of α.

Problem 9.4.10
Let X be a random variable with density function f(x) = 4x

(1+x2)3
for x > 0

and 0 otherwise. Calculate the mode of X.

Problem 9.4.11
Let X be a random variable with pdf f(x) =

(
3

5000

) (
5000
x

)4
for x > 5000 and

0 otherwise. Determine the median of X.

Problem 9.4.12
Let X be a random variable with cdf

F (x) =


0, x < 0
x3

27
, 0 ≤ x ≤ 3

1, x > 3.

Find the median of X.
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Problem 9.4.13
A distribution has a pdf f(x) = 3

x4
for x > 1 and 0 otherwise. Calculate the

0.95th quantile of this distribution.

Problem 9.4.14 ‡
An insurance company sells an auto insurance policy that covers losses in-
curred by a policyholder, subject to a deductible of 100 . The cumulative
distribution function for the incurred losses is given by

F (x) = 1− e−
1

300
x, x > 0

and 0 otherwise. What is the 95th percentile of actual losses that exceed the
deductible?

Problem 9.4.15 ‡
Losses under an insurance policy have the density function

f(x) =

{
0.25e−0.25x x ≥ 0

0 otherwise.

The deductible is 1 for each loss.
Calculate the median amount that the insurer pays a policyholder for a loss
under the policy.

Problem 9.4.16 ‡
Losses covered by an insurance policy have the density function

f(x) =

{
0.001 0 ≤ x ≤ 1000

0 otherwise.

An insurance company reimburses losses in excess of a deductible of 250.
Calculate the difference between the median and the 20th percentile of the
insurance company reimbursement, over all losses.

Problem 9.4.17 ‡
The time to failure T of a component in an electronic device has the density
function

f(x) =

{
ce−cx x ≥ 0

0 otherwise

where c > 0. The median of X is 4. Calculate the probability that the
component will work without failing for at least five hours.
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Problem 9.4.18 ‡
An insurance policy reimburses dental expense, X, up to a maximum benefit
of 250. The probability density function for X is:

f(x) =

{
ce−0.004x x ≥ 0

0 otherwise

where c is a constant. Calculate the median benefit for this policy.

Problem 9.4.19 ‡
Each time a hurricane arrives, a new home has a 0.4 probability of experienc-
ing damage. The occurrences of damage in different hurricanes are mutually
independent.
Calculate the mode of the number of hurricanes it takes for the home to
experience damage from two hurricanes.

Problem 9.4.20 ‡
The number of policies that an agent sells has a Poisson distribution with
modes at 2 and 3. K is the smallest number such that the probability of
selling more than K policies is less than 25%. Calculate K.

Problem 9.4.21 ‡
The lifetime of a light bulb has density function

f(x) =

{
Kx2

1+x3
0 < x < 5

0 otherwise.

Find the mode of X.

Problem 9.4.22 ‡
An insurer’s medical reimbursements have density function

f(x) =

{
Kxe−x

2
0 < x < 1, K > 0

0 otherwise.

Find the mode of X.

Problem 9.4.23 ‡
An insurance company insures a good driver and a bad driver on the same
policy. The table below gives the probability of a given number of claims
occurring for each of these drivers in the next ten years.
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Number Probability for Probability for
of claims the good driver for the bad driver

0 0.5 0.2
1 0.3 0.3
2 0.2 0.4
3 0.0 0.1

The number of claims occurring for the two drivers are independent. Calcu-
late the mode of the distribution of the total number of claims occurring on
this policy in the next ten years.

Problem 9.4.24 ‡
A large university will begin a 13-day period during which students may regis-
ter for that semester’s courses. Of those 13 days, the number of elapsed days
before a randomly selected student registers has a continuous distribution
with density function f(t) that is symmetric about t = 6.5 and proportional
to 1

t+1
between days 0 and 6.5.

A student registers at the 60th percentile of this distribution. Calculate the
number of elapsed days in the registration period for this student.
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9.5 The Continuous Uniform Distribution Func-

tion

The simplest continuous distribution is the uniform distribution. A continu-
ous random variable X is said to be uniformly distributed over the interval
a ≤ x ≤ b if its pdf is given by

f(x) =

{
1
b−a if a ≤ x ≤ b

0 otherwise.

Since F (x) =
∫ x
−∞ f(t)dt, the cdf is given by

F (x) =


0 if x ≤ a
x−a
b−a if a < x < b

1 if x ≥ b.

Figure 9.5.1 presents a graph of f(x) and F (x).

Figure 9.5.1

If a = 0 and b = 1 then X is called the standard uniform random variable.

Remark 9.5.1
The values at the two boundaries a and b are usually unimportant because
they do not alter the value of the integral of f(x) over any interval. Some-
times they are chosen to be zero, and sometimes chosen to be 1

b−a . Our
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definition above assumes that f(a) = f(b) = f(x) = 1
b−a . In the case

f(a) = f(b) = 0 then the pdf becomes

f(x) =

{
1
b−a if a < x < b

0 otherwise.

Because the pdf of a uniform random variable is constant, if X is uniform,
then the probability X lies in any interval contained in (a, b) depends only
on the length of the interval-not location. That is, for any x and d such that
[x, x+ d] ⊆ [a, b] we have ∫ x+d

x

f(x)dx =
d

b− a
.

Example 9.5.1
Find the survival function of a uniform distribution X on the interval [a, b].

Solution.
The survival function is given by

S(x) =


1 if x ≤ a
b−x
b−a if a < x < b

0 if x ≥ b

Example 9.5.2
Let X be a continuous uniform random variable on [0, 25]. Find the pdf and
cdf of X.

Solution.
The pdf is

f(x) =

{
1
25

0 ≤ x ≤ 25
0 otherwise

and the cdf is

F (x) =


0 if x < 0
x
25

if 0 ≤ x ≤ 25
1 if x > 25

Example 9.5.3
Suppose that X has a uniform distribution on the interval [0, a], where a > 0.
Find P (X > X2).
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Solution.
First, we mention that the graph of h(x) = x− x2 is a parabola that opens
down with a peak at (1/2, 1/4) and crosses the points (0, 0) and (1, 0). Also,
x − x2 > 0 for 0 < x < 1. Now, if a ≤ 1 then P (X > X2) =

∫ a
0

1
a
dx = 1. If

a > 1 then P (X > X2) =
∫ 1

0
1
a
dx = 1

a
. Thus, P (X > X2) = min{1, 1

a
}

The expected value of X is

E(X) =

∫ b

a

xf(x) =

∫ b

a

x

b− a
dx

=
x2

2(b− a)

∣∣∣∣b
a

=
b2 − a2

2(b− a)

=
a+ b

2

and so the expected value of a uniform random variable is halfway between
a and b.
The second moment about the origin is

E(X2) =

∫ b

a

x2

b− a
dx =

x3

3(b− a)

∣∣∣∣b
a

=
b3 − a3

3(b− a)
=
a2 + b2 + ab

3
.

The variance of X is

Var(X) = E(X2)− (E(X))2 =
a2 + b2 + ab

3
− (a+ b)2

4
=

(b− a)2

12
.
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Practice Problems

Problem 9.5.1
Let X be the total time to process a passport application by the state depart-
ment. It is known that X is uniformly distributed between 3 and 7 weeks.
(a) Find f(x).
(b) What is the probability that an application will be processed in fewer
than 3 weeks ?
(c) What is the probability that an application will be processed in 5 weeks
or less ?

Problem 9.5.2
In a sushi bar, customers are charged for the amount of sushi they consume.
Suppose that the amount of sushi consumed is uniformly distributed between
5 ounces and 15 ounces. Let X be the random variable representing a plate
filling weight.
(a) Find the probability density function of X.
(b) What is the probability that a customer will take between 12 and 15
ounces of sushi?
(c) Find E(X) and Var(X).

Problem 9.5.3
Suppose that X has a uniform distribution over the interval [0,1]. Find
(a) F (x).
(b) Show that P (a ≤ X ≤ a+ b) for a, b ≥ 0, a+ b ≤ 1 depends only on b.

Problem 9.5.4
Let X be uniform on [0,1]. Compute E(Xn) where n is a positive integer.

Problem 9.5.5
Let X be a uniform random variable on the interval [1,2] and let Y = 1

X
.

Find E[Y ].

Problem 9.5.6
A commuter train arrives at a station at some time that is uniformly dis-
tributes between 10:00 AM and 10:30 AM. Let X be the waiting time (in
minutes) for the train. What is the probability that you will have to wait
longer than 10 minutes?
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Problem 9.5.7 ‡
An insurance policy is written to cover a loss, X, where X has a uniform
distribution on [0, 1000].
At what level must a deductible be set in order for the expected payment to
be 25% of what it would be with no deductible?

Problem 9.5.8 ‡
The warranty on a machine specifies that it will be replaced at failure or
age 4, whichever occurs first. The machine’s age at failure, X, has density
function

f(x) =

{
1
5

0 ≤ x ≤ 5
0 otherwise

Let Y be the age of the machine at the time of replacement. Determine the
variance of Y.

Problem 9.5.9 ‡
The owner of an automobile insures it against damage by purchasing an
insurance policy with a deductible of 250 . In the event that the automobile
is damaged, repair costs can be modeled by a uniform random variable on
the interval [0, 1500].
Determine the standard deviation of the insurance payment in the event that
the automobile is damaged.

Problem 9.5.10
Let X be a random variable distributed uniformly over the interval [−1, 1].
(a) Compute E(e−X).
(b) Compute Var(e−X).

Problem 9.5.11
Let X be a random variable with a continuous uniform distribution on the
interval [1, a], a > 1. If E(X) = 6Var(X), what is the value of a?

Problem 9.5.12
Let X be a random variable with a continuous uniform distribution on the
interval [0, 10]. What is P (X + 10

X
> 7)?

Problem 9.5.13 ‡
An investment account earns an annual interest rate R that follows a uniform
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distribution on the interval [0.04, 0.08]. The value of a 10,000 initial invest-
ment in this account after one year is given by V = 10, 000eR.
Let F be the cumulative distribution function of V. Determine F (v) for values
of v that satisfy 0 < F (v) < 1.

Problem 9.5.14 ‡
Let T denote the time in minutes for a customer service representative to
respond to 10 telephone inquiries. T is uniformly distributed on the interval
with endpoints 8 minutes and 12 minutes.
Let R denote the average rate, in customers per minute, at which the rep-
resentative responds to inquiries, and let f(r) be the density function for R.
Determine f(r), for 10

12
≤ r ≤ 10

8
.

Problem 9.5.15 ‡
An insurer offers a travelers insurance policy. Losses under the policy are
uniformly distributed on the interval [0,5]. The insurer reimburses a policy-
holder for a loss up to a maximum of 4.
Determine the cumulative distribution function, F, of the benefit that the
insurer pays a policyholder who experiences a loss under the policy.

Problem 9.5.16 ‡
Losses covered by a flood insurance policy are uniformly distributed on the
interval [0,2]. The insurer pays the amount of the loss in excess of a deductible
d. The probability that the insurer pays at least 1.20 on a random loss is 0.30.
Calculate the probability that the insurer pays at least 1.44 on a random loss.

Problem 9.5.17 ‡
An insurance company issues policies covering damage to automobiles. The
amount of damage is modeled by a uniform distribution on [0, b]. The policy
payout is subject to a deductible of 0.1b. A policyholder experiences auto-
mobile damage.
Calculate the ratio of the standard deviation of the policy payout to the
standard deviation of the amount of the damage.

Problem 9.5.18
The current (in mA) measured in a piece of copper wire is known to follow
a uniform distribution over the interval [0, 25]. Write down the formula for
the probability density function f(x) of the random variable X representing
the current. Calculate the mean and variance of the distribution and find
the cumulative distribution function F (x).
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Problem 9.5.19
Let X be a uniform distribution on the interval [a, b]. Find an expression for
MX(t) = E(etX).

Problem 9.5.20
The weight X , in pounds, of a package is uniformly distributed on the
interval [14, 20]. Find the 40th percentile of X.

Problem 9.5.21 ‡
Automobile claim amounts are modeled by a uniform distribution on the
interval [0, 10, 000]. Actuary A reports X, the claim amount divided by 1000.
Actuary B reports Y, which is X rounded to the nearest integer from 0 to
10.
Calculate the absolute value of the difference between the 4th moment of X
and the 4th moment of Y.

Problem 9.5.22 ‡
For a certain health insurance policy, losses are uniformly distributed on the
interval [0, b]. The policy has a deductible of 180 and the expected value of
the un-reimbursed portion of a loss is 144. Calculate b.

Problem 9.5.23 ‡
For a certain health insurance policy, losses are uniformly distributed on the
interval [0,450]. The policy has a deductible of d and the expected value of
the unreimbursed portion of a loss is 56. Calculate d.

Problem 9.5.24 ‡
Under a liability insurance policy, losses are uniformly distributed on [0, b],
where b is a positive constant. There is a deductible of 0.5b. Calculate the
ratio of the variance of the claim payment (greater than or equal to zero)
from a given loss to the variance of the loss.

Problem 9.5.25 ‡
A government employee’s yearly dental expense follows a uniform distribu-
tion on the interval from 200 to 1200. The government’s primary dental
plan reimburses an employee for up to 400 of dental expense incurred in a
year, while a supplemental plan pays up to 500 of any remaining dental ex-
pense. Let Y represent the yearly benefit paid by the supplemental plan to
a government employee. Calculate Var(Y ).
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Problem 9.5.26 ‡
A car and a bus arrive at a railroad crossing at times independently and
uniformly distributed between 7:15 and 7:30. A train arrives at the crossing
at 7:20 and halts traffic at the crossing for five minutes. Calculate the prob-
ability that the waiting time of the car or the bus at the crossing exceeds
three minutes.

Problem 9.5.27 ‡
The time until failure, T, of a product is modeled by a uniform distribution on
[0,10]. An extended warranty pays a benefit of 100 if failure occurs between
time t = 1.5 and t = 8.
The present value, W, of this benefit is

W =


0, 0 ≤ T < 1.5,

100e−0.04T , 1.5 ≤ T < 8,
0, 8 ≤ T ≤ 10.

Calculate P (W < 79).



9.6. NORMAL RANDOM VARIABLES 355

9.6 Normal Random Variables

A normal random variable with parameters µ and σ2 has a pdf

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x <∞.

This density function is a bell-shaped curve that is symmetric about µ (See
Figure 9.6.1).

Figure 9.6.1

The normal distribution is used to model phenomenon such as a person’s
height at a certain age or the measurement error in an experiment. Observe
that the distribution is symmetric about the point µ−hence the experiment
outcome being modeled should be equally likely to assume points above µ
as points below µ. The normal distribution is probably the most important
distribution because of a result known as the central limit theorem to be
discussed in Section 12.3.
To prove that the given f(x) is indeed a pdf we must show that the area
under the normal curve is 1. That is,∫ ∞

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1.

First note that using the substitution z = x−µ
σ

we have∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx =
1√
2π

∫ ∞
−∞

e−
z2

2 dz.
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Toward this end, let I =
∫∞
−∞ e

− z
2

2 dz. Then

I2 =

∫ ∞
−∞

e−
z2

2 dz

∫ ∞
−∞

e−
x2

2 dx =

∫ ∞
−∞

∫ ∞
−∞

e−
x2+z2

2 dxdz

=

∫ ∞
0

∫ 2π

0

e−
r2

2 rdθdr = 2π

∫ ∞
0

re−
r2

2 dr = 2π.

Thus, I =
√

2π and the result is proved. Note that in the process above, we
used the polar substitution x = r cos θ, z = r sin θ, and dzdx = rdrdθ.
Note that if Z = X−µ

σ
then this is a normal distribution with parameters (0,1).

Such a random variable is called the standard normal random variable.

Theorem 9.6.1
If X is a normal random variable with parameters (µ, σ2) then
(a) E(X) = µ
(b) Var(X) = σ2.

Proof.
(a) Let Z = X−µ

σ
be the standard normal distribution. Then

E(Z) =
∫∞
−∞ xfZ(x)dx = 1√

2π

∫∞
−∞ xe

−x
2

2 dx = − 1√
2π
e−

x2

2

∣∣∣∞
−∞

= 0.

Thus,
E(X) = E(σZ + µ) = σE(Z) + µ = µ.

(b)

Var(Z) = E(Z2) =
1√
2π

∫ ∞
−∞

x2e−
x2

2 dx.

Using integration by parts with u = x and dv = xe−
x2

2 we find

Var(Z) = 1√
2π

[
−xe−x

2

2

∣∣∣∞
−∞

+
∫∞
−∞ e

−x
2

2 dx

]
= 1√

2π

∫∞
−∞ e

−x
2

2 dx = 1.

Thus,
Var(X) = Var(σZ + µ) = σ2Var(Z) = σ2

Example 9.6.1
Let X be a normal random variable with mean 950 and standard deviation
10. Find P (947 ≤ X ≤ 950).
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Solution.
We have

P (947 ≤ X ≤ 950) =
1

10
√

2π

∫ 950

947

e−
(x−950)2

200 dx ≈ 0.118

where the value of the integral is found by using a calculator

Theorem 9.6.2
If X is a normal distribution with parameters (µ, σ2) then Y = aX + b is a
normal distribution with parameters (aµ+ b, a2σ2).

Proof.
We prove the result when a > 0. The proof is similar for a < 0. Let FY
denote the cdf of Y. Then

FY (x) = P (Y ≤ x) = P (aX + b ≤ x) = P

(
X ≤ x− b

a

)
= FX

(
x− b
a

)
.

Differentiating both sides to obtain

fY (x) =
1

a
fX

(
x− b
a

)
=

1√
2πaσ

exp

[
−(
x− b
a
− µ)2/(2σ2)

]
=

1√
2πaσ

exp
[
−(x− (aµ+ b))2/2(aσ)2

]
which shows that Y is normal with parameters (aµ+ b, a2σ2)
Figure 9.6.2 shows different normal curves with the same µ and different σ.

Figure 9.6.2
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It is traditional to denote the cdf of of the standard Normal distribution Z
by Φ(x). That is,

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy.

Now, since fZ(x) = Φ′(x) = 1√
2π
e−

x2

2 , fZ(x) is an even function. This implies

that Φ′(−x) = Φ′(x). Integrating we find that Φ(x) = −Φ(−x) + C. Letting
x = 0 we find that C = 2Φ(0) = 2(0.5) = 1. Thus,

Φ(x) = 1− Φ(−x), −∞ < x <∞. (9.6.1)

This implies that
P (Z ≤ −x) = P (Z > x).

Now, Φ(x) is the area under the standard curve to the left of x. The values
of Φ(x) for x ≥ 0 are given in Table 9.6.1 below. Equation 9.6.1 is used for
x < 0.

Example 9.6.2
Let X be a normal random variable with parameters µ = 24 and σ2

X = 9.
(a) Find P (X > 27) using Table 9.6.1.
(b) Solve S(x) = 0.05 where S(x) is the survival function of X.

Solution.
(a) The desired probability is given by

P (X > 27) =P

(
X − 24

3
>

27− 24

3

)
= P (Z > 1)

=1− P (Z ≤ 1) = 1− Φ(1) = 1− 0.8413 = 0.1587.

(b) The equation P (X > x) = 0.05 is equivalent to P (X ≤ x) = 0.95. Note
that

P (X ≤ x) = P

(
X − 24

3
<
x− 24

3

)
= P

(
Z <

x− 24

3

)
= 0.95

From Table 9.6.1 we find P (Z ≤ 1.65) = 0.95. Thus, we set x−24
3

= 1.65 and
solve for x we find x = 28.95
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From the above example, we see that probabilities involving normal random
variables can be reduced to the ones involving standard normal variable. For
example

P (X ≤ a) = P

(
X − µ
σ

≤ a− µ
σ

)
= Φ

(
a− µ
σ

)
.

Example 9.6.3
Let X be a normal random variable with parameters µ and σ2. Find
(a)P (µ− σ ≤ X ≤ µ+ σ).
(b)P (µ− 2σ ≤ X ≤ µ+ 2σ).
(c)P (µ− 3σ ≤ X ≤ µ+ 3σ).

Solution.
(a) We have

P (µ− σ ≤ X ≤ µ+ σ) =P (−1 ≤ Z ≤ 1) = Φ(1)− Φ(−1)

=2Φ(1)− 1 = 2(0.8413)− 1 = 0.6826.

Thus, 68.26% of all possible observations lie within one standard deviation
to either side of the mean.
(b) We have

P (µ− 2σ ≤ X ≤ µ+ 2σ) =P (−2 ≤ Z ≤ 2) = Φ(2)− Φ(−2)

=2(0.9772)− 1 = 0.9544.

Thus, 95.44% of all possible observations lie within two standard deviations
to either side of the mean.
(c) We have

P (µ− 3σ ≤ X ≤ µ+ 3σ) =P (−3 ≤ Z ≤ 3) = Φ(3)− Φ(−3)

=2(0.9987)− 1 = 0.9974.

Thus, 99.74% of all possible observations lie within three standard deviations
to either side of the mean. See Figure 9.6.3
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Figure 9.6.3
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Table 9.6.1: Area under the Standard Normal Curve from −∞ to x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Practice Problems

Problem 9.6.1
The scores on a statistics test are Normally distributed with parameters
µ = 80 and σ2 = 196. Find the probability that a randomly chosen score is
(a) no greater than 70
(b) at least 95
(c) between 70 and 95.
(d) Approximately, what is the raw score corresponding to a percentile score
of 72%?

Problem 9.6.2
Let X be a normal random variable with parameters µ = 0.381 and σ2 =
0.0312. Compute the following:
(a) P (X > 0.36).
(b) P (0.331 < X < 0.431).
(c) P (|X − .381| > 0.07).

Problem 9.6.3
Assume the time required for a cyclist to travel a distance d follows a normal
distribution with mean 4 minutes and variance 4 seconds.
(a) What is the probability that this cyclist with travel the distance in less
than 4 minutes?
(b) What is the probability that this cyclist will travel the distance in between
3min55sec and 4min5sec?

Problem 9.6.4
It has been determined that the lifetime of a certain light bulb has a normal
distribution with µ = 2000 hours and σ = 200 hours.
(a) Find the probability that a bulb will last between 2000 and 2400 hours.
(b) What is the probability that a light bulb will last less than 1470 hours?

Problem 9.6.5
Let X be a normal random variable with mean 100 and standard deviation
15. Find P (X > 130) given that Φ(2) = .9772.

Problem 9.6.6
The lifetime X of a randomly chosen battery is normally distributed with
mean 50 and standard deviation 5.
(a) Find the probability that the battery lasts at least 42 hours.
(b) Find the probability that the battery will last between 45 to 60 hours.
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Problem 9.6.7 ‡
An insurance company’s annual profit is normally distributed with mean 100
and variance 400. Let Z be normally distributed with mean 0 and variance
1 and let Φ be the cumulative distribution function of Z.
Determine, in terms of Φ(x), the probability that the company’s profit in a
year is at most 60, given that the profit in the year is positive.

Problem 9.6.8
Let X be a normal random variable with P (X < 500) = 0.5 and P (X >
650) = 0.0227. Find the standard deviation of X.

Problem 9.6.9
Suppose that X is a normal random variable with parameters µ = 5, σ2 = 49.
Using the table of the normal distribution , compute: (a) P (X > 5.5), (b)
P (4 < X < 6.5), (c) P (X < 8), (d) P (|X − 7| ≥ 4).

Problem 9.6.10
Let X be a normal random variable with mean 1 and variance 4. Find
P (X2 − 2X ≤ 8).

Problem 9.6.11
Let X be a normal random variable with mean 360 and variance 16.
(a) Calculate P (X < 355).
(b) Suppose the variance is kept at 16 but the mean is to be adjusted so that
P (X < 355) = 0.025. Find the adjusted mean.

Problem 9.6.12
The length of time X (in minutes) it takes to go from your home to downtown
is normally distributed with µ = 30 minutes and σX = 5 minutes. What is
the latest time that you should leave home if you want to be over 99% sure
of arriving in time for a job interview taking place in downtown at 2pm?

Problem 9.6.13
The minimum force required to break a particular type of cable is normally
distributed with mean 12,432 and standard deviation 25. Determine the
probability that a randomly selected cable will not break under a force of
12,400.
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Problem 9.6.14 ‡
In 1982 Abby’s mother scored at the 93rd percentile in the math SAT exam.
In 1982 the mean score was 503 and the variance of the scores was 9604.
In 2008 Abby took the math SAT and got the same numerical score as her
mother had received 26 years before. In 2008 the mean score was 521 and
the variance of the scores was 10,201.
Math SAT scores are normally distributed and stated in multiples of ten.
Calculate the percentile for Abby’s score.

Problem 9.6.15 ‡
The working lifetime, in years, of a particular model of bread maker is nor-
mally distributed with mean 10 and variance 4.
Calculate the 12th percentile of the working lifetime, in years.

Problem 9.6.16 ‡
The profits of life insurance companies A and B are normally distributed
with the same mean. The variance of company B’s profit is 2.25 times the
variance of company A’s profit. The 14th percentile of company A’s profit is
the same as the pth percentile of company B’s profit. Calculate p.

Problem 9.6.17 ‡
Insurance companies A and B each earn an annual profit that is normally
distributed with the same positive mean. The standard deviation of company
A’s annual profit is one half of its mean.
In a given year, the probability that company B has a loss (negative profit)
is 0.9 times the probability that company A has a loss.
Calculate the ratio of the standard deviation of company B’s annual profit
to the standard deviation of company A’s annual profit.

Problem 9.6.18 ‡
An insurance policy covers losses incurred by a policyholder, subject to a
deductible of 10,000. Incurred losses follow a normal distribution with mean
12,000 and standard deviation c. The probability that a loss is less than k
is 0.9582, where k is a constant. Given that the loss exceeds the deductible,
there is a probability of 0.9500 that it is less than k.
Calculate c.

Problem 9.6.19 ‡
The annual profit of a life insurance company is normally distributed. The
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probability that the annual profit does not exceed 2000 is 0.7642. The prob-
ability that the annual profit does not exceed 3000 is 0.9066.
Calculate the probability that the annual profit does not exceed 1000.

Problem 9.6.20 ‡
A gun shop sells gunpowder. Monthly demand for gunpowder is normally
distributed, averages 20 pounds, and has a standard deviation of 2 pounds.
The shop manager wishes to stock gunpowder inventory at the beginning of
each month so that there is only a 2% chance that the shop will run out of
gunpowder (i.e., that demand will exceed inventory) in any given month.
Calculate the amount of gunpowder to stock in inventory, in pounds.

Problem 9.6.21 ‡
A company’s annual profit, in billions, has a normal distribution with vari-
ance equal to the cube of its mean. The probability of an annual loss is 5%.
Calculate the company’s expected annual profit.

Problem 9.6.22 ‡
Losses incurred by a policyholder follow a normal distribution with mean
20,000 and standard deviation 4,500. The policy covers losses, subject to a
deductible of 15,000. Calculate the 95th percentile of losses that exceed the
deductible. Round your answer to the nearest hundreds.

Problem 9.6.23 ‡
An insurance policy will reimburse only one claim per year. For a random
policyholder, there is a 20% probability of no loss in the next year, in which
case the claim amount is 0. If a loss occurs in the next year, the claim amount
is normally distributed with mean 1000 and standard deviation 400. Calcu-
late the median claim amount in the next year for a random policyholder.



366 CHAPTER 9. CONTINUOUS RANDOM VARIABLES

9.7 The Normal Approximation to the Bino-

mial Distribution

When the number of trials in a binomial distribution is very large, the use
of the probability distribution formula p(x) =n Cxp

xqn−x becomes tedious.
An attempt was made to approximate this distribution for large values of n.
The approximating distribution is the normal distribution.

Theorem 9.7.1
LetX denote the number of successes that occur with n independent Bernoulli
trials, each with probability p of success. Then, X is a binomial random vari-
able with mean µ = np and variance σ2 = np(1− p). Moreover,

lim
n→∞

(
X − np√
np(1− p)

)
=

N − np√
np(1− p)

where N is the normal random variable with µ = np and σ2 = np(1 − p).
Hence,

nCxp
xqn−x ≈ 1√

2πnp(1− p)
e−(x−np)2/2np(1−p).

Proof.
This result is a special case of the central limit theorem. See Section 12.3

Remark 9.7.1
What values of n and p are needed so that a normal approximation to the
binomial distribution is adequate? Recall that the binomial distribution is
prefectly symmetric when p = 0.5 and has some skewness when p 6= 0.5.
Hence, the normal distribution is an adequate estimate for p close to 0.5.
What about n? A rule-of-thumb for the normal distribution to be a good
approximation to the binomial distribution is to have np > 5 and nq > 5.

Remark 9.7.2 (continuity correction)
Suppose we are approximating a binomial random variable X with a normal
random variable N. Say we want to find P (8 ≤ X ≤ 10) where X is a
binomial distribution. Then

P (8 ≤ X ≤ 10) = P (X = 8) + P (X = 9) + P (X = 10).
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According to Figure 9.7.1, the probability in question is the area of the
three rectangles centered at 8,9 and 10. When using the standard normal
distribution ( a continuous random variable) to approximate the binomial
distribution (a discrete random variable), the area under the pdf N from 7.5
to 10.5 must be found. That is,

P (8 ≤ X ≤ 10) ≈ P (7.5 ≤ N ≤ 10.5).

In practice, then, we apply a continuity correction, when approximating a
discrete random variable with a continuous random variable.

Figure 9.7.1

Example 9.7.1
In a box of 100 light bulbs, 10 are found to be defective. What is the
probability that the number of defectives exceeds 13?

Solution.
Let X be the number of defective items. Then X is binomial with n = 100
and p = 0.1. Since np = 10 > 5 and nq = 90 > 5 we can use the normal
approximation to the binomial with µ = np = 10 and σ2 = np(1 − p) = 9.
We want P (X > 13). Using continuity correction we find

P (X > 13) =P (X ≥ 14) ≈ P (N ≥ 13.5)

=P (
N − 10√

9
≥ 13.5− 10√

9
)

≈1− Φ(1.17) = 1− 0.8790 = 0.121
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Example 9.7.2
In a small town, it was found that out of every 6 people 1 is left-handed.
Consider a random sample of 612 persons from the town, estimate the prob-
ability that the number of left-handed persons is strictly between 90 and
150.

Solution.
Let X be the number of left-handed people in the sample. Then X is a
binomial random variable with n = 612 and p = 1

6
. Since np = 102 > 5 and

n(1 − p) = 510 > 5 we can use the normal approximation to the binomial
with µ = np = 102 and σ2 = np(1− p) = 85. Using continuity correction we
find

P (90 < X < 150) =P (91 ≤ X ≤ 149) ≈ P (90.5 ≤ N ≤ 149.5)

=P

(
90.5− 102√

85
≤ N − 102√

85
≤ 149.5− 102√

85

)
=P (−1.25 ≤ Z ≤ 5.15) ≈ 1− Φ(−1.25) ≈ 0.8943

Example 9.7.3
There are 90 students in a statistics class. Suppose each student has a stan-
dard deck of 52 cards of his/her own, and each of them selects 13 cards at
random without replacement from his/her own deck independent of the oth-
ers. What is the chance that there are more than 50 students who got at
least 2 aces ? Express your answer in terms of Φ.

Solution.
Let X be the number of students who got at least 2 aces or more, then clearly
X is a binomial random variable with n = 90 and

p =
4C2 · 48C11

52C13

+
4C3 · 48C10

52C13

+
4C4 · 48C9

52C13

≈ 0.2573

Since np ≈ 23.157 > 5 and n(1−p) ≈ 66.843 > 5, X can be approximated by
a normal random variable with µ = 23.157 and σ =

√
np(1− p) ≈ 4.1473.

Thus,

P (X > 50) =1− P (X ≤ 50) ≈ 1− P (N ≤ 50.5)

=1− Φ

(
50.5− 23.157

4.1473

)
≈1− Φ(6.59)
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Practice Problems

Problem 9.7.1
Suppose that 25% of all the students who took a given test fail. Let X be
the number of students who failed the test in a random sample of 50.
(a) What is the probability that the number of students who failed the test
is at most 10?
(b) What is the probability that the number of students who failed the test
is between 5 and 15 inclusive?

Problem 9.7.2
A vote on whether to allow the use of medical marijuana is being held. A
polling company will survey 200 individuals to measure support for the new
law. If in fact 53% of the population oppose the new law, use the normal
approximation to the binomial, with a continuity correction, to approximate
the probability that the poll will show a majority in favor?

Problem 9.7.3
A company manufactures 50,000 light bulbs a day. For every 1,000 bulbs
produced there are 50 bulbs defective. Consider testing a random sample
of 400 bulbs from today’s production. Find the probability that the sample
contains
(a) At least 14 and no more than 25 defective bulbs.
(b) At least 33 defective bulbs.

Problem 9.7.4
Suppose that the probability of a family with two children is 0.25 that the
children are boys. Consider a random sample of 1,000 families with two
children. Find the probability that at most 220 families have two boys.

Problem 9.7.5
A survey shows that 10% of the students in a college are left-handed. In a
random sample of 818, what is the probability that at most 100 students are
left-handed?

Problem 9.7.6 ‡
The minimum force required to break a particular type of cable is normally
distributed with mean 12,432 and standard deviation 25. A random sample
of 400 cables of this type is selected.
Calculate the probability that at least 349 of the selected cables will not
break under a force of 12,400.
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Problem 9.7.7 ‡
A student takes a multiple-choice test with 40 questions. The probability
that the student answers a given question correctly is 0.5, independent of
all other questions. The probability that the student answers more than N
questions correctly is greater than 0.10. The probability that the student
answers more than N + 1 questions correctly is less than 0.10. Calculate N
using a normal approximation with the continuity correction.
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9.8 Exponential Random Variables

An exponential random variable with parameter λ > 0 is a random variable
with pdf

f(x) =

{
λe−λx if x ≥ 0

0 if x < 0.

The parameter λ is called the rate parameter. Note that∫ ∞
0

λe−λxdx = −e−λx
∣∣∞
0

= 1.

The graph of the probability density function is shown in Figure 9.8.1

Figure 9.8.1

Exponential random variables are often used to model arrival times, waiting
times, and equipment failure times. For example, in physics the exponential
distribution is used to represent the lifetime of a particle, the parameter λ
representing the rate at which the particle ages.
The expected value of X can be found using integration by parts with u = x
and dv = λe−λxdx :

E(X) =

∫ ∞
0

xλe−λxdx =
[
−xe−λx

]∞
0

+

∫ ∞
0

e−λxdx

=
[
−xe−λx

]∞
0

+

[
−1

λ
e−λx

]∞
0

=
1

λ
.
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Likewise, using integration by parts twice, we obtain

E(X2) =

∫ ∞
0

λx2e−λxdx =

∫ ∞
0

x2d(−e−λx) =
[
−x2e−λx

]∞
0

+ 2

∫ ∞
o

xe−λxdx

=2
[
−x
λ
e−λx

]∞
0

+
2

λ

∫ ∞
0

e−λxdx =
2

λ

[
−e
−λx

λ

]∞
0

=
2

λ2
.

Thus,

Var(X) = E(X2)− (E(X))2 =
2

λ2
− 1

λ2
=

1

λ2
.

Example 9.8.1
The time between calls received by a 911 operator has an exponential distri-
bution with an average of 3 calls per hour.
(a) Find the expected time between calls.
(b) Find the probability that the next call is received within 5 minutes.

Solution.
Let X denote the time (in hours) between calls. We are told that λ = 3.
(a) We have E(X) = 1

λ
= 1

3
.

(b) P (X < 1
12

) =
∫ 1

12

0
3e−3xdx ≈ 0.2212

The cumulative distribution function of an exponential random variable X
is given by

F (x) = P (X ≤ x) =

∫ x

0

λe−λudu = −e−λu |x0 = 1− e−λx

for x ≥ 0, and 0 otherwise.

Example 9.8.2
Suppose that the waiting time (in minutes) at a post office is an exponential
random variable with mean 10 minutes. If someone arrives immediately
ahead of you at the post office, find the probability that you have to wait
(a) more than 10 minutes
(b) between 10 and 20 minutes.

Solution.
Let X be the time you must wait in line at the post office. Then X is an
exponential random variable with parameter λ = 0.1.
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(a) We have P (X > 10) = 1− F (10) = 1− (1− e−1) = e−1 ≈ 0.3679.
(b) We have P (10 ≤ X ≤ 20) = F (20)− F (10) = e−1 − e−2 ≈ 0.2325

The most important property of the exponential distribution is known as
the memoryless property:

P (X > s+ t|X > s) = P (X > t), s, t ≥ 0.

This says that the probability that we have to wait for an additional time t
(and therefore a total time of s + t) given that we have already waited for
time s is the same as the probability at the start that we would have had
to wait for time t. So the exponential distribution “forgets” that it is larger
than s.
To see why the memoryless property holds, note that for all t ≥ 0, we have

P (X > t) =

∫ ∞
t

λe−λxdx = −e−λx |∞t = e−λt.

It follows that

P (X > s+ t|X > s) =
P (X > s+ t and X > s)

P (X > s)
=
P (X > s+ t)

P (X > s)

=
e−λ(s+t)

e−λs
= e−λt = P (X > t).

Example 9.8.3
Suppose that the timeX (in hours) required to repair a car has an exponential
distribution with parameter λ = 0.25. Find
(a) the cumulative distribution function of X.
(b) P (X > 4).
(c) P (X > 10|X > 8).

Solution.
(a) It is easy to see that the cumulative distribution function is

F (x) =

{
1− e−x4 x ≥ 0

0 elsewhere.
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(b) P (X > 4) = 1− P (X ≤ 4) = 1− F (4) = 1− (1− e− 4
4 ) = e−1 ≈ 0.368.

(c) By the memoryless property, we find

P (X > 10|X > 8) =P (X > 8 + 2|X > 8) = P (X > 2)

=1− P (X ≤ 2) = 1− F (2)

=1− (1− e−
1
2 ) = e−

1
2 ≈ 0.6065

The exponential random variable is the only named continuous random vari-
able with range [0,∞) (and differentiable cdf) that possesses the memoryless
property. To see this, suppose that X is a memoryless continuous random
variable with range [0,∞) and differentiable cdf F (x). Let g(x) = P (X > x).
Since X is memoryless, we have for h > 0

P (X > h) = P (X > x+h|X > x) =
P (X > x+ h and X > x)

P (X > h)
=
P (X > x+ h)

P (X > x)

and this implies

P (X > x+ h) = P (X > x)P (X > h)

Hence, g satisfies the equation

g(x+ h) = g(x)g(h).

Theorem 9.8.1
The only solution to the functional equation g(x + h) = g(x)g(h) is g(x) =
e−λx for some λ > 0.

Proof.
We have

g(x+ h)− g(x)

h
= g(x)

g(h)− 1

h
.

Thus,

g′(x) = lim
h→0+

g(x+ h)− g(x)

h
= g(x) lim

h→0+

g(h)− 1

h
= g(x)g′(0+).

This is the familiar differential equation for exponential decay which can be
solved by using the method of separation of variables. The general solution
is

g(x) = g(0)eg
′(0+)x.
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But g(0) = P (X > 0) = 1 since the range of X is [0,∞). Also, taking the
derivative of both sides of g(x) = 1 − F (x) we find g′(x) = −F ′(x) for all
x ≥ 0. In particular, −g′(0+) = F ′(0+) > 0 since F is increasing. Now,
letting λ = −g′(0+). we find g(x) = e−λx. It follows that F (x) = P (X ≤
x) = 1− g(x) = 1− e−λx and hence f(x) = F ′(x) = λe−λx which shows that
X is exponentially distributed

Example 9.8.4
Very often, credit card customers are placed on hold when they call for
inquiries. Suppose the amount of time until a service agent assists a customer
has an exponential distribution with mean 5 minutes. Given that a customer
has already been on hold for 2 minutes, what is the probability that he/she
will remain on hold for a total of more than 5 minutes?

Solution.
Let X represent the total time on hold. Then X is an exponential random
variable with λ = 1

5
. Thus,

P (X > 3 + 2|X > 2) = P (X > 3) = 1− F (3) = e−
3
5
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Practice Problems

Problem 9.8.1
Let X have an exponential distribution with a mean of 40. Compute P (X <
36).

Problem 9.8.2
Let X be an exponential function with mean equals to 5. Graph f(x) and
F (x).

Problem 9.8.3
A continuous random variable X has the following pdf:

f(x) =

{
1

100
e−

x
100 x ≥ 0

0 otherwise

Compute P (0 ≤ X ≤ 50).

Problem 9.8.4
Let X be an exponential random variable with mean equals to 4. Find
P (X ≤ 0.5).

Problem 9.8.5
The life length X (in years) of a DVD player is exponentially distributed
with mean 5 years. What is the probability that a more than 5-year old
DVD would still work for more than 3 years?

Problem 9.8.6
Suppose that the spending time X (in minutes) of a customer at a bank has
an exponential distribution with mean 3 minutes.
(a) What is the probability that a customer spends more than 5 minutes in
the bank?
(b) Under the same conditions, what is the probability of spending between
2 and 4 minutes?

Problem 9.8.7
The waiting time X (in minutes) of a train arrival to a station has an expo-
nential distribution with mean 3 minutes.
(a) What is the probability of having to wait 6 or more minutes for a train?
(b) What is the probability of waiting between 4 and 7 minutes for a train?
(c) What is the probability of having to wait at least 9 more minutes for the
train given that you have already waited 3 minutes?
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Problem 9.8.8 ‡
Ten years ago at a certain insurance company, the size of claims under home-
owner insurance policies had an exponential distribution. Furthermore, 25%
of claims were less than $1000. Today, the size of claims still has an expo-
nential distribution but, owing to inflation, every claim made today is twice
the size of a similar claim made 10 years ago. Determine the probability that
a claim made today is less than $1000.

Problem 9.8.9
The lifetime (in hours) of a battery installed in a radio is an exponentially dis-
tributed random variable with parameter λ = 0.01. What is the probability
that the battery is still in use one week after it is installed?

Problem 9.8.10 ‡
The number of days that elapse between the beginning of a calendar year
and the moment a high-risk driver is involved in an accident is exponentially
distributed. An insurance company expects that 30% of high-risk drivers will
be involved in an accident during the first 50 days of a calendar year.
What portion of high-risk drivers are expected to be involved in an accident
during the first 80 days of a calendar year?

Problem 9.8.11 ‡
The lifetime of a printer costing 200 is exponentially distributed with mean 2
years. The manufacturer agrees to pay a full refund to a buyer if the printer
fails during the first year following its purchase, and a one-half refund if it
fails during the second year.
If the manufacturer sells 100 printers, how much should it expect to pay in
refunds?

Problem 9.8.12 ‡
A device that continuously measures and records seismic activity is placed
in a remote region. The time, T, to failure of this device is exponentially
distributed with mean 3 years. Since the device will not be monitored during
its first two years of service, the time to discovery of its failure is X =
max (T, 2).
Determine E[X].

Problem 9.8.13 ‡
A piece of equipment is being insured against early failure. The time from
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purchase until failure of the equipment is exponentially distributed with mean
10 years. The insurance will pay an amount x if the equipment fails during
the first year, and it will pay 0.5x if failure occurs during the second or third
year. If failure occurs after the first three years, no payment will be made.
At what level must x be set if the expected payment made under this insur-
ance is to be 1000 ?

Problem 9.8.14 ‡
An insurance policy reimburses dental expense, X, up to a maximum benefit
of 250 . The probability density function for X is:

f(x) =

{
ce−0.004x x ≥ 0

0 otherwise

where c is a constant. Calculate the median benefit for this policy.

Problem 9.8.15 ‡
The time to failure of a component in an electronic device has an exponential
distribution with a median of four hours.
Calculate the probability that the component will work without failing for
at least five hours.

Problem 9.8.16
Let X be an exponential random variable such that P (X ≤ 2) = 2P (X > 4).
Find the variance of X.

Problem 9.8.17 ‡
The cumulative distribution function for health care costs experienced by a
policyholder is modeled by the function

F (x) =

{
1− e− x

100 , for x > 0
0, otherwise.

The policy has a deductible of 20. An insurer reimburses the policyholder
for 100% of health care costs between 20 and 120 less the deductible. Health
care costs above 120 are reimbursed at 50%. Let G be the cumulative distri-
bution function of reimbursements given that the reimbursement is positive.
Calculate G(115).
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Problem 9.8.18 ‡
The lifespan, in years, of a certain computer is exponentially distributed.
The probability that its lifespan exceeds four years is 0.30.
Let f(x) represent the density function of the computer’s lifespan, in years,
for x > 0. Determine the formula for f(x).

Problem 9.8.19 ‡
A car is new at the beginning of a calendar year. The time, in years, before
the car experiences its first failure is exponentially distributed with mean 2.
Calculate the probability that the car experiences its first failure in the last
quarter of some calendar year.

Problem 9.8.20 ‡
Losses due to accidents at an amusement park are exponentially distributed.
An insurance company offers the park owner two different policies, with
different premiums, to insure against losses due to accidents at the park.
Policy A has a deductible of 1.44. For a random loss, the probability is 0.640
that under this policy, the insurer will pay some money to the park owner.
Policy B has a deductible of d. For a random loss, the probability is 0.512
that under this policy, the insurer will pay some money to the park owner.
Calculate d.

Problem 9.8.21 ‡
Losses due to burglary are exponentially distributed with mean 100. The
probability that a loss is between 40 and 50 equals the probability that a loss
is between 60 and r, with r > 60.
Calculate r.

Problem 9.8.22 ‡
The time until the next car accident for a particular driver is exponentially
distributed with a mean of 200 days.
Calculate the probability that the driver has no accidents in the next 365
days, but then has at least one accident in the 365-day period that follows
this initial 365-day period.

Problem 9.8.23 ‡
Losses under an insurance policy are exponentially distributed with mean 4.
The deductible is 1 for each loss.
Calculate the median amount that the insurer pays a policyholder for a loss
under the policy.
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Problem 9.8.24 ‡
The loss X due to a boat accident is exponentially distributed. Boat insur-
ance policy A covers up to 1 unit for each loss. Boat insurance policy B
covers up to 2 units for each loss.
The probability that a loss is fully covered under policy B is 1.9 times the
probability that it is fully covered under policy A.
Calculate the variance of X.

Problem 9.8.25 ‡
Losses, X, under an insurance policy are exponentially distributed with mean
10. For each loss, the claim payment Y is equal to the amount of the loss in
excess of a deductible d > 0.
Calculate Var(Y ).

Problem 9.8.26 ‡
An auto insurance policy has a deductible of 1 and a maximum claim payment
of 5. Auto loss amounts follow an exponential distribution with mean 2.
Calculate the expected claim payment made for an auto loss.

Problem 9.8.27 ‡
Let X be a random variable with density function

f(x) =

{
2e−2x, x > 0

0, otherwise.

Calculate P (X ≤ 0.5|X ≤ 1.0).

Problem 9.8.28 ‡
A certain town experiences an average of 5 tornadoes in any four year period.
The number of years from now until the town experiences its next tornado
as well as the number of years between tornadoes have identical exponential
distributions and all such times are mutually independent. Calculate the
median number of years from now until the town experiences its next tornado.

Problem 9.8.29 ‡
The amount of a claim that a car insurance company pays out follows an
exponential distribution. By imposing a deductible of d, the insurance com-
pany reduces the expected claim payment by 10%.
Calculate the percentage reduction on the variance of the claim payment.
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Problem 9.8.30 ‡
An automobile insurance company issues a one-year policy with a deductible
of 500. The probability is 0.8 that the insured automobile has no accident and
0.0 that the automobile has more than one accident. If there is an accident,
the loss before application of the deductible is exponentially distributed with
mean 3000.
Calculate the 95th percentile of the insurance company payout on this policy.

Problem 9.8.31 ‡
The distribution of values of the retirement package offered by a company to
new employees is modeled by the probability density function

fX(x) =

{
1
5
e−

(x−5)
5 , x ≥ 5,

0 otherwise

Calculate the variance of the retirement package value for a new employee,
given that the value is at least 10.

Problem 9.8.32 ‡
A loss under a liability policy is modeled by an exponential distribution. The
insurance company will cover the amount of that loss in excess of a deductible
of 2000. The probability that the reimbursement is less than 6000, given that
the loss exceeds the deductible, is 0.50.
Calculate the probability that the reimbursement is greater than 3000 but
less than 9000, given that the loss exceeds the deductible.
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9.9 Gamma Distribution

We start this section by introducing the Gamma function defined by

Γ(α) =

∫ ∞
0

e−yyα−1dy, α > 0.

For example,

Γ(1) =

∫ ∞
0

e−ydy = −e−y |∞0 = 1.

For α > 1 we can use integration by parts with u = yα−1 and dv = e−ydy to
obtain

Γ(α) =− e−yyα−1 |∞0 +

∫ ∞
0

e−y(α− 1)yα−2dy

=(α− 1)

∫ ∞
0

e−yyα−2dy

=(α− 1)Γ(α− 1).

If n is a positive integer greater than 1 then by applying the previous relation
repeatedly we find

Γ(n) =(n− 1)Γ(n− 1)

=(n− 1)(n− 2)Γ(n− 2)

...

=(n− 1)(n− 2) · · · 3 · 2 · Γ(1) = (n− 1)!

Example 9.9.1
Show that Γ

(
1
2

)
=
√
π.

Solution.
Using the substitution y = z2

2
, we find

Γ

(
1

2

)
=

∫ ∞
0

y−
1
2 e−ydy =

√
2

∫ ∞
0

e−
z2

2 dz

=

√
2

2

√
2π

[
1√
2π

∫ ∞
−∞

e−
z2

2 dz

]
=
√
π
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where we used the fact that e−
z2

2 is an even function and Z is the standard
normal distribution with

1√
2π

∫ ∞
−∞

e−
z2

2 dz = 1

A Gamma random variable with parameters α > 0 and λ > 0 has a pdf

f(x) =

{
λe−λx(λx)α−1

Γ(α)
if x ≥ 0

0 if x < 0.

We call α the shape parameter because changing α changes the shape of
the density function. We call λ the scale parameter because if X is a
Gamma distribution with parameters (α, λ) then cX is also a Gamma distri-
bution with parameters (α, λ

c
) where c > 0 is a constant. See Problem 9.9.1.

The parameter λ rescales the density function without changing its shape.

To see that f(x) is indeed a probability density function we have

Γ(α) =

∫ ∞
0

e−xxα−1dx

1 =

∫ ∞
0

e−xxα−1

Γ(α)
dx

1 =

∫ ∞
0

λe−λy(λy)α−1

Γ(α)
dy

where we used the substitution x = λy.
Note that the above computation involves a Γ(α) integral. Thus, the origin
of the name of the random variable.
The cdf of the Gamma distribution is

F (x) =
λα

Γ(α)

∫ x

0

yα−1e−λydy.

The following reduction formula is useful when computing F (x) :∫
xne−λxdx = −1

λ
xne−λx +

n

λ

∫
xn−1e−λxdx. (9.9.1)

The Gamma distribution can be used to model a number of physical quan-
tities such as service times, lifetimes of objects, and repair times.
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Example 9.9.2
Let X be a Gamma random variable with α = 4 and λ = 1

2
. Compute

P (2 < X < 4).

Solution.
We have

P (2 < X < 4) =

∫ 4

2

1

24Γ(4)
x3e−

x
2 dx =

1

96

∫ 4

2

x3e−
x
2 dx ≈ 0.124

where we used the reduction formula (9.9.1) twice

The next result provides formulas for the expected value and the variance of
a Gamma distribution.

Theorem 9.9.1
If X is a Gamma random variable with parameters (λ, α) then
(a) E(X) = α

λ

(b) Var(X) = α
λ2
.

Solution.
(a) We have

E(X) =
1

Γ(α)

∫ ∞
0

λxe−λx(λx)α−1dx =
1

λΓ(α)

∫ ∞
0

λe−λx(λx)αdx

=
1

λΓ(α)

∫ ∞
0

e−yyαdy, y = λx

=
Γ(α + 1)

λΓ(α)
=
α

λ
.

(b) We have

E(X2) =
1

Γ(α)

∫ ∞
0

x2e−λxλαxα−1dx =
1

Γ(α)

∫ ∞
0

xα+1λαe−λxdx

=
Γ(α + 2)

λ2Γ(α)

∫ ∞
0

xα+1λα+2e−λx

Γ(α + 2)
dx =

Γ(α + 2)

λ2Γ(α)

where the last integral is the integral of the pdf of a Gamma random variable
with parameters (α + 2, λ). Thus,

E(X2) =
Γ(α + 2)

λ2Γ(α)
=

(α + 1)Γ(α + 1)

λ2Γ(α)
=
α(α + 1)

λ2
.
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Finally,

Var(X) = E(X2)− (E(X))2 =
α(α + 1)

λ2
− α2

λ2
=

α

λ2

Example 9.9.3
In a certain city, the daily consumption of water (in millions of liters) can be
treated as a random variable having a Gamma distribution with α = 3 and
λ = 0.5.
(a) What is the random variable? What is the expected daily consumption?
(b) If the daily capacity of the city is 12 million liters, what is the probability
that this water supply will be inadequate on a given day?
(c) What is the variance of the daily consumption of water?

Solution.
(a) The random variable X is the daily consumption of water in millions of
liters. The expected daily consumption is the expected value of a Gamma
distributed variable with parameters α = 3 and λ = 1

2
which is E(X) = α

λ
=

6.
(b) We want

P (X > 12) =
1

23Γ(3)

∫ ∞
12

x2e−
x
2 dx =

1

16

∫ ∞
12

x2e−
x
2 dx

=
1

16

[
−2x2e−

x
2

∣∣∞
12

+ 4

∫ ∞
12

xe−
x
2 dx

]
=

1

16

[
288e−6 − 8xe−

x
2

∣∣∞
12

+ 8

∫ ∞
12

e−
x
2 dx

]
=

1

16

[
288e−6 + 96e−6 − 16 e−

x
2

∣∣∞
12

]
=

1

16

[
288e−6 + 96e−6 + 16e−6

]
= 25e−6.

(c) The variance is

Var(X) =
α

λ2
=

3

0.52
= 12

Remark 9.9.1
It is easy to see that when the parameter set is restricted to (α, λ) = (1, λ)
the Gamma distribution becomes the exponential distribution.
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Practice Problems

Problem 9.9.1
Let X be a Gamma distribution with parameters (α, λ). Let Y = cX with
c > 0. Show that

FY (y) =
(λ/c)α

Γ(α)

∫ y

0

zα−1e−λ
z
c dz.

Hence, Y is a Gamma distribution with parameters
(
α, λ

c

)
.

Problem 9.9.2
If X has a probability density function given by

f(x) =

{
4x2e−2x x > 0

0 otherwise.

Find the mean and the variance.

Problem 9.9.3
Let X be a Gamma random variable with λ = 1.8 and α = 3. Compute
P (X > 3).

Problem 9.9.4
Suppose the time (in hours) taken by a technician to fix a computer is a
random variable X having a Gamma distribution with parameters α = 3
and λ = 0.5. What is the probability that it takes at most 1 hour to fix a
computer?

Problem 9.9.5
Suppose the continuous random variable X has the following pdf:

f(x) =

{
1
16
x2e−

x
2 if x > 0

0 otherwise.

Find E(X3).

Problem 9.9.6
Let X be the standard normal distribution. Show that X2 is a Gamma
distribution with α = λ = 1

2
.
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Problem 9.9.7
Let X be a Gamma random variable with parameter (α, λ). Find E(etX).
That is, the moment generating function of X.

Problem 9.9.8
Show that the Gamma density function with parameters α > 1 and λ > 0
has a relative maximum at x = 1

λ
(α− 1).

Problem 9.9.9
Let X be a Gamma distribution with parameters α = 3, and λ = 1

6
.

(a) Give the density function, as well as the mean and standard deviation of
X.
(b) Find E(3X2 +X − 1).

Problem 9.9.10 ‡
An actuary determines that the claim size for a certain class of accidents is
a random variable, X, with moment generating function

MX(t) =
1

(1− 2500t)4
, t < 0.0004.

Calculate the standard deviation of the claim size for this class of accidents.

Problem 9.9.11 ‡
A claimant places calls to an insurer’s claims call center. Let X be the time
elapsed before the claimant gets to speak with call center representatives.
The moment generating function of X is

MX(t) =
1

(1− 1.5t)2
, t <

2

3
.

Calculate the standard deviation of X.

Problem 9.9.12
Suppose that the time it takes to get service in a restaurant follows a Gamma
distribution with mean 8 minutes and standard deviation 4 minutes. Find
the parameters α and λ.
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Problem 9.9.13
An interesting special case of the Gamma distribution is when the parameter
set is (α, λ) =

(
n
2
, 1

2

)
where n is a positive integer. This distribution is called

the chi-squared distribution with degrees of freedom n. The chi-squared
random variable is usually denoted by χ2

n.
Find the pdf, mean and variance of the chi-squared distribution with degrees
of freedom n.

Problem 9.9.14
Show that the random variable X with E(etX) = (1 − 2t)−6, t < 1

2
is a χ2

distribution. What is the degrees of freedom of this distribution?

Problem 9.9.15
Let X be a Gamma distribution with α = 2 and λ. Express Var(X3) in terms
of λ.

Problem 9.9.16
LetX be a Gamma random variable with shape parameter 2 and scale param-
eter 1. Determine the density function and cumulative distribution function
of the random variable Y = eX .
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9.10 The Distribution of a Function of a Con-

tinuous Random Variable

Let X be a continuous random variable. Let g(x) be a function. Then g(X)
is also a random variable. In this section we are interested in finding the
probability density function of g(X).
The following example illustrates the method of finding the probability den-
sity function by finding first its cdf.

Example 9.10.1
If the probability density of X is given by

f(x) =

{
6x(1− x) 0 < x < 1

0 otherwise.

Find the probability density of Y = X3.

Solution.
We have

F (y) =P (Y ≤ y) = P (X3 ≤ y) = P (X ≤ y
1
3 )

=

∫ y
1
3

0

6x(1− x)dx = 3y
2
3 − 2y.

Hence, f(y) = F ′(y) = 2(y−
1
3 − 1), for 0 < y < 1 and 0 otherwise

Example 9.10.2
Let X be a random variable with probability density f(x). Find the proba-
bility density function of Y = |X|.

Solution.
Clearly, FY (y) = 0 for y ≤ 0. So assume that y > 0. Then

FY (y) =P (Y ≤ y) = P (|X| ≤ y)

=P (−y ≤ X ≤ y) = FX(y)− FX(−y)

Thus, fY (y) = F ′Y (y) = fX(y) + fX(−y) for y > 0 and 0 otherwise

The following theorem provides a formula for finding the probability den-
sity of g(X) for monotone g without the need for finding the distribution
function.
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Theorem 9.10.1
Let X be a continuous random variable with pdf fX . Let g(x) be a monotone
and differentiable function of x. Suppose that g−1(Y ) = X. Then the random
variable Y = g(X) has a pdf given by

fY (y) = fX [g−1(y)]

∣∣∣∣ ddyg−1(y)

∣∣∣∣ .
Proof.
Suppose first that g(·) is increasing. Then

FY (y) =P (Y ≤ y) = P (g(X) ≤ y)

=P (X ≤ g−1(y)) = FX(g−1(y)).

Differentiating and using the chain rule, we find

fY (y) =
dFY (y)

dy
= fX [g−1(y)]

d

dy
g−1(y).

Now, suppose that g(·) is decreasing. Then

FY (y) =P (Y ≤ y) = P (g(X) ≤ y)

=P (X ≥ g−1(y)) = 1− FX(g−1(y))

Differentiating we find

fY (y) =
dFY (y)

dy
= −fX [g−1(y)]

d

dy
g−1(y)

Example 9.10.3
Let X be a continuous random variable with pdf fX . Find the pdf of Y = −X.

Solution.
Let g(x) = −x. Then g(x) is decreasing. By the Theorem 9.10.1, we have

fY (y) = fX(−y)

Example 9.10.4
Let X be a continuous random variable with pdf fX . Find the pdf of Y =
aX + b, a > 0.
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Solution.
Let g(x) = ax + b. Since a > 0, g(x) is increasing. Moreover, g−1(y) = y−b

a
.

By Theorem 9.10.1, we have

fY (y) =
1

a
fX

(
y − b
a

)
If a function is not monotone, we must sum over all possible inverse values.
We illustrate this in the next example.

Example 9.10.5
Suppose X is a random variable with the following density :

f(x) =
1

π(x2 + 1)
, −∞ < x <∞.

Find the pdf of Y = X2.

Solution.
The function g(x) = x2 is decreasing for x ≤ 0 and increasing for x > 0.
Also, g(x) takes only nonnegative values, so for y > 0, we have

fY (y) =fX(−√y)

∣∣∣∣ ddy (−√y)

∣∣∣∣+ fX(
√
y)

∣∣∣∣ ddy (
√
y)

∣∣∣∣
=

1

2π
√
y(1 + y)

+
1

2π
√
y(1 + y)

=
1

π
√
y(1 + y)

and 0 otherwise
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Practice Problems

Problem 9.10.1

Suppose fX(x) = 1√
2π
e−

(x−µ)2
2 and let Y = aX + b, a 6= 0. Find fY (y).

Problem 9.10.2
Let X be a continuous random variable with pdf

f(x) =

{
2x 0 ≤ x ≤ 1
0 otherwise.

Find probability density function for Y = 3X − 1.

Problem 9.10.3
Let X be a random variable with density function

f(x) =

{
2x 0 ≤ x ≤ 1
0 otherwise.

Find the density function of Y = 8X3.

Problem 9.10.4
Suppose X is an exponential random variable with density function

f(x) =

{
λe−λx x ≥ 0

0 otherwise.

What is the density function of Y = eX?

Problem 9.10.5
Gas molecules move about with varying velocity which has, according to the
Maxwell- Boltzmann law, a probability density given by

f(v) = cv2e−βv
2

, v ≥ 0.

The kinetic energy is given by Y = E = 1
2
mv2 where m is the mass. What

is the density function of Y ?

Problem 9.10.6
Let X be a random variable that is uniformly distributed in (0,1). Find the
probability density function of Y = − lnX.
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Problem 9.10.7
Let X be a uniformly distributed function over [−π, π]. That is

f(x) =

{
1

2π
−π ≤ x ≤ π

0 otherwise.

Find the probability density function of Y = cosX.

Problem 9.10.8
Suppose X has the uniform distribution on (0, 1). Compute the probability
density function and expected value of:
(a) Xα, α > 0 (b) lnX (c) eX (d) sin πX

Problem 9.10.9 ‡
The time, T, that a manufacturing system is out of operation has cumulative
distribution function

F (t) =

{
1−

(
2
t

)2
t > 2

0 otherwise.

The resulting cost to the company is Y = T 2. Determine the density function
of Y, for y > 4.

Problem 9.10.10 ‡
An investment account earns an annual interest rate R that follows a uni-
form distribution on the interval (0.04, 0.08). The value of a 10,000 initial
investment in this account after one year is given by V = 10, 000eR.
Determine the cumulative distribution function, FV (v) of V.

Problem 9.10.11 ‡
An actuary models the lifetime of a device using the random variable Y =
10X0.8, where X is an exponential random variable with mean 1 year.
Determine the probability density function fY (y), for y > 0, of the random
variable Y.

Problem 9.10.12 ‡
Let T denote the time in minutes for a customer service representative to
respond to 10 telephone inquiries. T is uniformly distributed on the interval
with endpoints 8 minutes and 12 minutes. Let R denote the average rate, in
customers per minute, at which the representative responds to inquiries.
Find the density function fR(r) of R.
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Problem 9.10.13 ‡
The monthly profit of Company A can be modeled by a continuous random
variable with density function fA. Company B has a monthly profit that is
twice that of Company A.
Determine the probability density function of the monthly profit of Company
B.

Problem 9.10.14
Let X have normal distribution with mean 1 and standard deviation 2.
(a) Find P (|X| ≤ 1).
(b) Let Y = eX . Find the probability density function fY (y) of Y.

Problem 9.10.15
Let X be a uniformly distributed random variable on the interval (−1, 1).
Find the pdf of Y = X2

Problem 9.10.16
Let X be a random variable with density function

f(x) =

{
3
2
x2 −1 ≤ x ≤ 1
0 otherwise.

(a) Find the pdf of Y = 3X.
(b) Find the pdf of Z = 3−X.

Problem 9.10.17
Let X be a continuous random variable with density function

f(x) =

{
1− |x| −1 < x < 1

0 otherwise.

Find the density function of Y = X2.

Problem 9.10.18
Let X be a continuous random variable with density function If fX(x) =

xe−
x2

2 , for x > 0 and 0 otherwise. Find the density function of Y = lnX.

Problem 9.10.19
Let X be a continuous random variable with pdf

f(x) =

{
2(1− x) 0 ≤ x ≤ 1

0 otherwise.
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(a) Find the pdf of Y = 10X − 2.
(b) Find the expected value of Y.
(c) Find P (Y < 0).

Problem 9.10.20
Let X be a continuous random variable with pdf fX . Find the pdf of Y = X2.

Problem 9.10.21 ‡
X is a random variable with probability density function

fX(x) =

{
e−2x, x ≥ 0
2e4x, x < 0.

Determine the probability density function for T = X2 for positive values of
t.
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Chapter 10

Joint Distributions

There are many situations which involve the presence of several random vari-
ables and we are interested in their joint behavior. This chapter is concerned
with the joint probability structure of two or more random variables defined
on the same sample space. We will focus on the discrete case in this section.
In the next section, we study the continuous case.

397
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10.1 Discrete Jointly Distributed Random Vari-

ables

Suppose that X and Y are two random variables defined on the same sample
space S. The joint cumulative distribution function of X and Y is the
function

FXY (x, y) = P (X ≤ x, Y ≤ y) = P ({e ∈ S : X(e) ≤ x and Y (e) ≤ y}).

Example 10.1.1
Consider the experiment of throwing a fair coin and a fair die simultaneously.
The sample space is

S = {(H, 1), (H, 2), · · · , (H, 6), (T, 1), (T, 2), · · · , (T, 6)}.

Let X be the number of heads showing on the coin, X ∈ {0, 1}. Let Y be
the number showing on the die, Y ∈ {1, 2, 3, 4, 5, 6}. Thus, if e = (H, 1) then
X(e) = 1 and Y (e) = 1. Find FXY (1, 2).

Solution.

FXY (1, 2) =P (X ≤ 1, Y ≤ 2)

=P ({(H, 1), (H, 2), (T, 1), (T, 2)})

=
4

12
=

1

3

In what follows, individual cdfs will be referred to as marginal distribu-
tions. These cdfs are obtained from the joint cumulative distribution as
follows

FX(x) =P (X ≤ x)

=P (X ≤ x, Y <∞)

=P

( ⋃
−∞<y<∞

{X ≤ x, Y ≤ y}

)
= lim

y→∞
P (X ≤ x, Y ≤ y)

= lim
y→∞

FXY (x, y) = FXY (x,∞)
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where we used Proposition 8.1.1(a). In a similar way, one can show that

FY (y) = lim
x→∞

FXY (x, y) = FXY (∞, y).

Next, we have

FXY (∞,∞) = P (X <∞, Y <∞) = P ({e ∈ S : X(e) <∞, Y (e) <∞}) = P (S) = 1.

Moreover,

FXY (−∞, y) = 0.

This follows from

0 ≤ FXY (−∞, y) = P (X < −∞, Y ≤ y) ≤ P (X < −∞) = FX(−∞) = 0.

Likewise ,

FXY (x,−∞) = 0.

All joint probability statements about X and Y can be answered in terms of
their joint distribution functions. For example,

P (X > x, Y > y) =1− P ({X > x, Y > y}c)
=1− P ({X > x}c ∪ {Y > y}c)
=1− [P ({X ≤ x} ∪ {Y ≤ y})
=1− [P (X ≤ x) + P (Y ≤ y)− P (X ≤ x, Y ≤ y)]

=1− FX(x)− FY (y) + FXY (x, y).

Also, if a1 < a2 and b1 < b2 then

P (a1 < X ≤ a2, b1 < Y ≤ b2) =P (X ≤ a2, Y ≤ b2)− P (X ≤ a2, Y ≤ b1)

−P (X ≤ a1, Y ≤ b2) + P (X ≤ a1, Y ≤ b1)

=FXY (a2, b2)− FXY (a1, b2)− FXY (a2, b1) + FXY (a1, b1).
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This is clear if you use the concept of area shown in Figure 10.1.1

Figure 10.1.1

If X and Y are both discrete random variables, we define the joint proba-
bility mass function of X and Y by

pXY (x, y) = P (X = x, Y = y).

The marginal probability mass function of X can be obtained from pXY (x, y)
by

pX(x) = P (X = x) =
∑

y:pXY (x,y)>0

pXY (x, y).

Similarly, we can obtain the marginal pmf of Y by

pY (y) = P (Y = y) =
∑

x:pXY (x,y)>0

pXY (x, y).

This simply means that to find the probability thatX takes on a specific value
we sum across the row associated with that value. To find the probability
that Y takes on a specific value we sum the column associated with that
value as illustrated in the next example.

Example 10.1.2
A fair coin is tossed 4 times. Let the random variable X denote the number of
heads in the first 3 tosses, and let the random variable Y denote the number
of heads in the last 3 tosses.
(a) What is the joint pmf of X and Y ?
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(b) What is the probability 2 or 3 heads appear in the first 3 tosses and 1 or
2 heads appear in the last three tosses?
(c) What is the joint cdf of X and Y ?
(d) What is the probability less than 3 heads occur in both the first and last
3 tosses?
(e) Find the probability that one head appears in the first three tosses.

Solution.
(a) A tree diagram will be helpful in finding the entries of the joint pmf as
given by the following table

X\Y 0 1 2 3 pX(.)
0 1/16 1/16 0 0 2/16
1 1/16 3/16 2/16 0 6/16
2 0 2/16 3/16 1/16 6/16
3 0 0 1/16 1/16 2/16
pY (.) 2/16 6/16 6/16 2/16 1

(b) P ((X, Y ) ∈ {(2, 1), (2, 2), (3, 1), (3, 2)}) = P (2, 1) + P (2, 2) + P (3, 1) +
P (3, 2) = 3

8
.

(c) The joint cdf is given by the following table

X\Y 0 1 2 3
0 1/16 2/16 2/16 2/16
1 2/16 6/16 8/16 8/16
2 2/16 8/16 13/16 14/16
3 2/16 8/16 14/16 1

(d) P (X < 3, Y < 3) = FXY (2, 2) = 13
16
.

(e) P (X = 1) = P ((X, Y ) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)}) = 1/16 + 3/16 +
2/16 = 3

8

Example 10.1.3
Suppose two balls are chosen from a box containing 3 white, 2 red and 5 blue
balls. Let X = the number of white balls chosen and Y = the number of
blue balls chosen. Find the joint pmf of X and Y.
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Solution.

pXY (0, 0) =
2C2

10C2

=
1

45

pXY (0, 1) =
2C1 · 5C1

10C2

=
10

45

pXY (0, 2) =
5C2

10C2

=
10

45

pXY (1, 0) =
2C1 · 3C1

10C2

=
6

45

pXY (1, 1) =
5C1 · 3C1

10C2

=
15

45

pXY (1, 2) =0

pXY (2, 0) =
3C2

10C2

=
3

45

pXY (2, 1) =0

pXY (2, 2) =0.

The pmf of X is

pX(0) =P (X = 0) =
∑

y:pXY (0,y)>0

pXY (0, y) =
1 + 10 + 10

45
=

21

45

pX(1) =P (X = 1) =
∑

y:pXY (1,y)>0

pXY (1, y) =
6 + 15

45
=

21

45

pX(2) =P (X = 2) =
∑

y:pXY (2,y)>0

pXY (2, y) =
3

45
=

3

45
.

The pmf of Y is

pY (0) =P (Y = 0) =
∑

x:pXY (x,0)>0

pXY (x, 0) =
1 + 6 + 3

45
=

10

45

pY (1) =P (Y = 1) =
∑

x:pXY (x,1)>0

pXY (x, 1) =
10 + 15

45
=

25

45

pY (2) =P (Y = 2) =
∑

x:pXY (x,2)>0

pXY (x, 2) =
10

45
=

10

45
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Practice Problems

Problem 10.1.1
A security check at an airport has two express lines. Let X and Y denote the
number of customers in the first and second line at any given time. The joint
probability function of X and Y, pXY (x, y), is summarized by the following
table

X\Y 0 1 2 3 pX(.)
0 0.1 0.2 0 0 0.3
1 0.2 0.25 0.05 0 0.5
2 0 0.05 0.05 0.025 0.125
3 0 0 0.025 0.05 0.075
pY (.) 0.3 0.5 0.125 0.075 1

(a) Show that pXY (x, y) is a joint probability mass function.
(b) Find the probability that more than two customers are in line.
(c) Find P (|X − Y | = 1).
(d) Find pX(x).

Problem 10.1.2
Given:

X\Y 1 2 3 pX(.)
1 0.1 0.05 0.02 0.17
2 0.1 0.35 0.05 0.50
3 0.03 0.1 0.2 0.33
pY (.) 0.23 0.50 0.27 1

Find P (X ≥ 2, Y ≥ 3).

Problem 10.1.3
Given:

X\Y 0 1 2 pX(.)
0 0.4 0.12 0.08 0.6
1 0.15 0.08 0.03 0.26
2 0.1 0.03 0.01 0.14
pY (.) 0.65 0.23 0.12 1
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Find the following:
(a) P (X = 0, Y = 2).
(b) P (X > 0, Y ≤ 1).
(c) P (X ≤ 1).
(d) P (Y > 0).
(e) P (X = 0).
(f) P (Y = 0).
(g) P (X = 0, Y = 0).

Problem 10.1.4
Given:

X\Y 15 16 pX(.)
129 0.12 0.08 0.2
130 0.4 0.30 0.7
131 0.06 0.04 0.1
pY (.) 0.58 0.42 1

(a) Find P (X = 130, Y = 15).
(b) Find P (X ≥ 130, Y ≥ 15).

Problem 10.1.5 ‡
A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car,
the dealer also tries to persuade the customer to buy an extended warranty
for the car. Let X denote the number of luxury cars sold in a given day, and
let Y denote the number of extended warranties sold. Given the following
information

P (X = 0, Y = 0) =
1

6

P (X = 1, Y = 0) =
1

12

P (X = 1, Y = 1) =
1

6

P (X = 2, Y = 0) =
1

12

P (X = 2, Y = 1) =
1

3

P (X = 2, Y = 2) =
1

6

What is the variance of X?
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Problem 10.1.6
Let X and Y be random variables with common range {1, 2} and such that
P (X = 1) = 0.7, P (X = 2) = 0.3, P (Y = 1) = 0.4, P (Y = 2) = 0.6, and
P (X = 1, Y = 1) = 0.2.
(a) Find the joint probability mass function pXY (x, y).
(b) Find the joint cumulative distribution function FXY (x, y).

Problem 10.1.7 (Trinomial Distribution)‡
The trinomial distribution arises from an extension of the binomial experi-
ment to situations where each trial has three different outcomes O1, O2, and
O3 of probability p1, p2, and p3 respectively, where p1 +p2 +p3 = 1. The trials
are assumed to be independent. Let Xi be the number of trials with outcome
Oi for i = 1, 2, 3. The trinomial mass function of X1, X2, X3 is defined by

f(x1, x2, x3) =
n!

x1!x2!x3!
px11 p

x2
2 p

x3
3

where n is the number of trials.
A large pool of adults earning their first driver’s license includes 50% low-risk
drivers, 30% moderate-risk drivers, and 20% high-risk drivers. Because these
drivers have no prior driving record, an insurance company considers each
driver to be randomly selected from the pool.
This month, the insurance company writes four new policies for adults earn-
ing their first driver’s license.
Calculate the probability that these four will contain at least two more high-
risk drivers than low-risk drivers.

Problem 10.1.8 ‡
The random variables X and Y have joint probability function p(x, y) for
x = 0, 1 and y = 0, 1, 2. Suppose 3p(1, 1) = p(1, 2), and p(1, 1) maximizes
the variance of XY. Calculate the probability that X or Y is 0.

Problem 10.1.9 ‡
Random variables X and Y have joint distribution

X = 0 X = 1 X = 2
Y = 0 1/15 a 2/15
Y = 1 a b a
Y = 2 2/15 a 1/15
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Let a be the value that minimizes the variance of X. Calculate the variance
of Y.

Problem 10.1.10 ‡
The table below shows the joint probability function of a sailor’s number of
boating accidents X and number of hospitalizations from these accidents Y
for this year.

Y \X 0 1 2 3
0 0.70 0 0 0
1 0.15 0.05 0 0
2 0.06 0.02 0.01 0
3 0.005 0.002 0.002 0.001

Calculate the sailor’s expected number of hospitalizations from boating ac-
cidents this year.

Problem 10.1.11 ‡
The number of minor surgeries, X, and the number of major surgeries, Y, for
a policyholder, this decade, has joint cumulative distribution function

F (x, y) = [1− (0.5)x+1][1− (0.2)y+1]

for non-negative integers x and y. Calculate the probability that the poli-
cyholder experiences exactly three minor surgeries and exactly three major
surgeries this decade.
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10.2 Jointly Continuous Distributed Random

Variables

Two random variables X and Y are said to be jointly continuous if there
exists a function fXY (x, y) ≥ 0 with the property that for every subset C of
R2 we have

P ((X, Y ) ∈ C) =

∫∫
(x,y)∈C

fXY (x, y)dA.

The function fXY (x, y) is called the joint probability density function
of X and Y.
If A and B are any sets of real numbers then by letting C = {(x, y) : x ∈
A, y ∈ B} we have

P (X ∈ A, Y ∈ B) =

∫
B

∫
A

fXY (x, y)dxdy.

As a result of this last equation we can write

FXY (x, y) =P (X ∈ (−∞, x], Y ∈ (−∞, y])

=

∫ y

−∞

∫ x

−∞
fXY (u, v)dudv.

It follows upon differentiation that

fXY (x, y) =
∂2

∂y∂x
FXY (x, y)

whenever the partial derivatives exist.

Example 10.2.1
The cumulative distribution function for the joint distribution of the contin-
uous random variables X and Y is FXY (x, y) = 0.2(3x3y + 2x2y2), 0 ≤ x ≤
1, 0 ≤ y ≤ 1. Find fXY (1

2
, 1

2
).

Solution.
Since

fXY (x, y) =
∂2

∂y∂x
FXY (x, y) = 0.2(9x2 + 8xy)

we find fXY (1
2
, 1

2
) = 17

20
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Now, if X and Y are jointly continuous then they are individually continuous,
and their probability density functions can be obtained as follows:

P (X ∈ A) =P (X ∈ A, Y ∈ (−∞,∞))

=

∫
A

∫ ∞
−∞

fXY (x, y)dydx

=

∫
A

fX(x)dx

where

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

is thus the probability density function of X. Similarly, the probability den-
sity function of Y is given by

fY (y) =

∫ ∞
−∞

fXY (x, y)dx.

Example 10.2.2
Let X and Y be random variables with joint pdf

fXY (x, y) =

{
1
4
−1 ≤ x, y ≤ 1

0 Otherwise.

Determine
(a) P (X2 + Y 2 < 1),
(b) P (2X − Y > 0),
(c) P (|X + Y | < 2).

Solution.
(a)

P (X2 + Y 2 < 1) =

∫ 2π

0

∫ 1

0

1

4
rdrdθ =

π

4
.

(b)

P (2X − Y > 0) =

∫ 1

−1

∫ 1

y
2

1

4
dxdy =

1

2
.

Note that P (2X − Y > 0) is the area of the region bounded by the lines
y = 2x, x = 1, y = −1 and y = 1. A graph of this region will help you
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understand the integration process used above.
(c) Since the square with vertices (1, 1), (1,−1), (−1, 1), (−1,−1) is com-
pletely contained in the region −2 < x+ y < 2, we have

P (|X + Y | < 2) = 1

Remark 10.2.1
An important remark to make in here. Note that the area of the region
−1 ≤ x ≤ 1, − 1 ≤ y ≤ 1 is 4 and fXY (x, y) = 1

4
. In this case, we say that

X and Y have a uniformly joint distribution in the given region.

Remark 10.2.2
Joint pdfs and joint cdfs for three or more random variables are obtained as
straightforward generalizations of the above definitions and conditions.
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Practice Problems

Problem 10.2.1
Suppose the random variables X and Y have a joint pdf

fXY (x, y) =

{
20−x−y

375
0 ≤ x, y ≤ 5

0 otherwise.

Find P (1 ≤ X ≤ 2, 2 ≤ Y ≤ 3).

Problem 10.2.2
Assume the joint pdf of X and Y is

fXY (x, y) =

{
xye−

x2+y2

2 0 < x, y
0 otherwise.

(a) Find FXY (x, y).
(b) Find fX(x) and fY (y).

Problem 10.2.3
Show that the following function is not a joint probability density function?

fXY (x, y) =

{
xay1−a 0 ≤ x, y ≤ 1

0 otherwise

where 0 < a < 1. What factor should you multiply fXY (x, y) to make it a
joint probability density function?

Problem 10.2.4 ‡
A device runs until either of two components fails, at which point the de-
vice stops running. The joint density function of the lifetimes of the two
components, both measured in hours, is

fXY (x, y) =

{
x+y

8
0 < x, y < 2

0 otherwise

What is the probability that the device fails during its first hour of operation?



10.2. JOINTLY CONTINUOUS DISTRIBUTED RANDOMVARIABLES411

Problem 10.2.5 ‡
An insurance company insures a large number of drivers. Let X be the
random variable representing the company’s losses under collision insurance,
and let Y represent the company’s losses under liability insurance. X and Y
have joint density function

fXY (x, y) =

{
2x+2−y

4
0 < x < 1, 0 < y < 2

0 otherwise

What is the probability that the total loss is at least 1 ?

Problem 10.2.6 ‡
A company is reviewing tornado damage claims under a farm insurance pol-
icy. Let X be the portion of a claim representing damage to the house and
let Y be the portion of the same claim representing damage to the rest of
the property. The joint density function of X and Y is

fXY (x, y) =

{
6[1− (x+ y)] x > 0, y > 0, x+ y < 1

0 otherwise.

Determine the probability that the portion of a claim representing damage
to the house is less than 0.2.

Problem 10.2.7 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
15y x2 ≤ y ≤ x
0 otherwise.

Find the marginal density function of Y.

Problem 10.2.8 ‡
Let X represent the age of an insured automobile involved in an accident.
Let Y represent the length of time the owner has insured the automobile at
the time of the accident. X and Y have joint probability density function

fXY (x, y) =

{
1
64

(10− xy2) 2 ≤ x ≤ 10, 0 ≤ y ≤ 1
0 otherwise.

Calculate the expected age of an insured automobile involved in an accident.
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Problem 10.2.9 ‡
A device contains two circuits. The second circuit is a backup for the first,
so the second is used only when the first has failed. The device fails when
and only when the second circuit fails.
Let X and Y be the times at which the first and second circuits fail, respec-
tively. X and Y have joint probability density function

fXY (x, y) =

{
6e−xe−2y 0 < x < y <∞

0 otherwise.

What is the expected time at which the device fails?

Problem 10.2.10 ‡
The future lifetimes (in months) of two components of a machine have the
following joint density function:

fXY (x, y) =

{
6

125000
(50− x− y) 0 < x < 50− y < 50

0 otherwise.

What is the probability that both components are still functioning 20 months
from now?

Problem 10.2.11
Suppose the random variables X and Y have a joint pdf

fXY (x, y) =

{
x+ y 0 ≤ x, y ≤ 1

0 otherwise.

Find P (X >
√
Y ).

Problem 10.2.12 ‡
Let X and Y be random losses with joint density function

fXY (x, y) = e−(x+y), x > 0, y > 0

and 0 otherwise. An insurance policy is written to reimburse X + Y.
Calculate the probability that the reimbursement is less than 1.

Problem 10.2.13
Let X and Y be continuous random variables with joint cumulative distri-
bution FXY (x, y) = 1

250
(20xy − x2y − xy2) for 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5.

Compute P (X > 2).
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Problem 10.2.14
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
xy 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
0 otherwise.

Find P (X
2
≤ Y ≤ X).

Problem 10.2.15 ‡
A device contains two components. The device fails if either component fails.
The joint density function of the lifetimes of the components, measured in
hours, is f(s, t), where 0 < s < 1 and 0 < t < 1.
What is the probability that the device fails during the first half hour of
operation?

Problem 10.2.16 ‡
A client spends X minutes in an insurance agent’s waiting room and Y
minutes meeting with the agent. The joint density function of X and Y can
be modeled by

f(x, y) =

{
1

800
e−

x
40
− y

20 for x > 0, y > 0
0 otherwise.

Find the probability that a client spends less than 60 minutes at the agent’s
office. You do NOT have to evaluate the integrals.

Problem 10.2.17 ‡
Let X denote the proportion of employees at a large firm who will choose to
be covered under the firm’s medical plan, and let Y denote the proportion
who will choose to be covered under both the firm’s medical and dental
plans.
Suppose that for 0 ≤ y ≤ x ≤ 1, X and Y have the joint cumulative
distribution function

FXY (x, y) = y(x2 + xy − y2).

Calculate the expected proportion of employees who will choose to be covered
under both plans.
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Problem 10.2.18 ‡
An insurance company sells automobile liability and collision insurance. Let
X denote the percentage of liability policies that will be renewed at the end
of their terms and Y the percentage of collision policies that will be renewed
at the end of their terms. X and Y have the joint cumulative distribution
function

FXY (x, y) =
xy(x+ y)

2, 000, 000
, 0 ≤ x ≤ 100, 0 ≤ y ≤ 100.

Calculate Var(X).

Problem 10.2.19 ‡
A hurricane policy covers both water damage, X, and wind damage, Y, where
X and Y have joint density function

fXY (x, y) = 0.13e−0.5x−0.2y − 0.06e−x−0.2y − 0.06e−0.5x−0.4y + 0.12e−x−0.4y,

for x > 0, y > 0, and 0 otherwise. Calculate the standard deviation of X.

Problem 10.2.20 ‡
Batteries A and B have lifetimes that are independent and exponentially
distributed with a common mean of m years. The probability that battery
B outlasts battery A by more than one year is 0.33. Calculate m.
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10.3 Independent Random Variables

Let X and Y be two random variables defined on the same sample space S.
We say that X and Y are independent random variables if and only if for
any two sets of real numbers A and B we have

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B). (10.3.1)

That is, the events E = {X ∈ A} and F = {Y ∈ B} are independent.
The following theorem expresses independence in terms of pdfs.

Theorem 10.3.1
If X and Y are discrete random variables, then X and Y are independent if
and only if

pXY (x, y) = pX(x)pY (y)

where pX(x) and pY (y) are the marginal pmfs of X and Y respectively.
Similar result holds for continuous random variables where sums are replaced
by integrals and pmfs are replaced by pdfs.

Proof.
Suppose that X and Y are independent. Then by letting A = {x} and
B = {y} in Equation 10.3.1 we obtain

P (X = x, Y = y) = P (X = x)P (Y = y)

that is

pXY (x, y) = pX(x)pY (y).

Conversely, suppose that pXY (x, y) = pX(x)pY (y). Let A and B be any two
sets of integers. Then

P (X ∈ A, Y ∈ B) =
∑
y∈B

∑
x∈A

pXY (x, y) =
∑
y∈B

∑
x∈A

pX(x)pY (y)

=
∑
y∈B

pY (y)
∑
x∈A

pX(x) = P (Y ∈ B)P (X ∈ A)

and thus equation 10.3.1 is satisfied. That is, X and Y are independent
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Example 10.3.1
A month of the year is chosen at random (each with probability 1

12
). Let X

be the number of letters in the month’s name, and let Y be the number of
days in the month (ignoring leap year).
(a) Write down the joint pdf of X and Y. From this, compute the pdf of X
and the pdf of Y.
(b) Find E(Y ).
(c) Are the events “X ≤ 6” and “Y = 30” independent?
(d) Are X and Y independent random variables?

Solution.
(a) The joint pdf is given by the following table

Y\ X 3 4 5 6 7 8 9 pY (y)
28 0 0 0 0 0 1

12
0 1

12

30 0 1
12

1
12

0 0 1
12

1
12

4
12

31 1
12

1
12

1
12

1
12

2
12

1
12

0 7
12

pX(x) 1
12

2
12

2
12

1
12

2
12

3
12

1
12

1

(b) E(Y ) =
(

1
12

)
× 28 +

(
4
12

)
× 30 +

(
7
12

)
× 31 = 365

12
.

(c) We have P (X ≤ 6) = 6
12

= 1
2
, P (Y = 30) = 4

12
= 1

3
, P (X ≤ 6, Y =

30) = 2
12

= 1
6
. Since, P (X ≤ 6, Y = 30) = P (X ≤ 6)P (Y = 30), the two

events are independent.
(d) Since pXY (5, 28) = 0 6= pX(5)pY (28) = 1

6
× 1

12
, X and Y are dependent

In the jointly continuous case the condition of independence is equivalent
to

fXY (x, y) = fX(x)fY (y).

It follows from the previous theorem, that if you are given the joint pdf of
the random variables X and Y, you can determine whether or not they are
independent by calculating the marginal pdfs of X and Y and determining
whether or not the relationship fXY (x, y) = fX(x)fY (y) holds.

Example 10.3.2
The joint pdf of X and Y is given by

fXY (x, y) =

{
4e−2(x+y) 0 < x <∞, 0 < y <∞

0 Otherwise.

Are X and Y independent?
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Solution.
Marginal density fX(x) is given by

fX(x) =

∫ ∞
0

4e−2(x+y)dy = 2e−2x

∫ ∞
0

2e−2ydy = 2e−2x, x > 0

and 0 otherwise. Similarly, the marginal density fY (y) is given by

fY (y) =

∫ ∞
0

4e−2(x+y)dx = 2e−2y

∫ ∞
0

2e−2xdx = 2e−2y, y > 0.

and 0 otherwise. Now since

fXY (x, y) = 4e−2(x+y) = [2e−2x][2e−2y] = fX(x)fY (y)

X and Y are independent

Example 10.3.3
The joint pdf of X and Y is given by

fXY (x, y) =

{
3(x+ y) 0 ≤ x+ y ≤ 1, 0 ≤ x, y <∞

0 Otherwise.

Are X and Y independent?

Solution.
For the limit of integration see Figure 10.3.1 below.

Figure 10.3.1

The marginal pdf of X is

fX(x) =

∫ 1−x

0

3(x+ y)dy = 3xy +
3

2
y2

∣∣∣∣1−x
0

=
3

2
(1− x2), 0 ≤ x ≤ 1
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and 0 otherwise. The marginal pdf of Y is

fY (y) =

∫ 1−y

0

3(x+ y)dx =
3

2
x2 + 3xy

∣∣∣∣1−y
0

=
3

2
(1− y2), 0 ≤ y ≤ 1

and 0 otherwise. Since

fXY (x, y) = 3(x+ y) 6= 3

2
(1− x2)

3

2
(1− y2) = fX(x)fY (y)

X and Y are dependent

The following theorem provides a necessary and sufficient condition for two
random variables to be independent.

Theorem 10.3.2
Two continuous random variables X and Y are independent if and only if
their joint probability density function can be expressed as

fXY (x, y) = h(x)g(y), −∞ < x <∞,−∞ < y <∞.

The same result holds for discrete random variables.

Proof.
Suppose first that X and Y are independent. Then fXY (x, y) = fX(x)fY (y).
Let h(x) = fX(x) and g(y) = fY (y).
Conversely, suppose that fXY (x, y) = h(x)g(y). Let C =

∫∞
−∞ h(x)dx and

D =
∫∞
−∞ g(y)dy. Then

CD =

(∫ ∞
−∞

h(x)dx

)(∫ ∞
−∞

g(y)dy

)
=

∫ ∞
−∞

∫ ∞
−∞

h(x)g(y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y)dxdy = 1.

Furthermore,

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
−∞

h(x)g(y)dy = h(x)D

and

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

∫ ∞
−∞

h(x)g(y)dx = g(y)C.
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Hence,
fX(x)fY (y) = h(x)g(y)CD = h(x)g(y) = fXY (x, y).

This proves that X and Y are independent

Example 10.3.4
The joint pdf of X and Y is given by

fXY (x, y) =

{
xye−

(x2+y2)
2 0 ≤ x, y <∞

0 otherwise.

Are X and Y independent?

Solution.
We have

fXY (x, y) = xye−
(x2+y2)

2 = xe−
x2

2 ye−
y2

2 .

By the previous theorem, X and Y are independent

Example 10.3.5
The joint pdf of X and Y is given by

fXY (x, y) =

{
x+ y 0 ≤ x, y ≤ 1

0 otherwise.

Are X and Y independent?

Solution.
Clearly does not factor into a part depending only on x and another depend-
ing only on y. Thus, by the previous theorem X and Y are dependent
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Practice Problems

Problem 10.3.1
Let X and Y be random variables with joint pdf given by

fXY (x, y) =

{
e−(x+y) 0 ≤ x, y

0 otherwise.

(a) Are X and Y independent?
(b) Find P (X < Y ).
(c) Find P (X < a).

Problem 10.3.2
The random vector (X, Y ) is said to be uniformly distributed over a region
R in the plane if, for some constant c, its joint pdf is

fXY (x, y) =

{
c (x, y) ∈ R
0 otherwise.

(a) Show that c = 1
A(R)

, where A(R) is the area of the region R.

(b) Suppose that R = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}. Show that X and
Y are independent, with each being distributed uniformly over (−1, 1).
(c) With R as defined in (b), find P (X2 + Y 2 ≤ 1).

Problem 10.3.3
Let X and Y be random variables with joint pdf given by

fXY (x, y) =

{
6(1− y) 0 ≤ x ≤ y ≤ 1

0 otherwise.

(a) Find P (X ≤ 3
4
, Y ≥ 1

2
).

(b) Find fX(x) and fY (y).
(c) Are X and Y independent?

Problem 10.3.4
Let X and Y have the joint pdf given by

fXY (x, y) =

{
kxy 0 ≤ x, y ≤ 1

0 otherwise.

(a) Find k.
(b) Find fX(x) and fY (y).
(c) Are X and Y independent?
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Problem 10.3.5
Let X and Y have joint density

fXY (x, y) =

{
kxy2 0 ≤ x, y ≤ 1

0 otherwise.

(a) Find k.
(b) Compute the marginal densities of X and of Y .
(c) Compute P (Y > 2X).
(d) Compute P (|X − Y | < 0.5).
(e) Are X and Y independent?

Problem 10.3.6
Suppose the joint density of random variables X and Y is given by

fXY (x, y) =

{
kx2y−3 1 ≤ x, y ≤ 2

0 otherwise.

(a) Find k.
(b) Are X and Y independent?
(c) Find P (X > Y ).

Problem 10.3.7
Let X and Y be continuous random variables, with the joint probability
density function

fXY (x, y) =

{
3x2+2y

24
0 ≤ x, y ≤ 2

0 otherwise.

(a) Find fX(x) and fY (y).
(b) Are X and Y independent?
(c) Find P (X + 2Y < 3).

Problem 10.3.8
Let X and Y have joint density

fXY (x, y) =

{
4
9

x ≤ y ≤ 3− x, 0 ≤ x
0 otherwise.

(a) Compute the marginal densities of X and Y.
(b) Compute P (Y > 2X).
(c) Are X and Y independent?
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Problem 10.3.9 ‡
A study is being conducted in which the health of two independent groups
of ten policyholders is being monitored over a one-year period of time. In-
dividual participants in the study drop out before the end of the study with
probability 0.2 (independently of the other participants).
What is the probability that at least 9 participants complete the study in
one of the two groups, but not in both groups?

Problem 10.3.10 ‡
The waiting time for the first claim from a good driver and the waiting time
for the first claim from a bad driver are independent and follow exponential
distributions with means 6 years and 3 years, respectively.
What is the probability that the first claim from a good driver will be filed
within 3 years and the first claim from a bad driver will be filed within 2
years?

Problem 10.3.11 ‡
An insurance company sells two types of auto insurance policies: Basic and
Deluxe. The time until the next Basic Policy claim is an exponential random
variable with mean two days. The time until the next Deluxe Policy claim
is an independent exponential random variable with mean three days.
What is the probability that the next claim will be a Deluxe Policy claim?

Problem 10.3.12 ‡
Two insurers provide bids on an insurance policy to a large company. The
bids must be between 2000 and 2200 . The company decides to accept the
lower bid if the two bids differ by 20 or more. Otherwise, the company will
consider the two bids further. Assume that the two bids are independent
and are both uniformly distributed on the interval from 2000 to 2200.
Determine the probability that the company considers the two bids further.

Problem 10.3.13 ‡
A family buys two policies from the same insurance company. Losses under
the two policies are independent and have continuous uniform distributions
on the interval from 0 to 10. One policy has a deductible of 1 and the other
has a deductible of 2. The family experiences exactly one loss under each
policy.
Calculate the probability that the total benefit paid to the family does not
exceed 5.
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Problem 10.3.14 ‡
A device containing two key components fails when, and only when, both
components fail. The lifetimes, X and Y , of these components are inde-
pendent with common density function f(t) = e−t, t > 0. The cost, Z, of
operating the device until failure is 2X + Y.
Find the probability density function of Z.

Problem 10.3.15 ‡
A company offers earthquake insurance. Annual premiums are modeled by
an exponential random variable with mean 2. Annual claims are modeled
by an exponential random variable with mean 1. Premiums and claims are
independent. Let X denote the ratio of claims to premiums.
What is the density function of X?

Problem 10.3.16
Let X and Y be independent continuous random variables with common
density function

fX(x) = fY (x) =

{
1 0 < x < 1
0 otherwise.

What is P (X2 ≥ Y 3)?

Problem 10.3.17
Let X and Y be two discrete random variables with joint distribution given
by the following table.

Y\ X 1 5
2 θ1 + θ2 θ1 + 2θ2

4 θ1 + 2θ2 θ1 + θ2

We assume that −0.25 ≤ θ1 ≤ 2.5 and 0 ≤ θ2 ≤ 0.35. Find θ1 and θ2 when
X and Y are independent.

Problem 10.3.18 ‡
Automobile policies are separated into two groups: low-risk and high-risk.
Actuary Rahul examines low-risk policies, continuing until a policy with a
claim is found and then stopping. Actuary Toby follows the same procedure
with high-risk policies. Each low-risk policy has a 10% probability of having
a claim. Each high-risk policy has a 20% probability of having a claim. The
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claim statuses of policies are mutually independent.
Calculate the probability that Actuary Rahul examines fewer policies than
Actuary Toby.

Problem 10.3.19 ‡
Skateboarders A and B practice one difficult stunt until becoming injured
while attempting the stunt. On each attempt, the probability of becoming
injured is p, independent of the outcomes of all previous attempts.
Let F (x, y) represent the probability that skateboarders A and B make no
more than x and y attempts, respectively, where x and y are positive integers.
It is given that F (2, 2) = 0.0441. Calculate F (1, 5).

Problem 10.3.20 ‡
A couple takes out a medical insurance policy that reimburses them for days
of work missed due to illness. Let X and Y denote the number of days missed
during a given month by the wife and husband, respectively. The policy
pays a monthly benefit of 50 times the maximum of X and Y, subject to a
benefit limit of 100. X and Y are independent, each with a discrete uniform
distribution on the set {0, 1, 2, 3, 4}. Calculate the expected monthly benefit
for missed days of work that is paid to the couple.
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10.4 Order Statistics

Let X1, · · · , Xn be independent and identically distributed1 continuous ran-
dom variables with cdf FX(x). An order statistics of these random variables
is the following sequence of new variables:

X(1) =min{X1, X2, · · · , Xn}
X2(2) = second smallest value of X1, · · · , Xn

... =
...

X(n) =max{X1, X2, · · · , Xn}.

We call L = X(1) the first order statistics and U = X(n) the nth order
statistics.

CDF and PDF of U
First note the following equivalence of events

{U ≤ x} ⇔ {X1 ≤ x,X2 ≤ x, · · · , Xn ≤ x}.

Thus,

FU(x) =P (U ≤ x) = P (X1 ≤ x,X2 ≤ x, · · · , Xn ≤ x)

=P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x) = (FX(x))n.

Taking the derivative and using the Chain Rule, we get the pdf of U :

fU(x) =
dFU
dx

= n[FX(x)]n−1dFX
dx

= n[FX(x)]n−1fX(x).

CDF and PDF of L
First, note the following equivalence of events

{L > x} ⇔ {X1 > x,X2 > x, · · · , Xn > x}.

Thus,

FL(x) =P (L ≤ x) = 1− P (L > x)

=1− P (X1 > x,X2 > x, · · · , Xn > x)

=1− P (X1 > x)P (X2 > x) · · ·P (Xn > x)

=1− (1− FX(x))n.

1fX1(x) = fX2(x) = · · · = fXn(x) = fX(x).
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Taking the derivative and using the Chain Rule, we get the pdf of L :

fL(x) =
dFL
dx

= −n[1− FX(x)]n−1 d

dx
(1− FX(x)) = n[1− FX(x)]n−1fX(x).

Joint Distribution of U and L
We want

FLU(x, y) = P (L ≤ x, U ≤ y).

If x ≥ y then

FLU(x, y) = P (L ≤ x, U ≤ y) = P (U ≤ y) = [FX(y)]n.

If x < y, then

P (L ≤ x, U ≤ y) =P (U ≤ y)− P (L > x,U ≤ y)

=P (U ≤ y)− P (x < X1 ≤ y, x < X2 ≤ y, · · · , x < Xn ≤ y)

=P (U ≤ y)− [P (x < X1 ≤ y)]n

=[FX(y)]n − [FX(y)− FX(x)]n.

It follows from this result that FLU(x, y) 6= fL(x)FU(y). That is U and L are
dependent.

Example 10.4.1
Let X and Y be two independent random variables with X having a normal
distribution with mean µ and variance 1 and Y being the standard normal
distribution.
(a) Find the density of Z = min{X, Y }.
(b) Assume that X − Y is normal with mean µ and variance 2. Calculate
P (max(X, Y )−min(X, Y ) > t) for t ∈ R.

Solution.
(a) Fix a real number z. Then

FZ(z) =P (Z ≤ z) = 1− P (min(X, Y ) > z)

=1− P (X > z)P (Y > z) = 1− (1− Φ(z − µ))(1− Φ(z)).

Hence,
fZ(z) = (1− Φ(z − µ))φ(z) + (1− Φ(z))Φ(z − µ)
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where φ(z) is the pdf of the standard normal distribution.
(b) First, note that max(X, Y ) − min(X, Y ) > 0. Thus, for t ≤ 0 then
P (max(X, Y )−min(X, Y ) > t) = 1. If t > 0 then

P (max(X, Y )−min(X, Y ) > t) =P (|X − Y | > t) = 1− P (|X − Y | ≤ t)

=1− P (−t ≤ X − Y ≤ t)

=1− P
(
−t− µ√

2
≤ X − Y − µ√

2
≤ t− µ√

2

)
=1− Φ

(
t− µ√

2

)
+ Φ

(
−t− µ√

2

)
=1− Φ

(
t− µ√

2

)
+ Φ

(
−t− µ√

2

)
Example 10.4.2
Let X and Y be two independent random variable having the exponential
distribtuion with parameter λ. Find the pdf of U and L.

Solution.
From the discussion above, we have

fU(x) = 2[FX(x)]fX(x) = 2λ[1− e−λx]e−λx

for x > 0 and 0 otherwise. Similarly,

fL(x) = 2[1− FX(x)]fX(x) = 2λ(e−λx)e−λx = 2λe−2λx

for x > 0 and 0 otherwise qed
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Practice Problems

Problem 10.4.1 ‡
In a small metropolitan area, annual losses due to storm, fire, and theft are
assumed to be independent, exponentially distributed random variables with
respective means 1.0, 1.5, and 2.4 .
Determine the probability that the maximum of these losses exceeds 3.

Problem 10.4.2
LetX1, X2, X3 be three independent, identically distributed random variables
each with density function

f(x) =

{
3x2 0 ≤ x ≤ 1
0 otherwise.

Let Y = max{X1, X2, X3}. Find P (Y > 1
2
).

Problem 10.4.3 ‡
Losses follow an exponential distribution with mean 1. Two independent
losses are observed.
Calculate the expected value of the smaller loss.

Problem 10.4.4 ‡
Claim amounts for wind damage to insured homes are mutually independent
random variables with common density function

f(x) =

{
3
x4

x > 1
0 otherwise,

where x is the amount of a claim in thousands. Suppose 3 such claims will
be made. Calculate the expected value of the largest of the three claims.
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10.5 Sum of Two Independent Random Vari-

ables: Discrete Case

In this section we turn to the important question of determining the distribu-
tion of a sum of independent random variables in terms of the distributions of
the individual constituents. In this section, we consider only sums of discrete
random variables, reserving the case of continuous random variables for the
next section. We consider here only discrete random variables whose values
are non-negative integers. Their distribution mass functions are then defined
on these integers.
Suppose X and Y are two independent discrete random variables with pmf
pX(x) and pY (y) respectively. We would like to determine the pmf of the
random variable X + Y. To do this, we note first that for any non-negative
integer n we have

{X + Y = n} =
n⋃
k=0

Ak

where Ak = {X = k} ∩ {Y = n− k}. Note that Ai ∩ Aj = ∅ for i 6= j. Since
the Ai’s are pairwise disjoint and X and Y are independent, we have

P (X + Y = n) =
n∑
k=0

P (X = k)P (Y = n− k).

Thus,

pX+Y (n) = pX(n) ∗ pY (n)

where pX(n) ∗ pY (n) is called the convolution of pX and pY .

Example 10.5.1
A die is rolled twice. Let X and Y be the outcomes, and let Z = X + Y be
the sum of these outcomes. Find the probability mass function of Z.

Solution. Note that X and Y have the common pmf :

x 1 2 3 4 5 6
pX 1/6 1/6 1/6 1/6 1/6 1/6
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The probability mass function of Z is then the convolution of pX with itself.
Thus,

P (Z = 2) =pX(1)pX(1) =
1

36

P (Z = 3) =pX(1)pX(2) + pX(2)pX(1) =
2

36

P (Z = 4) =pX(1)pX(3) + pX(2)pX(2) + pX(3)pX(1) =
3

36

Continuing in this way we would find P (Z = 5) = 4/36, P (Z = 6) =
5/36, P (Z = 7) = 6/36, P (Z = 8) = 5/36, P (Z = 9) = 4/36, P (Z = 10) =
3/36, P (Z = 11) = 2/36, and P (Z = 12) = 1/36

Example 10.5.2
Let X and Y be two independent Poisson random variables with respective
parameters λ1 and λ2. Compute the pmf of X + Y.

Solution.
We have

pX+Y (n) =P (X + Y = n) =
n∑
k=0

P (X = k, Y = n− k)

=
n∑
k=0

P (X = k)P (Y = n− k)

=
n∑
k=0

e−λ1
λk1
k!
e−λ2

λn−k2

(n− k)!

=e−(λ1+λ2)

n∑
k=0

λk1λ
n−k
2

k!(n− k)!

=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk1λ

n−k
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)n.

Thus, X + Y is a Poisson random variable with parameter λ1 + λ2

Example 10.5.3
Let X and Y be two independent binomial random variables with respective
parameters (n, p) and (m, p). Compute the pmf of X + Y.
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Solution.
We are given:

pX(r) =nCrp
r(1− p)n−r

pY (r) =mCrp
r(1− p)m−r.

Thus,

pX+Y (r) =
r∑

k=0

(nCkp
k(1− p)n−k)(mCr−kpr−k(1− p)m−r+k)

=pr(1− p)m+n−r
r∑

k=0

(nCk)(mCr−k) =m+n Crp
r(1− p)m+n−r

where we used Theorem 7.8.1(Vendermonde’s identity). Hence, X + Y is a
binomial random variable with parameters (n+m, p)

Example 10.5.4
Two biased coins are being flipped repeatedly. The probability that coin 1
comes up heads is 1

4
, while that of coin 2 is 3

4
. Each coin is being flipped until

a head comes up. What is the pmf of the total number of flips until both
coins come up heads?

Solution.
Let X and Y be the number of flips of coins 1 and 2 to come up heads for
the first time. Then, X+Y is the total number of flips until both coins come
up heads for the first time. The random variables X and Y are independent
geometric random variables with parameters 1/4 and 3/4, respectively. By
convolution, we have

pX+Y (n) =
n−1∑
k=1

1

4

(
3

4

)k−1
3

4

(
1

4

)n−k−1

=
1

4n

n−1∑
k=1

3k =
1

4n
· 1− 3n

1− 3

=
3n − 3

22n+1
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Practice Problems

Problem 10.5.1
Let X and Y be two independent discrete random variables with probabil-
ity mass functions defined in the tables below. Find the probability mass
function of Z = X + Y.

x 0 1 2 3
pX(x) 0.10 0.20 0.30 0.40

y 0 1 2
pY (y) 0.25 0.40 0.35

Problem 10.5.2
Suppose X and Y are two independent binomial random variables with re-
spective parameters (20, 0.2) and (10, 0.2). Find the pmf of X + Y.

Problem 10.5.3
Let X and Y be independent random variables each geometrically distributed
with parameter p, i.e.

pX(n) = pY (n) =

{
p(1− p)n−1 n = 1, 2, · · ·

0 otherwise.

Find the probability mass function of X + Y.

Problem 10.5.4
Consider the following two experiments: the first has outcome X taking
on the values 0, 1, and 2 with equal probabilities; the second results in an
(independent) outcome Y taking on the value 3 with probability 1/4 and 4
with probability 3/4. Find the probability mass function of X + Y.

Problem 10.5.5 ‡
An insurance company determines that N, the number of claims received
in a week, is a random variable with P [N = n] = 1

2n+1 , where n ≥ 0. The
company also determines that the number of claims received in a given week
is independent of the number of claims received in any other week.
Determine the probability that exactly seven claims will be received during
a given two-week period.

Problem 10.5.6
Suppose X and Y are independent, each having Poisson distribution with
means 2 and 3, respectively. Let Z = X + Y. Find P (X + Y = 1).
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Problem 10.5.7
Suppose that X has Poisson distribution with parameter λ and that Y has
geometric distribution with parameter p and is independent of X. Find simple
formulas in terms of λ and p for the following probabilities. (The formulas
should not involve an infinite sum.)
(a) P (X + Y = 2)
(b) P (Y > X)

Problem 10.5.8
Let X and Y be two independent random variables with common pmf given
by

x 0 1 2 y
pX(x) 0.5 0.25 0.25 pY (y)

Find the probability mass function of X + Y.

Problem 10.5.9
Let X and Y be two independent random variables with pmfs given by

pX(x) =

{
1
3

x = 1, 2, 3
0 otherwise

pY (y) =


1
2

y = 0
1
3

y = 1
1
6

y = 2
0 otherwise.

Find the probability mass function of X + Y.

Problem 10.5.10
Let X and Y be two independent identically distributed geometric distribu-
tions with parameter p. Show that X +Y is a negative binomial distribution
with parameters (2, p).

Problem 10.5.11
LetX, Y, Z be independent Poisson random variables with E(X) = 3, E(Y ) =
1, and E(Z) = 4. What is P (X + Y + Z ≤ 1)?
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Problem 10.5.12
The number of phone calls received by an operator in 5-minute period follows
a Poisson distribution with a mean of λ. Find the probability that the total
number of phone calls received in 10 randomly selected 5-minute periods is
10.

Problem 10.5.13 ‡
In each of the months June, July, and August, the number of accidents
occurring in that month is modeled by a Poisson random variable with mean
1. In each of the other 9 months of the year, the number of accidents occurring
is modeled by a Poisson random variable with mean 0.5. Assume that these
12 random variables are mutually independent.
Calculate the probability that exactly two accidents occur in July through
November.

Problem 10.5.14 ‡
In a given region, the number of tornadoes in a one-week period is modeled
by a Poisson distribution with mean 2. The numbers of tornadoes in different
weeks are mutually independent.
Calculate the probability that fewer than four tornadoes occur in a three-
week period.

Problem 10.5.15 ‡
The number of days an employee is sick each month is modeled by a Poisson
distribution with mean 1. The numbers of sick days in different months are
mutually independent.
Calculate the probability that an employee is sick more than two days in a
three-month period.

Problem 10.5.16
Let X and Y be two independent uniform discrete random variables that
takes the integer values 0, 1, 2, · · · , n where n is a positive integer. Derive
the probability mass function of Z = X + Y.

Problem 10.5.17
Let X be a negative binomial random variable with parameters r and p and
Y be a negative binomial random variable with parameters s and p. Suppose
that X and Y are independent. Show that X + Y is a negative binomial
distribution with parameters r + s− 1 and p. Hint: Use Theorem 7.8.1.
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Problem 10.5.18
Let X and Y be two independent geometric random variables with common
parameter p. Find P(Y = y|X +Y = z) where z ≥ 2 and y = 1, 2, · · · , z− 1.

Problem 10.5.19
Let X and Y be two independent discrete random variables taking values on
SX and SY respectively. The expected value of the product XY is defined
by the sum

E(XY ) =
∑
x∈SX

∑
y∈SY

xypXY (x, y).

(a) Show that E(XY ) = E(X)E(Y ).
(b) Show that E(X + Y ) = E(X) + E(Y ).
(c) Show that Var(X + Y ) = Var(X) + Var(Y ).

Problem 10.5.20
Let X and Y be two independent discrete random variables. Show that
E[et(X+Y )] = E(etX)E(etY ).
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10.6 Sum of Two Independent Random Vari-

ables: Continuous Case

In this section, we consider the continuous version of the problem posed in
Section 10.5: How are sums of independent continuous random variables
distributed?

Example 10.6.1
Let X and Y be two random variables with joint probability density

fXY (x, y) =

{
6e−3x−2y x > 0, y > 0

0 elsewhere.

Find the probability density of Z = X + Y.

Solution.
Integrating the joint probability density over the shaded region of Figure
10.6.1, we get

FZ(a) = P (Z ≤ a) =

∫ a

0

∫ a−y

0

6e−3x−2ydxdy = 1 + 2e−3a − 3e−2a

and differentiating with respect to a we find

fZ(a) = 6(e−2a − e−3a)

for a > 0 and 0 elsewhere

Figure 10.6.1
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The above process can be generalized with the use of convolutions which
we define next. Let X and Y be two continuous random variables with
probability density functions fX(x) and fY (y), respectively. Assume that
both fX(x) and fY (y) are defined for all real numbers. Then the convolution
fX ∗ fY of fX and fY is the function given by

(fX ∗ fY )(a) =

∫ ∞
−∞

fX(a− y)fY (y)dy =

∫ ∞
−∞

fY (a− x)fX(x)dx.

This definition is analogous to the definition, given for the discrete case, of
the convolution of two probability mass functions. Thus, it should not be
surprising that if X and Y are independent, then the probability density
function of their sum is the convolution of their densities.

Theorem 10.6.1
Let X and Y be two continuous independent random variables with density
functions fX(x) and fY (y) defined for all x and y. Then the sum X + Y is a
random variable with density function fX+Y (a), where fX+Y is the convolu-
tion of fX and fY .

Proof.
The cumulative distribution function is obtained as follows:

FX+Y (a) =P (X + Y ≤ a) =

∫∫
x+y≤a

fX(x)fY (y)dxdy

=

∫ ∞
−∞

∫ a−y

−∞
fX(x)fY (y)dxdy =

∫ ∞
−∞

(∫ a−y

−∞
fX(x)dx

)
fY (y)dy

=

∫ ∞
−∞

FX(a− y)fY (y)dy.

Differentiating the previous equation with respect to a and assuming that
differentiation and integration can be interchanged, we find

fX+Y (a) =
d

da

∫ ∞
−∞

FX(a− y)fY (y)dy

=

∫ ∞
−∞

d

da
FX(a− y)fY (y)dy

=

∫ ∞
−∞

fX(a− y)fY (y)dy

=(fX ∗ fY )(a)
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Example 10.6.2
Let X and Y be two independent random variables uniformly distributed on
[0, 1]. Compute the probability density function of X + Y.

Solution.
Since

fX(a) = fY (a) =

{
1 0 ≤ a ≤ 1
0 otherwise

by the previous theorem

fX+Y (a) =

∫ 1

0

fX(a− y)dy =

∫ a

a−1

fX(y)dy.

If 0 < a ≤ 1 then

fX+Y (a) =

∫ a

0

dy = a.

If 1 < a < 2 then 0 < a− 1 < 1. In this case,

fX+Y (a) =

∫ 1

a−1

dy = 2− a.

Hence,

fX+Y (a) =


a 0 < a ≤ 1

2− a 1 < a < 2
0 otherwise

Example 10.6.3
Let X and Y be two independent exponential random variables with common
parameter λ. Compute fX+Y (a).

Solution.
We have

fX(z) = fY (z) =

{
λe−λz 0 ≤ z

0 otherwise.

If a ≥ 0 then

fX+Y (a) =

∫ ∞
−∞

fX(a− y)fY (y)dy =

∫ a

0

[λe−λ(a−y)][λe−λy]dy

=λ2

∫ a

0

e−λady = aλ2e−λa.
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If a < 0 then fX+Y (a) = 0. Hence,

fX+Y (a) =

{
aλ2e−λa 0 ≤ a

0 otherwise

Example 10.6.4
Let X and Y be two independent random variables, each with the standard
normal density. Compute fX+Y (a).

Solution.
We have

fX(a) = fY (a) =
1√
2π
e−

x2

2 .

By Theorem 10.6.1 we have

fX+Y (a) =
1

2π

∫ ∞
−∞

e−
(a−y)2

2 e−
y2

2 dy

=
1

2π
e−

a2

4

∫ ∞
−∞

e−(y−a
2

)2dy

=
1

2π
e−

a2

4
√
π

[
1√
π

∫ ∞
−∞

e−w
2

dw

]
, w = y − a

2
.

The expression in the brackets equals 1, since it is the integral of the normal
density function with µ = 0 and σ = 1√

2
. Hence,

fX+Y (a) =
1√
4π
e−

a2

4

Example 10.6.5
Let X and Y be two independent gamma random variables with respective
parameters (s, λ) and (t, λ). Show that X + Y is a gamma random variable
with parameters (s+ t, λ).

Solution.
We have

fX(a) = λe−λa(λa)s−1

Γ(s)
and fY (a) = λe−λa(λa)t−1

Γ(t)
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By Theorem 10.6.1 we have

fX+Y (a) =
1

Γ(s)Γ(t)

∫ a

0

λe−λ(a−y)[λ(a− y)]s−1λe−λy(λy)t−1dy

=
λs+te−λa

Γ(s)Γ(t)

∫ a

0

(a− y)s−1yt−1dy

=
λs+te−λaas+t−1

Γ(s)Γ(t)

∫ 1

0

(1− x)s−1xt−1dx, x =
y

a
.

Using Problem 10.6.18, we have∫ 1

0

(1− x)s−1xt−1dx =
Γ(s)Γ(t)

Γ(s+ t)
.

Thus,

fX+Y (a) =
λe−λa(λa)s+t−1

Γ(s+ t)

Example 10.6.6
The joint distribution function of X and Y is given by

fXY (x, y) =

{
3
11

(5x+ y) x, y > 0, x+ 2y < 2
0 elsewhere.

Find the probability density of Z = X + Y.

Solution.
Note first that the region of integration is the interior of the triangle with
vertices at (0, 0), (0, 1), and (2, 0). From Figure 10.6.2, we see that F (a) = 0
if a < 0. If 0 ≤ a < 1 then

FZ(a) = P (Z ≤ a) =

∫ a

0

∫ a−y

0

3

11
(5x+ y)dxdy =

3

11
a3.

If 1 ≤ a < 2 then the two lines x + y = a and x + 2y = 2 intersect at
(2a− 2, 2− a). In this case,

FZ(a) =

∫ 2−a

0

∫ a−y

0

3

11
(5x+ y)dxdy +

∫ 1

2−a

∫ 2−2y

0

3

11
(5x+ y)dxdy

=
3

11

(
−7

3
a3 + 9a2 − 8a+

7

3

)
.
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If a ≥ 2 then FZ(a) is the area of the shaded triangle which is equal to 1.
Differentiating with respect to a we find

fZ(a) =


9
11
a2 0 < a ≤ 1

3
11

(−7a2 + 18a− 8) 1 < a < 2
0 elsewhere

Figure 10.6.2
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Practice Problems

Problem 10.6.1
Let X be an exponential random variable with parameter λ and Y be an
exponential random variable with parameter 2λ independent of X. Find the
probability density function of X + Y.

Problem 10.6.2
Let X be an exponential random variable with parameter λ and Y be a
uniform random variable on [0,1] independent of X. Find the probability
density function of X + Y.

Problem 10.6.3
Let X and Y be two independent random variables with probability density
functions (p.d.f.) , fX and fY respectively. Find the pdf of X + 2Y.

Problem 10.6.4
Consider two independent random variables X and Y. Let fX(x) = 1 − x

2

if 0 ≤ x ≤ 2 and 0 otherwise. Let fY (y) = 2 − 2y for 0 ≤ y ≤ 1 and 0
otherwise. Find the probability density function of X + Y.

Problem 10.6.5
LetX and Y be two independent and identically distributed random variables
with common density function

f(x) =

{
2x 0 < x < 1
0 otherwise.

Find the probability density function of X + Y.

Problem 10.6.6
Let X and Y be independent exponential random variables with pairwise
distinct respective parameters α and β. Find the probability density function
of X + Y.

Problem 10.6.7
Let X and Y be two random variables with common pdf

fX(t) = fY (t) =

{
e−t t > 0
0 otherwise.

Find the density function of W = 2X + Y.
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Problem 10.6.8
Let X and Y be independent random variables with density functions

fX(x) =

{
1
2
−1 ≤ x ≤ 1

0 otherwise

fY (y) =

{
1
2

3 ≤ y ≤ 5
0 otherwise.

Find the probability density function of X + Y.

Problem 10.6.9
Let X and Y be independent random variables with density functions

fX(x) =

{
1
2

0 < x < 2
0 otherwise

fY (y) =

{
y
2

0 < y < 2
0 otherwise.

Find the probability density function of X + Y.

Problem 10.6.10
Let X have a uniform distribution on the interval (1, 3). What is the proba-
bility that the sum of 2 independent observations of X is greater than 5?

Problem 10.6.11
Let X and Y be two independent exponential random variables each with
mean 1. Find the pdf of Z = X + Y.

Problem 10.6.12
X1 and X2 are independent exponential random variables each with a mean
of 1. Find P (X1 +X2 < 1).

Problem 10.6.13 ‡
For any two continuous random variables X and Y and any function g(x, y),
we define

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dxdy.

Let X and Y be two independent continuous random variables. Show that
E(et(X+Y )) = E(etX)E(etY ).
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Problem 10.6.14 ‡
A company insures homes in three cities, J,K, and L. Since sufficient distance
separates the cities, it is reasonable to assume that the losses occurring in
these cities are mutually independent.
You are given:

E(etJ) = (1− 2t)−3 E(etK) = (1− 2t)−2.5 E(etL) = (1− 2t)−4.5

Let X represent the combined losses from the three cities. Calculate E(X3).

Problem 10.6.15
Let X and Y be two continuous random variables.
(a) Show that E(X + Y ) = E(X) + E(Y ).
(b) Show that if X and Y are independent then E(XY ) = E(X)E(Y ).
(c) Show that if X and Y are independent then Var(X + Y ) = Var(X) +
Var(Y ).

Problem 10.6.16 ‡
A company has two electric generators. The time until failure for each gen-
erator follows an exponential distribution with mean 10. The company will
begin using the second generator immediately after the first one fails.
Calculate the variance of the total time that the generators produce electric-
ity.

Problem 10.6.17
The life (in days) of a certain machine has an exponential distribution with
a mean of 1 day. The machine comes supplied with one spare. Find the
density function (t measure in days) of the combined life of the machine and
its spare if the life of the spare has the same distribution as the first machine,
but is independent of the first machine.

Problem 10.6.18
A beta function or Euler integral of the first kind is the function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x > 0, y > 0.

Show that∫ ∞
0

∫ ∞
0

e−u−vux−1vy−1dudv =

(∫ ∞
0

e−zzx+y−1dz

)(∫ 1

0

tx−1(1− t)y−1dt

)
.
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That is,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Hint: Use the substitutions u = zt and v = z(1− t) and recall the change of
formula ∫ ∫

R

f(x, y)dxdy =

∫ ∫
T

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv
where ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =

∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣ .
Problem 10.6.19 ‡
A policyholder has probability 0.7 of having no claims, 0.2 of having exactly
one claim, and 0.1 of having exactly two claims. Claim amounts are uniformly
distributed on the interval [0,60] and are independent. The insurer covers
100% of each claim. Calculate the probability that the total benefit paid to
the policyholder is 48 or less.
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10.7 Conditional Distributions: Discrete Case

Recall that for any two events E and F the conditional probability of E given
F is defined by

P (E|F ) =
P (E ∩ F )

P (F )

provided that P (F ) > 0.
In a similar way, if X and Y are discrete random variables then we define
the conditional probability mass function of X given that Y = y by

pX|Y (x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
pXY (x, y)

pY (y)
(10.7.1)

provided that pY (y) > 0.

Example 10.7.1
Two coins are being tossed repeatedly. The tossing of each coin stops when
the coin comes up a head. Let X be the number of tosses of the first coin
before getting a head, and Y be the number of tosses of the second coin
before getting a head.
(a) Find the probability that the two coins come up heads at the same time.
(b) Find the conditional distribution of the number of coin tosses given that
the two coins come up heads simultaneously.

Solution.
(a) X and Y are independent identically distributed geometric random vari-
ables with parameter p = 1

2
. Thus,

P (X = Y ) =
∞∑
k=1

P (X = k, Y = k) =
∞∑
k=1

P (X = k)P (Y = k)

=
∞∑
k=1

1

4k
=

1

3
.

(b) For any k ≥ 1, we have

P(X = k|Y = k) =
Pr(X = k, Y = k)

Pr(X = Y )
=

1
4k

1
3

=
3

4

(
1

4

)k−1

.
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Thus, the conditional distribution follows a geometric distribution with pa-
rameter p = 3

4

Sometimes it is not the joint distribution that is known, but rather, for
each y, one knows the conditional distribution of X given Y = y. If one also
knows the distribution of Y, then one can recover the joint distribution using
(10.7.1). We also mention one more use of (10.7.1):

pX(x) =
∑
y

pXY (x, y) =
∑
y

pX|Y (x|y)pY (y). (10.7.2)

Thus, given the conditional distribution of X given Y = y for each possible
value y, and the (marginal) distribution of Y, one can compute the (marginal)
distribution of X, using (10.7.2).
The conditional cumulative distribution ofX given that Y = y is defined
by

FX|Y (x|y) = P (X ≤ x|Y = y) =
∑
a≤x

pX|Y (a|y).

Note that if X and Y are independent, then the conditional mass function
and the conditional cumulative distribution function are the same as the
unconditional ones. This follows from the next theorem.

Theorem 10.7.1
If X and Y are independent and pY (y) > 0 then

pX|Y (x|y) = pX(x).

Proof.
We have

pX|Y (x|y) =P (X = x|Y = y)

=
P (X = x, Y = y)

P (Y = y)

=
P (X = x)P (Y = y)

P (Y = y)

=P (X = x) = pX(x)
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Example 10.7.2
Given the following table.

X\ Y Y=1 Y=2 Y=3 pX(x)
X=1 .01 .20 .09 .3
X=2 .07 .00 .03 .1
X=3 .09 .05 .06 .2
X=4 .03 .25 .12 .4
pY (y) .2 .5 .3 1

Find pX|Y (x|y) where Y = 2.

Solution.

pX|Y (1|2) =
pXY (1, 2)

pY (2)
=
.2

.5
= 0.4

pX|Y (2|2) =
pXY (2, 2)

pY (2)
=

0

.5
= 0

pX|Y (3|2) =
pXY (3, 2)

pY (2)
=
.05

.5
= 0.1

pX|Y (4|2) =
pXY (4, 2)

pY (2)
=
.25

.5
= 0.5

pX|Y (x|2) =
pXY (x, 2)

pY (2)
=

0

.5
= 0, otherwise

Example 10.7.3
If X and Y are independent Poisson random variables with respective pa-
rameters λ1 and λ2, calculate the conditional distribution of X, given that
X + Y = n.
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Solution.
We have

P (X = k|X + Y = n) =
P (X = k,X + Y = n)

P (X + Y = n)

=
P (X = k, Y = n− k)

P (X + Y = n)

=
P (X = k)P (Y = n− k))

P (X + Y = n)

=
e−λ1λk1
k!

e−λ2λn−k2

(n− k)!

[
e−(λ1+λ2)(λ1 + λ2)n

n!

]−1

=
n!

k!(n− k)!

λk1λ
n−k
2

(λ1 + λ2)n

=

(
n
k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k
.

In other words, the conditional mass distribution function of X given that
X + Y = n, is the binomial distribution with parameters n and λ1

λ1+λ2
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Practice Problems

Problem 10.7.1
Given the following table.

X\ Y Y=0 Y=1 pX(x)
X=0 .4 .1 .5
X=1 .2 .3 .5
pY (y) .6 .4 1

Find pX|Y (x|y) where Y = 1.

Problem 10.7.2
Let X be a random variable with range the set {1, 2, 3, 4, 5} and Y be a
random variable with range the set {1, 2, · · · , X}.
(a) Find pXY (x, y).
(b) Find pX|Y (x|y).
(c) Are X and Y independent?

Problem 10.7.3
The following is the joint distribution function of X and Y.

X\Y 4 3 2 pX(x)
5 0.1 0.05 0 0.15
4 0.15 0.15 0 0.3
3 0.10 0.15 0.10 0.35
2 0 0.05 0.10 0.15
1 0 0 0.05 0.05
pY (y) 0.35 0.40 0.25 1

Find P (X|Y = 4) for X = 3, 4, 5.

Problem 10.7.4
A fair coin is tossed 4 times. Let the random variable X denote the number of
heads in the first 3 tosses, and let the random variable Y denote the number
of heads in the last 3 tosses. The joint pmf is given by the following table
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X\Y 0 1 2 3 pX(x)
0 1/16 1/16 0 0 2/16
1 1/16 3/16 2/16 0 6/16
2 0 2/16 3/16 1/16 6/16
3 0 0 1/16 1/16 2/16
pY (y) 2/16 6/16 6/16 2/16 1

What is the conditional pmf of the number of heads in the first 3 coin tosses
given exactly 1 head was observed in the last 3 tosses?

Problem 10.7.5
Two dice are rolled. Let X and Y denote, respectively, the largest and
smallest values obtained. Compute the conditional mass function of Y given
X = x, for x = 1, 2, · · · , 6. Are X and Y independent?

Problem 10.7.6
Let X and Y be discrete random variables with joint probability function

pXY (x, y) =

{
n!yx(pe−1)y(1−p)n−y

y!(n−y)!x!
y = 0, 1, · · · , n ;x = 0, 1, · · ·

0 otherwise.

(a) Find pY (y).
(b) Find the conditional probability distribution of X, given Y = y. Are X
and Y independent? Justify your answer.

Problem 10.7.7
Let X and Y have the joint probability function pXY (x, y) described as fol-
lows:

X\ Y 0 1 pX(x)
0 1/18 3/18 4/18
1 4/18 3/18 7/18
2 6/18 1/18 7/18
pY (y) 11/18 7/18 1

Find pX|Y (x|y) and pY |X(y|x).

Problem 10.7.8
Let X and Y be random variables with joint probability mass function

pXY (x, y) = c(1− 2−x)y
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where x = 0, 1, · · · , N − 1 and y = 0, 1, 2, · · ·
(a) Find c.
(b) Find pX(x).
(c) Find pY |X(y|x), the conditional probability mass function of Y given
X = x.

Problem 10.7.9
Let X and Y be identically independent Poisson random variables with pa-
rameter λ. Find P (X = k|X + Y = n).

Problem 10.7.10
If two cards are randomly drawn (without replacement) from an ordinary
deck of 52 playing cards, Y is the number of aces obtained in the first draw
and X is the total number of aces obtained in both draws, find
(a) the joint probability distribution of X and Y ;
(b) the marginal distribution of Y ;
(c) the conditional distribution of X given Y = 1.

Problem 10.7.11 ‡
Let N1 and N2 represent the numbers of claims submitted to a life insurance
company in April and May, respectively. The joint probability function of
N1 and N2 is

P (n1, n2) =

{
3
4

(
1
4

)n1−1
e−n1(1− e−n1)n2−1, for n1 = 1, 2, 3, · · · and n2 = 1, 2, 3, · · ·

0 otherwise.

Calculate the expected number of claims that will be submitted to the com-
pany in May if exactly 2 claims were submitted in April.

Problem 10.7.12
Suppose that discrete random variables X and Y each take only the values 0
and 1. It is known that P (X = 0|Y = 1) = 0.6 and P (X = 1|Y = 0) = 0.7.
Is it possible that X and Y are independent? Justify your conclusion.

Problem 10.7.13 ‡
A diagnostic test for the presence of a disease has two possible outcomes: 1
for disease present and 0 for disease not present. Let X denote the disease
state (0 or 1) of a patient, and let Y denote the outcome of the diagnostic
test. The joint probability function of X and Y is given by:
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X\ Y 0 1
0 0.800 0.025
1 0.050 0.125

Calculate PY |X(y|1).

Problem 10.7.14 ‡
Let N denote the number of accidents occurring during one month on the
northbound side of a highway and let S denote the number occurring on the
southbound side.
Suppose that N and S are jointly distributed as indicated in the table.

N\S 0 1 2 3 or more
0 0.04 0.06 0.10 0.04
1 0.10 0.18 0.08 0.03
2 0.12 0.06 0.05 0.02

3 or more 0.05 0.04 0.02 0.01

Calculate P (N |N + S = 2).

Problem 10.7.15 ‡
Let X be the annual number of hurricanes hitting Florida, and let Y be
the annual number of hurricanes hitting Texas. X and Y are independent
Poisson variables with respective means 1.70 and 2.30.
Calculate P (X − Y |X + Y = 3).

Problem 10.7.16
A Safety Officer for an auto insurance company in Connecticut was interested
in learning how the extent of an individual’s injury X in an automobile
accident relates to the type of safety restraint Y the individual was wearing
at the time of the accident. As a result, the Safety Officer used statewide
ambulance and police records to compile the following two-way table of joint
probabilities:

Y
X None (0) Belt Only (1) Belt and Harness (2) pX(x)

None(0) 0.065 0.075 0.06 0.20
Minor(1) 0.175 0.16 0.115 0.45
Major(2) 0.135 0.10 0.065 0.30
Death(3) 0.025 0.015 0.01 0.05
pY (y) 0.40 0.35 0.25 1.00
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If a randomly selected person wears no restraint, what is the probability of
death?

Problem 10.7.17
The joint distribution function of X and Y is given in the following table:

X\Y −1 2.5 3 4.7
0 0.11 0.03 0.15 0.04
1 0.03 0.09 0.15 0.16
3 0.00 0.16 0.06 0.02

Calculate P (0 ≤ Y ≤ 4|X = 1).

Problem 10.7.18
A box contain 4 reds, 3 whites and 2 blues. A random sample of 3 balls is
chosen. Let R and W be the number of red and white balls chosen. What is
the conditional probability of W = 2 given that R = 1?

Problem 10.7.19
The joint distribution function of X and Y is given in the following table:

X\Y −1 2.5 3 4.7
0 0.11 0.03 0.15 0.04
1 0.03 0.09 0.15 0.16
3 0.00 0.16 0.06 0.02

Calculate FX|Y (3|4.7).

Problem 10.7.20
Let X and Y be independent geometric random variables with common pa-
rameter p. Calculate the conditional distribution of X, given that X+Y = n.

Problem 10.7.21 ‡
The probability of x losses occurring in year 1 is (0.5)x+1, x = 0, 1, 2, · · · .
The probability of y losses in year 2 given x losses in year 1 is given by the
table:

X\Y 0 1 2 3 4+

0 0.60 0.25 0.05 0.05 0.05
1 0.45 0.30 0.10 0.10 0.05
2 0.25 0.30 0.20 0.20 0.05
3 0.15 0.20 0.20 0.30 0.15

4+ 0.05 0.15 0.25 0.35 0.20
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Calculate the probability of exactly 2 losses in 2 years.

Problem 10.7.22 ‡
A flood insurance company determines that N, the number of claims received
in a month, is a random variable with P (N = n) = 2

3n+1 , for n = 0, 1, 2, · · ·
The numbers of claims received in different months are mutually indepen-
dent. Calculate the probability that more than three claims will be received
during a consecutive two-month period, given that fewer than two claims
were received in the first of the two months.
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10.8 Conditional Distributions: Continuous

Case

In this section, we develop the distribution of X given Y when both are
continuous random variables. Unlike the discrete case, we cannot use simple
conditional probability to define the conditional probability of an event given
Y = y, because the conditioning event has probability 0 for any y. However,
we motivate our approach by the following argument.
Suppose X and Y are two continuous random variables with joint density
fXY (x, y). Let fX|Y (x|y) denote the probability density function of X given
that Y = y. We define

P(a < X < b|Y = y) =

∫ b

a

fX|Y (x|y)dx.

Then for δ very small we have (See Remark 9.1.1)

P(x ≤ X ≤ x+ δ|Y = y) ≈ δfX|Y (x|y).

On the other hand, for small ε we have

P(x ≤ X ≤ x+ δ|Y = y) ≈P(x ≤ X ≤ x+ δ|y ≤ Y ≤ y + ε)

=
P(x ≤ X ≤ x+ δ, y ≤ Y ≤ y + ε)

P(y ≤ Y ≤ y + ε)

≈δεfXY (x, y)

εfY (y)
.

In the limit, as ε tends to 0, we are left with

δfX|Y (x|y) ≈ δfXY (x, y)

fY (y)
.

This suggests the following definition. The conditional density function
of X given Y = y is

fX|Y (x|y) =
fXY (x, y)

fY (y)

provided that fY (y) > 0.
Note that ∫ ∞

−∞
fX|Y (x|y)dx =

∫ ∞
−∞

fXY (x, y)

fY (y)
dx =

fY (y)

fY (y)
= 1.



10.8. CONDITIONAL DISTRIBUTIONS: CONTINUOUS CASE 457

Compare this definition with the discrete case where

pX|Y (x|y) =
pXY (x, y)

pY (y)
.

The conditional cumulative distribution function of X given Y = y is
defined by

FX|Y (x|y) = P(X ≤ x|Y = y) =

∫ x

−∞
fX|Y (t|y)dt.

From this definition, it follows

fX|Y (x|y) =
∂

∂x
FX|Y (x|y).

Example 10.8.1
Suppose X and Y have the following joint density

fXY (x, y) =

{
1
2
|X|+ |Y | < 1

0 otherwise.

(a) Find the marginal distribution of X.
(b) Find the conditional distribution of Y given X = 1

2
.

Solution.
(a) Clearly, X only takes values in (−1, 1). So fX(x) = 0 if |x| ≥ 1. Let
−1 < x < 1,

fX(x) =

∫ ∞
−∞

1

2
dy =

∫ 1−|x|

−1+|x|

1

2
dy = 1− |x|.

(b) The conditional density of Y given X = 1
2

is then given by

fY |X(y|x) =
fXY (1

2
, y)

fX(1
2
)

=

{
1 −1

2
< y < 1

2

0 otherwise.

Thus, fY |X follows a uniform distribution on the interval
(
−1

2
, 1

2

)
Example 10.8.2
Suppose that X is uniformly distributed on the interval (0, 1) and that, given
X = x, Y is uniformly distributed on the interval (1− x, 1).
(a) Determine the joint density fXY (x, y).
(b) Find the probability P(Y ≥ 1

2
).



458 CHAPTER 10. JOINT DISTRIBUTIONS

Solution.
(a) Since X is uniformly distributed on (0, 1), we have fX(x) = 1, 0 < x < 1
and 0 otherwise. Similarly, since, given X = x, Y is uniformly distributed
on (1 − x, 1), the conditional density of Y given X = x is 1

1−(1−x)
= 1

x
on

the interval (1− x, 1) and 0 otherwise; i.e., fY |X(y|x) = 1
x
, 1− x < y < 1 for

0 < x < 1 and 0 otherwise. Thus,

fXY (x, y) = fX(x)fY |X(y|x) =
1

x
, 0 < x < 1, 1− x < y < 1

and 0 otherwise.
(b) Using Figure 10.8.1 we find

P(Y ≥ 1

2
) =

∫ 1
2

0

∫ 1

1−x

1

x
dydx+

∫ 1

1
2

∫ 1

1
2

1

x
dydx

=

∫ 1
2

0

1− (1− x)

x
dx+

∫ 1

1
2

1/2

x
dx

=
1 + ln 2

2

Figure 10.8.1

Example 10.8.3
The joint density of X and Y is given by

fXY (x, y) =

{
15
2
x(2− x− y) 0 ≤ x, y ≤ 1

0 otherwise.

Compute the conditional density of X, given that Y = y for 0 ≤ y ≤ 1.
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Solution.
The marginal density function of Y is

fY (y) =

∫ 1

0

15

2
x(2− x− y)dx =

15

2

(
2

3
− y

2

)
for 0 ≤ y ≤ 1 and 0 otherwise. Thus,

fX|Y (x|y) =
fXY (x, y)

fY (y)

=
x(2− x− y)

2
3
− y

2

=
6x(2− x− y)

4− 3y

for 0 ≤ x, y ≤ 1 and 0 otherwise

Example 10.8.4
The joint density function of X and Y is given by

fXY (x, y) =

{
e
−xy e−y

y
x ≥ 0, y > 0

0 otherwise.

Compute P(X > 1|Y = y).

Solution.
The marginal density function of Y is

fY (y) = e−y
∫ ∞

0

1

y
e−

x
y dx = e−y

[
−e−

x
y

]∞
0

= e−y

for y > 0 and 0 otherwise. Thus,

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

e
−xy e−y

y

e−y
=

1

y
e−

x
y

for x ≥ 0, y > 0 and 0 otherwise. Hence,

P(X > 1|Y = y) =

∫ ∞
1

1

y
e−

x
y dx = −e−

x
y |∞1 = e−

1
y

We end this section with the following theorem.
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Theorem 10.8.1
Continuous random variables X and Y with fY (y) > 0 are independent if
and only if

fX|Y (x|y) = fX(x).

Proof.
Suppose first that X and Y are independent. Then fXY (x, y) = fX(x)fY (y).
Thus,

fX|Y (x|y) =
fXY (x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x).

Conversely, suppose that fX|Y (x|y) = fX(x). Then fXY (x, y) = fX|Y (x|y)fY (y) =
fX(x)fY (y). This shows that X and Y are independent

Example 10.8.5
Let X and Y be two continuous random variables with joint density function

fXY (x, y) =

{
1
2

0 ≤ y < x ≤ 2
0 otherwise.

(a) Find fX(x), fY (y) and fX|Y (x|1).
(b) Are X and Y independent?

Solution.
(a) We have

fX(x) =

∫ x

0

1

2
dy =

x

2
, 0 ≤ x ≤ 2

and 0 otherwise. Likewise,

fY (y) =

∫ 2

y

1

2
dx =

1

2
(2− y), 0 ≤ y ≤ 2

and 0 otherwise.

fX|Y (x|1) =
fXY (x, 1)

fY (1)
=

1
2
1
2

= 1, 1 ≤ x ≤ 2

and 0 otherwise.
(b) Since fX|Y (x|1) 6= fX(x), X and Y are dependent
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Practice Problems

Problem 10.8.1
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
5x2y −1 ≤ x ≤ 1, 0 < y ≤ |x|

0 otherwise.

Find fX|Y (x|y), the conditional probability density function of X given Y =
y. Sketch the graph of fX|Y (x|0.5).

Problem 10.8.2
Suppose that X and Y have joint density function

fXY (x, y) =

{
8xy 0 ≤ x < y ≤ 1
0 otherwise.

Find fX|Y (x|y), the conditional probability density function of X given Y =
y.

Problem 10.8.3
Suppose that X and Y have joint density function

fXY (x, y) =

{
3y2

x3
0 ≤ y < x ≤ 1

0 otherwise.

Find fY |X(y|x), the conditional probability density function of Y given X =
x.

Problem 10.8.4
The joint density function of X and Y is given by

fXY (x, y) =

{
xe−x(y+1) x ≥ 0, y ≥ 0

0 otherwise.

Find the conditional density of X given Y = y and that of Y given X = x.

Problem 10.8.5
Let X and Y be continuous random variables with conditional and marginal
p.d.f.’s given by

fX(x) =
x3e−x

6
I(0,∞)(x)
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and

fY |X(y|x) =
3y2

x3
I(0,x)(y)

where IA(x) is the indicator function of A.
(a) Find the joint p.d.f. of X and Y.
(b) Find the conditional p.d.f. of X given Y = y.

Problem 10.8.6
Suppose X, Y are two continuous random variables with joint probability
density function

fXY (x, y) =

{
12xy(1− x) 0 < x, y < 1

0 otherwise.

(a) Find fX|Y (x|y). Are X and Y independent?
(b) Find P(Y < 1

2
|X > 1

2
).

Problem 10.8.7
The joint probability density function of the random variables X and Y is
given by

fXY (x, y) =

{
1
3
x− y + 1 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(a) Find the conditional probability density function of X given Y = y.
(b) Find P(X < 3

2
|Y = 1

2
).

Problem 10.8.8 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
24xy 0 < x < 1, 0 < y < 1− x

0 otherwise.

Calculate P
(
Y < X|X = 1

3

)
.

Problem 10.8.9 ‡
Once a fire is reported to a fire insurance company, the company makes an
initial estimate, X, of the amount it will pay to the claimant for the fire loss.
When the claim is finally settled, the company pays an amount, Y, to the
claimant. The company has determined that X and Y have the joint density
function

fXY (x, y) =

{
2

x2(x−1)
y−(2x−1)/(x−1) x > 1, y > 1

0 otherwise.
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Given that the initial claim estimated by the company is 2, determine the
probability that the final settlement amount is between 1 and 3 .

Problem 10.8.10 ‡
A company offers a basic life insurance policy to its employees, as well as a
supplemental life insurance policy. To purchase the supplemental policy, an
employee must first purchase the basic policy.
Let X denote the proportion of employees who purchase the basic policy, and
Y the proportion of employees who purchase the supplemental policy. Let
X and Y have the joint density function fXY (x, y) = 2(x+ y) on the region
where the density is positive.
Given that 10% of the employees buy the basic policy, what is the probability
that fewer than 5% buy the supplemental policy?

Problem 10.8.11 ‡
An auto insurance policy will pay for damage to both the policyholder’s car
and the other driver’s car in the event that the policyholder is responsible
for an accident. The size of the payment for damage to the policyholder’s
car, X, has a marginal density function of 1 for 0 < x < 1. Given X = x, the
size of the payment for damage to the other driver’s car, Y, has conditional
density of 1 for x < y < x+ 1.
If the policyholder is responsible for an accident, what is the probability that
the payment for damage to the other driver’s car will be greater than 0.5?

Problem 10.8.12 ‡
You are given the following information about N, the annual number of
claims for a randomly selected insured:

P(N = 0) =
1

2

P(N = 1) =
1

3

P(N > 1) =
1

6

Let S denote the total annual claim amount for an insured. When N = 1, S
is exponentially distributed with mean 5 . When N > 1, S is exponentially
distributed with mean 8 . Determine P(4 < S < 8).
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Problem 10.8.13
Let Y have a uniform distribution on the interval (0, 1), and let the con-
ditional distribution of X given Y = y be uniform on the interval (0,

√
y).

What is the marginal density function of X for 0 < x < 1?

Problem 10.8.14 ‡
The distribution of Y, given X, is uniform on the interval [0, X]. The marginal
density of X is

fX(x) =

{
2x for 0 < x < 1
0 otherwise.

Determine the conditional density of X, given Y = y > 0.

Problem 10.8.15
Suppose that X has a continuous distribution with p.d.f. fX(x) = 2x on
(0, 1) and 0 elsewhere. Suppose that Y is a continuous random variable such
that the conditional distribution of Y given X = x is uniform on the interval
(0, x). Find the mean and variance of Y.

Problem 10.8.16 ‡
An insurance policy is written to cover a loss X where X has density function

fX(x) =

{
3
8
x2 0 ≤ x ≤ 2
0 otherwise.

The time T (in hours) to process a claim of size x, where 0 ≤ x ≤ 2, is
uniformly distributed on the interval from x to 2x.
Calculate the probability that a randomly chosen claim on this policy is
processed in three hours or more.

Problem 10.8.17 ‡
A machine has two components and fails when both components fail. The
number of years from now until the first component fails, X, and the number
of years from now until the machine fails, Y, are random variables with joint
density function

fXY (x, y) =

{
1
18
e−

(x+y)
6 for 0 < x < y

0 otherwise.

Find fY |X(y|2).
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Problem 10.8.18 ‡
As a block of concrete is put under increasing pressure, engineers measure the
pressure X at which the first fracture appears and the pressure Y at which
the second fracture appears. X and Y are measured in tons per square inch
and have joint density function

fXY (x, y) =

{
24x(1− y) for 0 < x < y < 1

0 otherwise.

Calculate the conditional density of the pressure at which the second fracture
appears, given that the first fracture appears at 1/3 ton per square inch.

Problem 10.8.19

fXY (x, y) =

{
k for 0 < x < y < 1
0 otherwise.

Determine fX|Y (x|y) and fY |X(y|x).

Problem 10.8.20
Let X and Y be two continuous random variables with joint density function
fXY (x, y). Show that

fY |X(y|x) =
fX|Y (x|y)fY (y)∫∞

−∞ fX|Y (x|y)fY (y)dy
.

Problem 10.8.21 ‡
The elapsed time, T, between the occurrence and the reporting of an accident
has probability density function

fT (t) =

{
8t−t2

72
for 0 < t < 6

0 otherwise.

Given that T = t, the elapsed time between the reporting of the accident
and payment by the insurer is uniformly distributed on [2 + t, 10].
Calculate the probability that the elapsed time between the occurrence of
the accident and payment by the insurer is less than 4.
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10.9 Joint Probability Distributions of Func-

tions of Random Variables

Theorem 9.10.1 provided a result for finding the pdf of a function of one
random variable: if Y = g(X) is a function of the random variable X, where
g(x) is monotone and differentiable then the pdf of Y is given by

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ .
An extension to functions of two random variables is given in the following
theorem.

Theorem 10.9.1
Let X and Y be jointly continuous random variables with joint density func-
tion fXY (x, y). Let U = g1(X, Y ) and V = g2(X, Y ). Define T (x, y) =
(g1(x, y), g2(x, y). Let A = {(x, y) : fXY (x, y) > 0} and B the range of
T. Suppose that T is one-to-one and onto from A onto B, i.e., T−1 exists.
Furthermore, suppose that T is differentiable, i.e, g1 and g2 have continuous
partial derivatives at all points (x, y) ∈ A. Also, suppose that the Jacobian
determinant

J(u, v) =

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂y
6= 0.

Then the random variables U and V are continuous random variables with
joint density function given by

fUV (u, v) = fXY (T−1(u, v))|J((u, v))|

for all (u, v) ∈ B and 0 otherwise.

Example 10.9.1
Let X and Y be jointly continuous random variables with density function
fXY (x, y). Let U = X + Y and V = X − Y. Find the joint density function
of U and V.

Solution.
Let T (x, y) = (u, v) = (x+ y, x− y). Then T−1(u, v) =

(
u+v

2
, u−v

2

)
. Moreover

J(u, v) =

∣∣∣∣ 1
2

1
2

1
2
−1

2

∣∣∣∣ = −1

2
6= 0.
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Thus,

fUV (u, v) =
1

2
fXY

(
u+ v

2
,
u− v

2

)
for all (u, v) ∈ Im(T ) and 0 otherwise

Example 10.9.2
Let X and Y be jointly continuous random variables with density function

fXY (x, y) = 1
2π
e−

x2+y2

2 . Let U = X + Y and V = X − Y. Find the joint
density function of U and V.

Solution.
From the previous example, we have

fUV (u, v) =
1

4π
e−

(u+v2 )2+(u−v2 )2

2 =
1

4π
e−

u2+v2

4

for all (u, v) ∈ B and 0 otherwise

Example 10.9.3
Suppose that X and Y have joint density function given by

fXY (x, y) =

{
4xy 0 < x < 1, 0 < y < 1
0 otherwise.

Let U = X
Y

and V = XY.
(a) Find the joint density function of U and V.
(b) Find the marginal density of U and V .
(c) Are U and V independent?

Solution.
(a) Let T (x, y) = (u, v) = (x/y, xy). Then T−1(u, v) =

(√
uv,
√

v
u

)
. More-

over,

J(u, v) =

∣∣∣∣ 1
2

√
v
u

1
2

√
u
v

− 1
2u

√
v
u

1
2
√
uv

∣∣∣∣ =
1

2u
.

By Theorem 10.9.1, we find

fUV (u, v) =
1

2u
fXY (

√
uv,

√
v

u
) =

2v

u
, 0 < uv < 1, 0 <

v

u
< 1
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and 0 otherwise. The region where fUV is defined is shown in Figure 10.9.1.
(b) The marginal density of U is

fU(u) =

∫ u

0

2v

u
dv = u, 0 < u ≤ 1

fU(u) =

∫ 1
u

0

2v

u
dv =

1

u3
, u > 1

and 0 otherwise. The marginal density of V is

fV (v) =

∫ ∞
0

fUV (u, v)du =

∫ 1
v

v

2v

u
du = −4v ln v, 0 < v < 1

and 0 otherwise.
(c) Since fUV (u, v) 6= fU(u)fV (v), U and V are dependent

Figure 10.9.1
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Practice Problems

Problem 10.9.1
Let X and Y be two random variables with joint pdf fXY . Let Z = aX + bY
and W = cX + dY where ad − bc 6= 0. Find the joint probability density
function of Z and W.

Problem 10.9.2
Let X1 and X2 be two independent exponential random variables each having
parameter λ. Find the joint density function of Y1 = X1 +X2 and Y2 = eX2 .

Problem 10.9.3
LetX and Y be random variables with joint pdf fXY (x, y). LetR =

√
X2 + Y 2

and Φ = tan−1
(
Y
X

)
with −π < Φ ≤ π. Find fRΦ(r, φ).

Problem 10.9.4
Let X and Y be two random variables with joint pdf fXY (x, y). Let Z =√
X2 + Y 2 and W = Y

X
, X > 0. Find fZW (z, w).

Problem 10.9.5
If X and Y are independent gamma random variables with parameters (α, λ)
and (β, λ) respectively, compute the joint density of U = X + Y and V =
X

X+Y
.

Problem 10.9.6
Let X1 and X2 be two continuous random variables with joint density func-
tion

fX1X2(x1, x2) =

{
e−(x1+x2) x1 ≥ 0, x2 ≥ 0

0 otherwise

Let Y1 = X1 +X2 and Y2 = X1

X1+X2
. Find the joint density function of Y1 and

Y2.

Problem 10.9.7
Let X1 and X2 be two independent normal random variables with parameters
(0,1) and (0,4) respectively. Let Y1 = 2X1 + X2 and Y2 = X1 − 3X2. Find
fY1Y2(y1, y2).

Problem 10.9.8
Let X be a uniform random variable on (0, 2π) and Y an exponential random
variable with λ = 1 and independent of X. Show that
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U =
√

2Y cosX and V =
√

2Y sinX

are independent standard normal random variables

Problem 10.9.9
Let X and Y be two random variables with joint density function fXY .
Compute the pdf of U = X + Y. What is the pdf in the case X and Y are
independent? Hint: let V = Y.

Problem 10.9.10
Let X and Y be two random variables with joint density function fXY .
Compute the pdf of U = Y −X.

Problem 10.9.11
Let X and Y be two random variables with joint density function fXY .
Compute the pdf of U = XY. Hint: let V = X.

Problem 10.9.12
Let X and Y be two independent exponential distributions with mean 1.
Find the distribution of X

Y
.

Problem 10.9.13 ‡
A device containing two key components fails when, and only when, both
components fail. The lifetimes, T1 and T2 of these components are indepen-
dent with common density function

f(t) =

{
e−t t > 0
0 otherwise.

The cost, X, of operating the device until failure is 2T1 + T2. Let g be the
density function for X. Determine g(x), for x > 0.

Problem 10.9.14 ‡
A company offers earthquake insurance. Annual premiums are modeled by
an exponential random variable with mean 2. Annual claims are modeled
by an exponential random variable with mean 1. Premiums and claims are
independent. Let X denote the ratio of claims to premiums, and let f be the
density function of X. Determine f(x).



Chapter 11

Properties of Expectation

We have seen that the expected value of a random variable is a weighted
average of the possible values of X and also is the center of the distribution
of the variable. Recall that the expected value of a discrete random variable
X with probability mass function p(x) is defined by

E(X) =
∑
x

xp(x)

provided that the sum is finite.
For a continuous random variable X with probability density function f(x),
the expected value is given by

E(X) =

∫ ∞
−∞

xf(x)dx

provided that the improper integral is convergent.
In this chapter we develop and exploit properties of expected values.

471
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11.1 Expected Value of a Function of Two

Random Variables

In this section, we learn some equalities and inequalities about the expec-
tation of random variables. Our goals are to become comfortable with the
expectation operator and learn about some useful properties.
First, we introduce the definition of expectation of a function of two random
variables: Suppose that X and Y are two random variables taking values in
SX and SY respectively. For a function g : SX ×SY → R, the expected value
of g(X, Y ) is

E(g(X, Y ) =
∑
x∈SX

∑
y∈SY

g(x, y)pXY (x, y)

if X and Y are discrete with joint probability mass function pXY (x, y) and

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dxdy

if X and Y are continuous with joint probability density function fXY (x, y).

Example 11.1.1
Let X and Y be two discrete random variables with joint probability mass
function:

pXY (1, 1) = 1
3
, pXY (1, 2) = 1

8
, pXY (2, 1) = 1

2
, pXY (2, 2) = 1

24
.

Find the expected value of g(X, Y ) = XY.

Solution.
The expected value of the function g(X, Y ) = XY is calculated as follows:

E(g(X, Y )) =E(XY ) =
2∑

x=1

2∑
y=1

xypXY (x, y)

=(1)(1)(
1

3
) + (1)(2)(

1

8
) + (2)(1)(

1

2
) + (2)(2)(

1

24
)

=
7

4

An important application of the above definition is the following result.
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Proposition 11.1.1
The expected value of the sum/difference of two random variables is equal
to the sum/difference of their expectations. That is,

E(X + Y ) = E(X) + E(Y )

and
E(X − Y ) = E(X)− E(Y ).

Proof.
We prove the result for discrete random variables X and Y with joint prob-
ability mass function pXY (x, y). Letting g(X, Y ) = X ± Y we have

E(X ± Y ) =
∑
x

∑
y

(x± y)pXY (x, y)

=
∑
x

∑
y

xpXY (x, y)±
∑
x

∑
y

ypXY (x, y)

=
∑
x

x
∑
y

pXY (x, y)±
∑
y

y
∑
x

pXY (x, y)

=
∑
x

xpX(x)±
∑
y

ypY (y)

=E(X)± E(Y ).

A similar proof holds for the continuous case where you just need to replace
the sums by improper integrals and the joint probability mass function by
the joint probability density function

Using mathematical induction one can easily extend the previous result to

E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn), E(Xi) <∞.

Example 11.1.2
A group of N business executives throw their business cards into a jar. The
cards are mixed, and each person randomly selects one. Find the expected
number of people that select their own card.

Solution.
Let X = the number of people who select their own card. For 1 ≤ i ≤ N let

Xi =

{
1 if the ith person chooses his own card
0 otherwise
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Then E(Xi) = P(Xi = 1) = 1
N

and

X = X1 +X2 + · · ·+XN .

Hence,

E(X) = E(X1) + E(X2) + · · ·+ E(XN) =

(
1

N

)
N = 1

Example 11.1.3 (Sample Mean)
Let X1, X2, · · · , Xn be a sequence of independent and identically distributed
random variables, each having a mean µ and variance σ2. Define a new ran-
dom variable by

X =
X1 +X2 + · · ·+Xn

n
.

We call X the sample mean. Find E(X).

Solution.
The expected value of X is

E(X) = E

[
X1 +X2 + · · ·+Xn

n

]
=

1

n

n∑
i=1

E(Xi) = µ.

Because of this result, when the distribution mean µ is unknown, the sample
mean is often used in statistics to estimate it

The following property is known as the monotonicity property of the ex-
pected value.

Proposition 11.1.2
If X is a non-negative random variable then E(X) ≥ 0. Thus, if X and Y
are two random variables such that X ≥ Y then E(X) ≥ E(Y ).

Proof.
We prove the result for the continuous case. We have

E(X) =

∫ ∞
−∞

xf(x)dx

=

∫ ∞
0

xf(x)dx ≥ 0
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since f(x) ≥ 0 so the integrand is non-negative. Now, if X ≥ Y then
X−Y ≥ 0 so that by the previous proposition we can write E(X)−E(Y ) =
E(X − Y ) ≥ 0

As a direct application of the monotonicity property we have

Proposition 11.1.3 (Boole’s Inequality)
For any events A1, A2, · · · , An we have

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai).

Proof.
For i = 1, · · · , n define

Xi =

{
1 if Ai occurs
0 otherwise.

Let

X =
n∑
i=1

Xi

so X denotes the number of the events Ai that occur. Also, let

Y =

{
1 if X ≥ 1 occurs
0 otherwise

so Y is equal to 1 if at least one of the Ai occurs and 0 otherwise. Clearly,
X ≥ Y so that E(X) ≥ E(Y ). But

E(X) =
n∑
i=1

E(Xi) =
n∑
i=1

P (Ai)

and

E(Y ) = P{ at least one of the Ai occur } = P (
⋃n
i=1Ai) .

Thus, the result follows

Proposition 11.1.4
If X is a random variable with range [a, b] then a ≤ E(X) ≤ b.
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Proof.
Let Y = X−a ≥ 0. Then E(Y ) ≥ 0. But E(Y ) = E(X)−E(a) = E(X)−a ≥
0. Thus, E(X) ≥ a. Similarly, let Z = b−X ≥ 0. Then E(Z) = b−E(X) ≥ 0
or E(X) ≤ b

We have determined that the expectation of a sum is the sum of the ex-
pectations. The same is not always true for products: in general, the expec-
tation of a product need not equal the product of the expectations. But it
is true in an important special case, namely, when the random variables are
independent.

Proposition 11.1.5
If X and Y are independent random variables then for any functions h and
g we have

E(g(X)h(Y )) = E(g(X))E(h(Y )).

In particular, E(XY ) = E(X)E(Y ).

Proof.
We prove the result for the continuous case. The proof of the discrete case
is similar. Let X and Y be two independent random variables with joint
density function fXY (x, y). Then

E(g(X)h(Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fXY (x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX(x)fY (y)dxdy

=

(∫ ∞
−∞

h(y)fY (y)dy

)(∫ ∞
−∞

g(x)fX(x)dx

)
=E(h(Y ))E(g(X))

We next give a simple example to show that the expected values need not
multiply if the random variables are not independent.

Example 11.1.4
Consider a single toss of a coin. We define the random variable X to be 1 if
heads turns up and 0 if tails turns up, and we set Y = 1 −X. Thus X and
Y are dependent. Show that E(XY ) 6= E(X)E(Y ).
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Solution.
Clearly, E(X) = E(Y ) = 1

2
. But XY = 0 so that E(XY ) = 0 6= E(X)E(Y )

The following inequality will be of importance in the next section.

Proposition 11.1.6 (Markov’s Inequality)

If X ≥ 0 and c > 0 then P(X ≥ c) ≤ E(X)
c
.

Proof.
Let c > 0. Define

I =

{
1 if X ≥ c
0 otherwise.

Since X ≥ 0, we have I ≤ X
c
. Taking expectations of both side we find

E(I) ≤ E(X)
c
. Now the result follows since E(I) = P(X ≥ c)

Example 11.1.5
Let X be a non-negative random variable. Let a be a positive constant.

Prove that P(X ≥ a) ≤ E(etX)
eta

for all t ≥ 0.

Solution.
Applying Markov’s inequality we find

P(X ≥ a) = P(tX ≥ ta) = P(etX ≥ eta) ≤ E(etX)

eta

As an important application of Markov’s inequality we have

Proposition 11.1.7
If X ≥ 0 and E(X) = 0 then P(X = 0) = 1.

Proof.
Since E(X) = 0, by the Markov’s inequality we find P(X ≥ c) = 0 for all
c > 0. But

P(X > 0) = P

(
∞⋃
n=1

(X >
1

n
)

)
≤

∞∑
n=1

P(X >
1

n
) = 0.

Hence, P (X > 0) = 0. Since X ≥ 0, we have 1 = P(X ≥ 0) = P(X =
0) + P(X > 0) = P(X = 0)
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Corollary 11.1.1
Let X be a random variable. If V ar(X) = 0, then P(X = E(X)) = 1. That
is, X = E(X).

Proof.
Suppose that V ar(X) = 0. Since (X − E(X))2 ≥ 0 and V ar(X) = E((X −
E(X))2), by the previous result we have P (X − E(X) = 0) = 1. That is,
P(X = E(X)) = 1

Example 11.1.6 (Expected value of a Binomial Random Variable)
Let X be a binomial random variable with parameters (n, p). Find E(X).

Solution.
We have that X is the number of successes in n trials. For 1 ≤ i ≤ n, let Xi

denote the number of successes in the ith trial. Then E(Xi) = 0(1−p)+1p =
p. Since X = X1 +X2 + · · ·+Xn, we find E(X) =

∑n
i=1E(Xi) =

∑n
i=1 p =

np
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Practice Problems

Problem 11.1.1
Let X and Y be independent random variables, both being equally likely to
be any of the numbers 1, 2, · · · ,m. Find E(|X − Y |).

Problem 11.1.2
Let X and Y be random variables with joint pdf

fXY (x, y) =

{
1 0 < x < 1, x < y < x+ 1
0 otherwise

Find E(XY ).

Problem 11.1.3
Let X and Y be two independent uniformly distributed random variables in
[0,1]. Find E(|X − Y |).

Problem 11.1.4
Let X and Y be continuous random variables with joint pdf

fXY (x, y) =

{
2(x+ y) 0 < x < y < 1

0 otherwise

Find E(X2Y ) and E(X2 + Y 2).

Problem 11.1.5
Suppose that E(X) = 5 and E(Y ) = −2. Find E(3X + 4Y − 7).

Problem 11.1.6
Suppose that X and Y are independent, and that E(X) = 5, E(Y ) = −2.
Find E[(3X − 4)(2Y + 7)].

Problem 11.1.7
Let X and Y be two independent random variables that are uniformly dis-
tributed on the interval (0, L). Find E(|X − Y |).

Problem 11.1.8
Ten married couples are to be seated at five different tables, with four people
at each table. Assume random seating, what is the expected number of
married couples that are seated at the same table?
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Problem 11.1.9
John and Katie randomly, and independently, choose 3 out of 10 objects.
Find the expected number of objects
(a) chosen by both individuals.
(b) not chosen by either individual.
(c) chosen exactly by one of the two.

Problem 11.1.10
If E(X) = 1 and Var(X) = 5 find
(a) E[(2 +X)2]
(b) Var(4 + 3X)

Problem 11.1.11 ‡
Let T1 be the time between a car accident and reporting a claim to the
insurance company. Let T2 be the time between the report of the claim and
payment of the claim. The joint density function of T1 and T2, f(t1, t2), is
constant over the region 0 < t1 < 6, 0 < t2 < 6, t1 + t2 < 10, and zero
otherwise.
Determine E[T1 +T2], the expected time between a car accident and payment
of the claim.

Problem 11.1.12 ‡
Let T1 and T2 represent the lifetimes in hours of two linked components in
an electronic device. The joint density function for T1 and T2 is uniform over
the region defined by 0 ≤ t1 ≤ t2 ≤ L, where L is a positive constant.
Determine the expected value of the sum of the squares of T1 and T2.

Problem 11.1.13
Let X and Y be two independent random variables with µX = 1, µY =
−1, σ2

X = 1
2
, and σ2

Y = 2. Compute E[(X + 1)2(Y − 1)2].

Problem 11.1.14 ‡
A machine consists of two components, whose lifetimes have the joint density
function

f(x, y) =

{
1
50

for x > 0, y > 0, x+ y < 10
0 otherwise.

The machine operates until both components fail. Calculate the expected
operational time of the machine.
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Problem 11.1.15 ‡
A city with borders forming a square with sides of length 1 has its city hall
located at the origin when a rectangular coordinate system is imposed on
the city so that two sides of the square are on the positive axes. The density
function of the population is

f(x, y) =

{
1.5(x2 + y2) for 0 < x, y < 1

0 otherwise.

A resident of the city can travel to the city hall only along a route whose
segments are parallel to the city borders.
Calculate the expected value of the travel distance to the city hall of a ran-
domly chosen resident of the city.

Problem 11.1.16
Let X and Y be independent random variables and α, β, and γ be arbitrary
constants. Show that

Var(αX + βY + γ) = α2Var(X) + β2Var(Y ).

Problem 11.1.17 ‡
The profit for a new product is given by Z = 3X − Y − 5 where X and Y
are independent random variables with Var(X) = 1 and Var(Y ) = 2.
Calculate Var(Z).

Problem 11.1.18 ‡
Two random variables X and Y have the joint density function

f(x, y) =

{
kx for 0 < x, y < 1
0 otherwise.

Show that X and Y are independent.

Problem 11.1.19 ‡
Let X and Y be two random variables with joint density function

f(x, y) =

{
8
3
xy for 0 ≤ x ≤ 1, x ≤ y ≤ 2x
0 otherwise.

Show that X and Y are dependent.
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Problem 11.1.20 ‡
Two claimants place calls simultaneously to an insurer’s claims call center.
The times X and Y, in minutes, that elapse before the respective claimants
get to speak with call center representatives are independently and identically
distributed. The moment generating function of each random variable is

M(t) =

(
1

1− 1.5t

)2

, t <
2

3
.

Find the standard deviation of X + Y.

Problem 11.1.21 ‡
The return on two investments, X and Y, follows the joint probability density
function

fXY (x, y) =

{
1
2
, 0 < |x|+ |y| < 1

0, otherwise.

Calculate Var(X).

Problem 11.1.22 ‡
Random variables X ≥ 0 and Y ≥ 0 are uniformly distributed on the region
bounded by the x and y axes, and the curve y = 1− x2. Calculate E(XY ).

Problem 11.1.23 ‡
A dental insurance company pays 100% of the cost of fillings and 70% of
the cost of root canals. Fillings and root canals cost 50 and 500 each, re-
spectively. The tables below show the probability distributions of the annual
number of fillings and annual number of root canals for each of the company’s
policyholders.

# of fillings 0 1 2 3
Probability 0.60 0.20 0.15 0.05

# of root canals 0 1
Probability 0.80 0.20

Calculate the expected annual payment per policyholder for fillings and root
canals.

Problem 11.1.24 ‡
Let X denote the loss amount sustained by an insurance company’s policy-
holder in an auto collision. Let Z denote the portion of X that the insurance
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company will have to pay. An actuary determines that X and Z are inde-
pendent with respective density and probability functions

f(x) =

{
1
8
e−

x
8 , x > 0

0, otherwise

and

P (Z = z) =

{
0.45, z = 1
0.55, otherwise.

Calculate the variance of the insurance company’s claim payment ZX.

Problem 11.1.25 ‡
An insurance company will cover losses incurred from tornadoes in a single
calendar year. However, the insurer will only cover losses for a maximum of
three separate tornadoes during this time frame. Let X be the number of
tornadoes that result in at least 50 million in losses, and let Y be the total
number of tornadoes. The joint probability function for X and Y is

pXY (x, y) =

{
c(x+ 2y), x = 0, 1, 2, 3, y = 0, 1, 2, 3, x ≤ y

0, otherwise

where c is a constant. Calculate the expected number of tornadoes that
result in fewer than 50 million in losses.
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11.2 Covariance and Variance of Sums

So far, We have discussed the absence or presence of a relationship between
two random variables, i.e., independence or dependence. But if there is in
fact a relationship, the relationship may be either weak or strong. In this
section, we introduce a measure that quantifies this difference in the strength
of a relationship between two random variables.
The Covariance between X and Y is defined by

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))].

Thus, if Cov(X, Y ) > 0 and X is above (respectively below) its mean then
by the monotonicity of the expectation Y is also above (respectively below)
its mean. Likewise, if Cov(X, Y ) < 0 and X is above (respectively below) its
mean then Y is below (respectively above) its mean.
An alternative expression of covariance that is sometimes more convenient is

Cov(X, Y ) =E(XY −XE(Y )− Y E(X) + E(X)E(Y ))

=E(XY )− E(X)E(Y )− E(X)E(Y ) + E(X)E(Y )

=E(XY )− E(X)E(Y ).

Recall that for independent X, Y we have E(XY ) = E(X)E(Y ) and so
Cov(X, Y ) = 0. However, the converse statement is false as there exist ran-
dom variables that have covariance 0 but are dependent. For example, let X
be a random variable such that

P(X = 0) = P(X = 1) = P(X = −1) =
1

3

and define

Y =

{
0 if X 6= 0
1 otherwise.

Thus, Y depends on X.
Clearly, XY = 0 so that E(XY ) = 0. Also,

E(X) = (0 + 1− 1)
1

3
= 0

and thus
Cov(X, Y ) = E(XY )− E(X)E(Y ) = 0.

Useful facts of Covariance are collected in the next result.
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Theorem 11.2.1
(a) Cov(X, Y ) = Cov(Y,X) (Symmetry)
(b) Cov(X,X) = Var(X)
(c) Cov(aX, Y ) = aCov(X, Y )
(d) For a constant a, Cov(X, a) = 0.

(e) Cov
(∑n

i=1Xi,
∑m

j=1 Yj

)
=
∑n

i=1

∑m
j=1 Cov(Xi, Yj)

Proof.
(a) Cov(X, Y ) = E(XY )−E(X)E(Y ) = E(Y X)−E(Y )E(X) = Cov(Y,X).
(b) Cov(X,X) = E(X2)− (E(X))2 = V ar(X).
(c) Cov(aX, Y ) = E(aXY ) − E(aX)E(Y ) = aE(XY ) − aE(X)E(Y ) =
a(E(XY )− E(X)E(Y )) = aCov(X, Y ).
(d) We have Cov(X, a) = E(aX)− E(X)a = aE(X)− aE(X) = 0.

(e) First note thatE [
∑n

i=1 Xi] =
∑n

i=1E(Xi) andE
[∑m

j=1 Yj

]
=
∑m

j=1 E(Yj).

Then

Cov

(
n∑
i=1

Xi,
m∑
j=1

Yj

)
=E

[(
n∑
i=1

Xi −
n∑
i=1

E(Xi)

)(
m∑
j=1

Yj −
m∑
j=1

E(Yj)

)]

=E

[
n∑
i=1

(Xi − E(Xi))
m∑
j=1

(Yj − E(Yj))

]

=E

[
n∑
i=1

m∑
j=1

(Xi − E(Xi))(Yj − E(Yj))

]

=
n∑
i=1

m∑
j=1

E[(Xi − E(Xi))(Yj − E(Yj))]

=
n∑
i=1

m∑
j=1

Cov(Xi, Yj)

Example 11.2.1
Given that E(X) = 5, E(X2) = 27.4, E(Y ) = 7, E(Y 2) = 51.4 and Var(X +
Y ) = 8, find Cov(X + Y,X + 1.2Y ).
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Solution.
Using the properties of expectation and the given data, we get

E(X + Y )E(X + 1.2Y ) =(E(X) + E(Y ))(E(X) + 1.2E(Y ))

=(5 + 7)(5 + (1.2) · 7) = 160.8

E((X + Y )(X + 1.2Y )) =E(X2) + 2.2E(XY ) + 1.2E(Y 2)

=27.4 + 2.2E(XY ) + (1.2)(51.4)

=2.2E(XY ) + 89.08.

Thus,

Cov(X + Y,X + 1.2Y ) = 2.2E(XY ) + 89.08− 160.8 = 2.2E(XY )− 71.72.

To complete the calculation, it remains to find E(XY ). To this end, we make
use of the still unused relation Var(X + Y ) = 8. We have,

8 =Var(X + Y ) = E((X + Y )2)− (E(X + Y ))2

=E(X2) + 2E(XY ) + E(Y 2)− (E(X) + E(Y ))2

=27.4 + 2E(XY ) + 51.4− (5 + 7)2 = 2E(XY )− 65.2.

so E(XY ) = 36.6. Substituting this above gives Cov(X + Y,X + 1.2Y ) =
(2.2)(36.6)− 71.72 = 8.8

Example 11.2.2
Show that if X and Y are independent then

Var(X + Y ) = Var(X) + Var(Y ).

Solution.
We have

Var(X + Y ) =E[(X + Y )2]− (E(X + Y ))2 = E(X2 + 2XY + Y 2)− (E(X) + E(Y ))2

=E(X2 + 2XY + Y 2)− E(X)2 − 2E(X)E(Y )− E(Y )2

=[E(X2)− E(X)2] + [E(Y 2)− E(Y )2] + 2[E(XY )− E(X)E(Y )]

=[E(X2)− E(X)2] + [E(Y 2)− E(Y )2] + 2[E(X)E(Y )− E(X)E(Y )]

=Var(X) + Var(Y )
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Practice Problems

Problem 11.2.1
If X and Y are independent and identically distributed with mean µ and
variance σ2, find E[(X − Y )2].

Problem 11.2.2
Let X be the number of 1’s and Y the number of 2’s that occur in n rolls of
a fair die. Compute Cov(X, Y ).

Problem 11.2.3
Suppose that X and Y are random variables with Cov(X, Y ) = 3. Find
Cov(2X − 5, 4Y + 2).

Problem 11.2.4
Let X and Y be two random variables. Show that

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ).

Problem 11.2.5
A salesperson salary consists of two parts a commission, X, and a fixed in-
come Y. so that the total salary isX+Y. Suppose that Var(X) = 5, 000,Var(Y ) =
10, 000, and Var(X + Y ) = 17, 000.
If X is increased by a flat amount of 100, and Y is increased by 10%, what
is the variance of the total salary after these increases?

Problem 11.2.6
Suppose the joint pdf of X and Y is

fXY (x, y) =

{
1 0 < x < 1, x < y < x+ 1
0 otherwise

Compute the covariance of X and Y.

Problem 11.2.7
Let X and Z be independent random variables with X uniformly distributed
on (−1, 1) and Z uniformly distributed on (0, 0.1). Let Y = X2 + Z. Then
X and Y are dependent.
(a) Find the joint pdf of X and Y.
(b) Find the covariance of X and Y.



488 CHAPTER 11. PROPERTIES OF EXPECTATION

Problem 11.2.8
Let the random variable Θ be uniformly distributed on [0, 2π]. Consider the
random variables X = cos Θ and Y = sin Θ. Show that Cov(X, Y ) = 0 even
though X and Y are dependent. Thus, sometimes there might be strong
relationship between X and Y even though Cov(X, Y ) = 0.

Problem 11.2.9
Let X and Y be continuous random variables with joint pdf

fXY (x, y) =

{
3x 0 ≤ y ≤ x ≤ 1
0 otherwise.

Find Cov(X, Y ).

Problem 11.2.10 ‡
An insurance policy pays a total medical benefit consisting of two parts for
each claim. LetX represent the part of the benefit that is paid to the surgeon,
and let Y represent the part that is paid to the hospital. The variance of
X is 5000, the variance of Y is 10,000, and the variance of the total benefit,
X + Y, is 17,000.
Due to increasing medical costs, the company that issues the policy decides
to increase X by a flat amount of 100 per claim and to increase Y by 10%
per claim.
Calculate the variance of the total benefit after these revisions have been
made.

Problem 11.2.11 ‡
A joint density function is given by

fXY (x, y) =

{
kx 0 < x, y < 1
0 otherwise.

Find Cov(X, Y )

Problem 11.2.12 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
8
3
xy 0 ≤ x ≤ 1, x ≤ y ≤ 2x
0 otherwise.

Find Cov(X, Y )
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Problem 11.2.13 ‡
Let X and Y denote the values of two stocks at the end of a five-year period.
X is uniformly distributed on the interval (0, 12) . Given X = x, Y is
uniformly distributed on the interval (0, x).
Determine Cov(X, Y ) according to this model.

Problem 11.2.14 ‡
Let X denote the size of a surgical claim and let Y denote the size of the
associated hospital claim. An actuary is using a model in which E(X) =
5, E(X2) = 27.4, E(Y ) = 7, E(Y 2) = 51.4, and Var(X + Y ) = 8.
Let C1 = X+Y denote the size of the combined claims before the application
of a 20% surcharge on the hospital portion of the claim, and let C2 denote
the size of the combined claims after the application of that surcharge.
Calculate Cov(C1, C2).

Problem 11.2.15
The following table gives the joint probability distribution of two random
variables X and Y.

X \ Y 0 1 2
0 0.25 0.08 0.05
1 0.12 0.20 0.10
2 0.03 0.07 0.10

(a) Give the marginal distributions of X and Y .
(b) Find E(X) and E(Y ).
(c) Find Cov(X, Y ).
(d) Find E(100X + 75Y ).

Problem 11.2.16
Let X, Y and Z be random variables with means 1,2 and 3, respectively, and
variances 4,5, and 9, respectively. Also, Cov(X, Y ) = 2,Cov(X,Z) = 3, and
Cov(Y, Z) = 1. What are the mean and variance, respectively, of the random
variable W = 3X + 2Y − Z?

Problem 11.2.17
LetX1, X2, X3 be uniform random variables on the interval (0, 1) with Cov(Xi, Xj) =
1
24

for i, j ∈ {1, 2, 3}, i 6= j. Calculate the variance of X1 + 2X2 −X3.
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Problem 11.2.18
Let X and Y be discrete random variables with joint distribution defined by
the following table

Y\ X 2 3 4 5 pY (y)
0 0.05 0.05 0.15 0.05 0.30
1 0.40 0 0 0 0.40
2 0.05 0.15 0.10 0 0.30
pX(x) 0.50 0.20 0.25 0.05 1

For this joint distribution, E(X) = 2.85, E(Y ) = 1. Calculate Cov(X, Y ).

Problem 11.2.19
Two cards are drawn without replacement from a pack of cards. The random
variable X measures the number of heart cards drawn, and the random
variable Y measures the number of club cards drawn. Find the covariance of
X and Y.

Problem 11.2.20 ‡
The joint probability density function of X and Y is given by

fXY (x, y) =

{
x+y

8
0 < x < 2, 0 < y < 2

0 otherwise.

Calculate Var(0.5(X + Y )).

Problem 11.2.21 ‡
Points scored by a game participant can be modeled by Z = 3X+ 2Y −5. X
and Y are independent random variables with Var(X) = 3 and Var(Y ) = 4.
Calculate Var(Z).

Problem 11.2.22 ‡
For a random variable X, we define the coefficient of variation to be
the number CV (X) = σX

E(X)
. Two independent random variables X and Y

have the same mean. The coefficients of variation of X and Y are 3 and 4
respectively. Calculate the coefficient of variation of 0.5(X + Y ).

Problem 11.2.23 ‡
Let X be a random variable that takes on the values −1, 0, and 1 with equal
probabilities. Let Y = X2. Which of the following is true?
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(A) Cov(X, Y ) > 0; the random variables X and Y are dependent.
(B) Cov(X, Y ) > 0; the random variables X and Y are independent.
(C) Cov(X, Y ) = 0; the random variables X and Y are dependent.
(D) Cov(X, Y ) = 0; the random variables X and Y are independent.
(E) Cov(X, Y ) < 0; the random variables X and Y are dependent.

Problem 11.2.24 ‡
Annual windstorm losses, X and Y, in two different regions are indepen-
dent, and each is uniformly distributed on the interval [0,10]. Calculate the
covariance of X and Y , given that X + Y < 10.

Problem 11.2.25 ‡
In a group of 15 health insurance policyholders diagnosed with cancer, each
policyholder has probability 0.90 of receiving radiation and probability 0.40
of receiving chemotherapy. Radiation and chemotherapy treatments are in-
dependent events for each policyholder, and the treatments of different pol-
icyholders are mutually independent. The policyholders in this group all
have the same health insurance that pays 2 for radiation treatment and 3 for
chemotherapy treatment.
Calculate the variance of the total amount the insurance company pays for
the radiation and chemotherapy treatments for these 15 policyholders.
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11.3 The Coefficient of Correlation

In this section, we introduce a number, called the coefficient of correlation,
that measures the linear dependence of two random variables. For this pur-
pose, let X and Y be two random variables with Var(X) > 0 and Var(Y ) > 0.
We define the coefficient of correlation to be the number

ρ(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.

This number satisfies the following property.

Theorem 11.3.1
The coefficient of correlation is a number between −1 and 1 inclusive. That
is, |ρ(X, Y )| ≤ 1.

Proof.
We first show that ρ(X, Y ) ≥ −1. Let σ2

X = Var(X) and σ2
Y = Var(Y ). We

have

0 ≤V ar
(
X

σX
+

Y

σY

)
=
V ar(X)

σ2
X

+
V ar(Y )

σ2
Y

+
2Cov(X, Y )

σXσY

=2[1 + ρ(X, Y )]

implying that −1 ≤ ρ(X, Y ). Likewise, to show that ρ(X, Y ) ≤ 1, we proceed
as follows

0 ≤V ar
(
X

σX
− Y

σY

)
=
V ar(X)

σ2
X

+
V ar(Y )

σ2
Y

− 2Cov(X, Y )

σXσY

=2[1− ρ(X, Y )]

implying that ρ(X, Y ) ≤ 1

Example 11.3.1
Show that ρ(X, Y ) = ±1 if and only if Y = aX + b for some constants a and
b.
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Solution.
First notice that ρ(X, Y ) = ±1 is equivalent to Cov(X, Y )2 = Var(X)Var(Y ).

If ρ(X, Y ) = 1 then Var
(
X
σX
− Y

σY

)
= 2[1 − ρ(x)] = 0. This implies that

X
σX
− Y

σY
= E

(
X
σX
− Y

σY

)
(See Corollary 11.1.1). This is equivalent to Y =

a + bX where a = −σYE
(
X
σX
− Y

σY

)
and b = σY

σX
> 0. If ρ(X, Y ) = −1

then Var
(
X
σX

+ Y
σY

)
= 0. This implies that X

σX
+ Y

σY
= E

(
X
σX

+ Y
σY

)
which

is equivalent to Y = a+ bX where a = σYE
(
X
σX
− Y

σY

)
and b = − σY

σX
< 0.

Conversely, suppose that Y = a+ bX. Then Var(Y ) = b2Var(X) and

Cov(X, Y ) =E[X(a+ bX)]− E(X)E(a+ bX)

=aE(X) + bE(X2)− aE(X)− bE(X)2

=bVar(X).

Hence,

ρ(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
=

bVar(X)

|b|Var(X)
=

b

|b|
.

If b > 0 then ρ(X, Y ) = 1 and if b < 0 then ρ(X, Y ) = −1

As stated in the introduction to this section, the correlation coefficient is
a measure of the degree of linearity between X and Y . A value of ρ(X, Y )
near +1 or −1 indicates a high degree of linearity between X and Y, whereas
a value near 0 indicates a lack of such linearity.
Correlation is a scaled version of covariance; note that the two concepts al-
ways have the same sign (positive, negative, or 0). When the sign is positive,
the variables X and Y are said to be positively correlated and this indi-
cates that Y tends to increase when X does; when the sign is negative, the
variables are said to be negatively correlated and this indicates that Y
tends to decrease when X increases; and when the sign is 0, the variables are
said to be uncorrelated.
Figure 11.3.1 shows some examples of data pairs and their correlation.
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Figure 11.3.1

Example 11.3.2
Suppose the joint pdf of X and Y is

fXY (x, y) =

{
1 0 < x < 1, x < y < x+ 1
0 otherwise.

Compute the covariance and correlation of X and Y.

Solution.
We first find the marginal pdf’s for X and Y. Since

fX(x) =

∫ x+1

x

dy = 1, 0 < x < 1

then X is uniform on (0,1) and therefore

E(X) = 1
2

and Var(X)= 1
12
.

Now, if 0 < y < 1

fY (y) =

∫ y

0

dx = y,

and if 1 < y < 2

fY (y) =

∫ 1

y−1

dx = 2− y
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and so

E(Y ) =

∫ 1

0

y2dy +

∫ 2

1

y(2− y)dy = 1

and

E(Y 2) =

∫ 1

0

y3dy +

∫ 2

1

y2(2− y)dy =
7

6
.

Thus,

V ar(Y ) =
7

6
− 1 =

1

6
.

Also,

E(XY ) =

∫ 1

0

∫ x+1

x

xydydx =

∫ 1

0

(
x2 +

x

2

)
dx =

7

12
.

Hence,

Cov(X, Y ) =
7

12
− 1

2
=

1

12

and

ρ(X, Y ) =
1/12√

1/12
√

1/6
=

√
2

2



496 CHAPTER 11. PROPERTIES OF EXPECTATION

Practice Problems

Problem 11.3.1
Two cards are drawn without replacement from a pack of cards. The random
variable X measures the number of heart cards drawn, and the random
variable Y measures the number of club cards drawn. Find the coefficient of
correlation of X and Y.

Problem 11.3.2
Let X and Z be independent random variables with X uniformly distributed
on (−1, 1) and Z uniformly distributed on (0, 0.1). Let Y = X2 + Z. Then
X and Y are dependent.
(a) Find the joint pdf of X and Y.
(b) Find the the coefficient of correlation of X and Y.

Problem 11.3.3
If X1, X2, X3, X4 are (pairwise) uncorrelated random variables each having
mean 0 and variance 1, compute the correlations of
(a) X1 +X2 and X2 +X3.
(b) X1 +X2 and X3 +X4.

Problem 11.3.4
Let X be uniformly distributed on [−1, 1] and Y = X2. Show that X and
Y are uncorrelated even though Y depends functionally on X (the strongest
form of dependence).

Problem 11.3.5
Let X and Y be continuous random variables with joint pdf

fXY (x, y) =

{
3x 0 ≤ y ≤ x ≤ 1
0 otherwise

Find Cov(X, Y ) and ρ(X, Y ).

Problem 11.3.6 ‡
A joint density function is given by

fXY (x, y) =

{
kx 0 < x, y < 1
0 otherwise

Find ρ(X, Y ).
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Problem 11.3.7
Let X1, X2, and X3 be independent random variables each with mean 0 and
variance 1. Let X = 2X1 −X3 and Y = 2X2 +X3. Find ρ(X, Y ).

Problem 11.3.8
The coefficient of correlation between random variables X and Y is 1

3
, and

σ2
X = a, σ2

Y = 4a. The random variable Z is defined to be Z = 3X − 4Y, and
it is found that σ2

Z = 114. Find a.

Problem 11.3.9
Given n independent random variables X1, X2, · · · , Xn each having the same
variance σ2. Define U = 2X1 + X2 + · · · + Xn−1 and V = X2 + X3 + · · · +
Xn−1 + 2Xn. Find ρ(U, V ).

Problem 11.3.10
The following table gives the joint probability distribution of two random
variables X and Y.

X \ Y 1 2 3 pX(x)
1 0.25 0.25 0.00 0.5
2 0.00 0.25 0.25 0.5
pY (y) 0.25 0.5 0.25 1

Find ρ(X, Y ).

Problem 11.3.11
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
2 0 < x ≤ y < 1
0 otherwise.

Find ρ(X, Y ).

Problem 11.3.12
The following table gives the joint probability distribution of two random
variables X and Y.

Y \ X 1 2 3 pY (y)
1 0.01 0.02 0.25 0.28
2 0.02 0.03 0.20 0.25
3 0.02 0.10 0.05 0.17
4 0.15 0.10 0.05 0.30
pX(x) 0.20 0.25 0.55 1
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Find ρ(X, Y ).

Problem 11.3.13 ‡
An actuary analyzes a company’s annual personal auto claims, M, and
annual commercial auto claims, N. The analysis reveals that Var(M) =
1600, Var(N) = 900, and the correlation between M and N is 0.64. Calculate
Var(M +N).
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11.4 Conditional Expectation

Since conditional probability measures are probability measures (that is, they
possess all of the properties of unconditional probability measures), condi-
tional expectations inherit all of the properties of regular expectations.
Let X and Y be random variables. In the discrete case, we define condi-
tional expectation of X given that Y = y by

E(X|Y = y} =
∑
x

xP(X = x|Y = y) =
∑
x

xpX|Y (x|y)

where pX|Y is the conditional probability mass function of X, given that
Y = y which is given by

pX|Y (x|y) = P(X = x|Y = y) =
pXY (x, y)

pY (y)
.

In the continuous, case we have

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx

where

fX|Y (x|y) =
fXY (x, y)

fY (y)
.

Example 11.4.1
Suppose X and Y are discrete random variables with values 1, 2, 3, 4 and
joint pmf given by

pXY (x, y) =


1
16

if x = y
2
16

if x < y
0 if x > y

for x, y = 1, 2, 3, 4.
(a) Find the joint probability distribution of X and Y in tabular form.
(b) Find the conditional expectation of Y given that X = 3.

Solution.
(a) The joint probability distribution is given in tabular form
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X \ Y 1 2 3 4 pX(x)
1 1

16
2
16

2
16

2
16

7
16

2 0 1
16

2
16

2
16

5
16

3 0 0 1
16

2
16

3
16

4 0 0 0 1
16

1
16

pY (y) 1
16

3
16

5
16

7
16

1

(b) We have

E(Y |X = 3) =
4∑
y=1

ypY |X(y|3) =
pXY (3, 1)

pX(3)
+

2pXY (3, 2)

pX(3)
+

3pXY (3, 3)

pX(3)
+

4pXY (3, 4)

pX(3)

=3 · 1

3
+ 4 · 2

3
=

11

3

Example 11.4.2
Suppose that the joint density of X and Y is given by

fXY (x, y) =
e−

x
y e−y

y
, x, y > 0.

Compute E(X|Y = y).

Solution.
The conditional density is found as follows

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

fXY (x, y)∫∞
−∞ fXY (x, y)dx

=
(1/y)e−

x
y e−y∫∞

0
(1/y)e−

x
y e−ydx

=
(1/y)e−

x
y∫∞

0
(1/y)e−

x
y dx

=
1

y
e−

x
y .

Hence,

E(X|Y = y) =

∫ ∞
0

x

y
e−

x
y dx = −

[
xe−

x
y

∣∣∣∞
0
−
∫ ∞

0

e−
x
y dx

]
=−

[
xe−

x
y + ye−

x
y

]∞
0

= y
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Example 11.4.3
Let Y be a random variable with a density fY given by

fY (y) =

{
α−1
yα

y > 1

0 otherwise

where α > 1. Given Y = y, let X be a random variable which is Uniformly
distributed on (0, y).
(a) Find the marginal distribution of X.
(b) Calculate E(Y |X = x) for every x > 0.

Solution.
The joint density function is given by

fXY (x, y) = fX|Y (x|y)fY (y) =

{
α−1
yα+1 0 < x < y, y > 1

0 otherwise.

(a) Observe that X only takes positive values, thus fX(x) = 0, x ≤ 0. For
0 < x < 1, we have

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
1

fXY (x, y)dy =
α− 1

α
.

For x ≥ 1, we have

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
x

fXY (x, y)dy =
α− 1

αxα
.

(b) For 0 < x < 1, we have

fY |X(y|x) =
fXY (x, y)

fX(x)
=

α

yα+1
, y > 1.

Hence,

E(Y |X = x) =

∫ ∞
1

yα

yα+1
dy = α

∫ ∞
1

dy

yα
=

α

α− 1
.

If x ≥ 1 then

fY |X(y|x) =
fXY (x, y)

fX(x)
=
αxα

yα+1
, y > x.

Hence,

E(Y |X = x) =

∫ ∞
x

y
αxα

yα+1
dy =

αx

α− 1

Notice that if X and Y are independent then pX|Y (x|y) = pX(x) so that
E(X|Y = y) = E(X).
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Practice Problems

Problem 11.4.1
Suppose that X and Y have joint distribution

fXY (x, y) =

{
8xy 0 < x < y < 1
0 otherwise.

Find E(X|Y = y) and E(Y |X = x).

Problem 11.4.2
Suppose that X and Y have joint distribution

fXY (x, y) =

{
3y2

x3
0 < y < x < 1

0 otherwise.

Find E(Y |X = x).

Problem 11.4.3
Let X and Y be discrete random variables with conditional mass function

pY |X(y|2) =


0.2 y = 1
0.3 y = 2
0.5 y = 3
0 otherwise.

Compute E(Y |X = 2).

Problem 11.4.4
Suppose that X and Y have joint distribution

fXY (x, y) =

{
21
4
x2y x2 < y < 1
0 otherwise.

Find E(Y |X = x).

Problem 11.4.5
Let X and Y be discrete random variables with joint probability mass func-
tion defined by the following table
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X\Y 1 2 3 pX(x)
1 1/9 1/9 0 2/9
2 1/3 0 1/6 1/2
3 1/9 1/18 1/9 5/18
pY (y) 5/9 1/6 5/18 1

Compute E(X|Y = i) for i = 1, 2, 3. Are X and Y independent?

Problem 11.4.6 ‡
A diagnostic test for the presence of a disease has two possible outcomes: 1
for disease present and 0 for disease not present. Let X denote the disease
state of a patient, and let Y denote the outcome of the diagnostic test. The
joint probability function of X and Y is given by:

P(X = 0, Y = 0) =0.800

P(X = 1, Y = 0) =0.050

P(X = 0, Y = 1) =0.025

P(X = 1, Y = 1) =0.125.

Calculate E(Y |X = 1).

Problem 11.4.7
The stock prices of two companies at the end of any given year are modeled
with random variables X and Y that follow a distribution with joint density
function

fXY (x, y) =

{
2x 0 < x < 1, x < y < x+ 1
0 otherwise.

What is the conditional expectation of Y given that X = x?

Problem 11.4.8 ‡
An actuary determines that the annual numbers of tornadoes in counties P
and Q are jointly distributed as follows:

X\Y 0 1 2 pX(x)
0 0.12 0.13 0.05 0.30
1 0.06 0.15 0.15 0.36
2 0.05 0.12 0.10 0.27
3 0.02 0.03 0.02 0.07
pY (y) 0.25 0.43 0.32 1
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where X is the number of tornadoes in county Q and Y that of county P.
Calculate the conditional expectation of the annual number of tornadoes in
county Q, given that there are no tornadoes in county P.

Problem 11.4.9
Let X and Y be two continuous random variables with joint density function

fXY (x, y) =

{
2 0 < x < y < 1
0 otherwise.

For 0 < x < 1, find E(Y |X = x).

Problem 11.4.10 ‡
New dental and medical plan options will be offered to state employees next
year. An actuary uses the following density function to model the joint
distribution of the proportion X of state employees who will choose Dental
Option 1 and the proportion Y who will choose Medical Option 1 under the
new plan options:

fXY (x, y) =


0.50 for 0 < x, y < 0.5
1.25 for 0 < x < 0.5, 0.5 < y < 1
1.50 for 0.5 < x < 1, 0 < y < 0.5
0.75 for 0.5 < x < 1, 0.5 < y < 1.

Calculate E(Y |X = 0.75).

Problem 11.4.11 ‡
The number of severe storms that strike city J in a year follows a binomial
distribution with n = 5 and p = 0.6. Given that m severe storms strike city
J in a year, the number of severe storms that strike city K in the same year
is: m with probability 1/2, m + 1 with probability 1/3, and m + 2 with
probability 1/6.
Calculate the expected number of severe storms that strike city J in a year
during which 5 severe storms strike city K.

Problem 11.4.12 ‡
Ten cards from a deck of playing cards are in a box: two diamonds, three
spades, and five hearts. Two cards are randomly selected without replace-
ment.
Calculate the expected number of diamonds selected, given that no spade is
selected.
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Problem 11.4.13
Let X and Y be two independent Poisson random variables with common
parameter λ. Let Z = X + Y. Find E(X|Z = z). Hint: Example 10.7.3 and
Example 2.3.3.

Problem 11.4.14
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
cxy 0 ≤ y ≤ x ≤ 1
0 otherwise.

(a) Determine the value of c.
(b) Are X and Y independent?
(c) Find E(Y |X = x).

Problem 11.4.15
A standard deck has 52 cards, with values A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K
(4 cards of each value). Choose 5 cards randomly from the deck, without
replacement. Given that exactly 2 Jack cards (i.e., value ”J”) appear, find
the expected number of Ace cards (i.e., value ”A”) that appear.

Problem 11.4.16
A machine has a random supply Y at the beginning of a given day and dis-
penses a random amount X during the day (with measurements in gallons).
It is not resupplied during the day; hence, X ≤ Y. It has been observed that
X, Y have joint density

fXY (x, y) =

{
1
2

0 ≤ x ≤ y ≤ 3
0 otherwise.

Compute E(X|Y = y) for a fixed 0 ≤ y ≤ 3.

Problem 11.4.17
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
2e−(x+y) 0 < x < y <∞

0 otherwise.

Find E(X|Y = 2).
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Problem 11.4.18
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
ce−y 0 ≤ x ≤ y <∞

0 otherwise.

(a) Determine the value of c.
(b) Are X and Y independent?
(c) Find the marginal densities of X and Y.
(d) Find E(Y |X = x).
(e) Find E(X|Y = y).

Problem 11.4.19
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
c(x+ y) 0 < x < 2, x < y < x+ 1

0 otherwise.

(a) Determine the value of c.
(b) Find the marginal density of X and and the conditional density of Y
given X.
(c) Find E(Y |X = x).

Problem 11.4.20 ‡
A fair die is rolled repeatedly. Let X be the number of rolls needed to obtain
a 5 and Y the number of rolls needed to obtain a 6. Calculate E(X|Y = 2).

Problem 11.4.21 ‡
A driver and a passenger are in a car accident. Each of them independently
has probability 0.3 of being hospitalized. When a hospitalization occurs, the
loss is uniformly distributed on [0, 1]. When two hospitalizations occur, the
losses are independent.
Calculate the expected number of people in the car who are hospitalized,
given that the total loss due to hospitalizations from the accident is less than
1.

Problem 11.4.22 ‡
The number of burglaries occurring on Burlington Street during a one-year
period is Poisson distributed with mean 1. Calculate the expected number
of burglaries on Burlington Street in a one-year period, given that there are
at least two burglaries.
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Problem 11.4.23 ‡
The lifetime of a machine part is exponentially distributed with a mean of
five years. Calculate the mean lifetime of the part, given that it survives less
than ten years.

Problem 11.4.24 ‡
An individual experiences a loss due to property damage and a loss due
to bodily injury. Losses are independent and uniformly distributed on the
interval [0,3]. Calculate the expected loss due to bodily injury, given that at
least one of the losses is less than 1.

Problem 11.4.25 ‡
Annual windstorm losses, X and Y, in two different regions are indepen-
dent, and each is uniformly distributed on the interval [0,10]. Calculate the
covariance of X and Y , given that X + Y < 10.
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11.5 Double Expectation

Similar to the unconditional case, we want to define the conditional expec-
tation of a function of a random variable. For this, let g(x) be any function,
the conditional expected value of g given Y = y is, in the continuous case,

E(g(X)|Y = y) =

∫ ∞
−∞

g(x)fX|Y (x|y)dx

if the integral exists. For the discrete case, we have a sum instead of an
integral. That is, the conditional expectation of g given Y = y is

E(g(X)|Y = y) =
∑
x

g(x)pX|Y (x|y).

The proofs of these results are identical to the unconditional case. See The-
orem 6.4.1 and Theorem 9.2.2.

Example 11.5.1
Let X be a random variable that is uniformly distributed in (0, 1) and [Y |X =
x] be uniformly distributed in (0, x). Find E(Y 2|X = x).

Solution.
We have,

E(Y 2|X = x) =

∫ x

−∞
y2fY |X(y|x)dy =

∫ x

0

y2fY |X(y|x)dy

=

∫ x

0

y2

x
dy =

x2

3

for 0 < x < 1 and 0 otherwise

Next, let φX(y) = E(X|Y = y) denote the function of the random vari-
able Y whose value at Y = y is E(X|Y = y). Clearly, φX(y) is a random
variable. We denote this random variable by E(X|Y ). The expectation of
this random variable is just the expectation of X as shown in the following
theorem.

Theorem 11.5.1 (Double Expectation Property)

E(X) = E(E(X|Y )).
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Proof.
We give a proof in the case X and Y are continuous random variables.

E(E(X|Y )) =

∫ ∞
−∞

E(X|Y = y)fY (y)dy =

∫ ∞
−∞

(∫ ∞
−∞

xfX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

xfX|Y (x|y)fY (y)dxdy =

∫ ∞
−∞

x

(∫ ∞
−∞

fXY (x, y)dy

)
dx

=

∫ ∞
−∞

xfX(x)dx = E(X)

In the case that X is a random variable (discrete or continuous) and Y is
discrete random variables, we have the version

E(X) = E(X|Y = y1)pY (y1) + E(X|Y = y2)pY (y2) + · · · .

Example 11.5.2
Suppose that X and Y have joint distribution

fXY (x, y) =

{
3y2

x3
0 < y < x < 1

0 otherwise.

Find E(Y ) in two different ways.

Solution.
The marginal density of X is

fX(x) =

∫ x

0

3y2

x3
dy = 1, 0 < x < 1

and 0 otherwise. Likewise, the marginal density of Y is

fY (y) =

∫ 1

y

3y2

x3
dx =

3

2
(1− y2), 0 < y < 1

and 0 otherwise. Hence,

E(Y ) =

∫ 1

0

yfY (y)dy =
3

2

∫ 1

0

y(1− y2)dy =
3

8
.

Next, we find conditional density of Y given X = x

fY |X(x|y) =
fXY (x, y)

fX(x)
=

3y2

x3
, 0 < x < y < 1
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and 0 otherwise. Hence,

E(Y |X = x) =

∫ x

0

3y3

x3
dx =

3

4
x.

Thus,

E(Y ) = E(E(Y |X)) =

∫ 1

0

E(Y |X = x)fX(x)dx =

∫ 1

0

3

4
xdx =

3

8

Computing Probabilities by Conditioning
Suppose we want to know the probability of some event, A. Suppose also
that knowing Y gives us some useful information about whether or not A
occurred.
Define an indicator random variable

X =

{
1 if A occurs
0 if A does not occur.

Then

P(A) = E(X)

and for any random variable Y

E(X|Y = y) = P(A|Y = y).

Thus, by the double expectation property we have

P(A) =E(X) =
∑
y

E(X|Y = y)P(Y = y)

=
∑
y

P(A|Y = y)pY (y)

in the discrete case and

P(A) =

∫ ∞
−∞

P(A|Y = y)fY (y)dy

in the continuous case.
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Example 11.5.3
Let X be a random variable with density function

fX(x) =

{
xe−x x ≥ 0

0 otherwise.

Let Y |X be a random variable that is uniformly distributed in (0, x), x ≥ 0.
Compute the probability of the event E = {Y ≤ 2} by conditioning on the
value of X.

Solution.
We have

P (E) =

∫ ∞
0

P (E|X = x)fX(x)dx.

Since

fY |X(y|x) =

{
1
x

0 < y < x
0 otherwise

we can write

P (E|X = x) =

∫ 2

0

fY |X(y|x)dy =

{
1 0 < x < 2
2
x

x ≥ 2.

Thus,

P (E) =

∫ ∞
0

P (E|X = x)fX(x)dx =

∫ 2

0

xe−xdx+

∫ ∞
2

2

x
xe−xdx

=1− e−2

Example 11.5.4
Let X and Y be two independent continuous random variables. Show that

P (X + Y < a) =

∫ ∞
−∞

FY (a− x)fX(x)dx.
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Solution.
We have

P(X + Y < a) =

∫ ∞
−∞

P(X + Y < a|X = x)fX(x)dx

=

∫ ∞
−∞

P(Y < a−X|X = x)fX(x)dx

=

∫ ∞
−∞

P(Y < a− x)fX(x)dx ( by independence)

=

∫ ∞
−∞

FY (a− x)fX(x)dx
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Practice Problems

Problem 11.5.1
Let a(X) and b(X) be random variables that are functions of X. Let Y be
any random variable. Show that

E(a(X) + b(X)Y |X = x) = a(x) + b(x)E(Y |X = x).

Problem 11.5.2
Let X and Y be two random variables and g : R2 → R be an arbitrary
function. Show that

E[E(g(X, Y )|X)] = E[g(X, Y )].

Problem 11.5.3
A miner is trapped in a mine containing 3 doors. The first door leads to a
tunnel that will take him to safety after 3 hours of travel. The second door
leads to a tunnel that will return him to the mine after 5 hours of travel. The
third door leads to a tunnel that will return him to the mine after 7 hours
of travel. If we assume that the miner is at all times equally likely to choose
any one of the doors, find the expected time for him to get to safety.

Problem 11.5.4
Let Y be a uniform random variable on (0, 1) and suppose that (X|Y = y)
is binomial with parameters (n, y). Find P (X = 0).

Problem 11.5.5
Suppose that X and Y have joint distribution

fXY (x, y) =

{
21
4
x2y x2 < y < 1
0 otherwise.

Find E(Y ) in two ways.

Problem 11.5.6
Suppose that E(X|Y ) = 18 − 3

5
Y and E(Y |X) = 10 − 1

3
X. Find E(X) and

E(Y ).

Problem 11.5.7
Let X be an exponential random variable with λ = 5 and Y |X a uniformly
distributed random variable on (−3, X). Find E(Y ).
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Problem 11.5.8
In a mall, a survey found that the number of people who pass by JC Penney
between 4:00 and 5:00 pm is a Poisson random variable with parameter λ =
100. Assume that each person may enter the store, independently of the other
person, with a given probability p = 0.15. What is the expected number of
people who enter the store during the given period?

Problem 11.5.9
A diagnostic test for the presence of a disease has two possible outcomes: 1
for disease present and 0 for disease not present. Let X denote the disease
state of a patient, and let Y denote the outcome of the diagnostic test. The
joint probability function of X and Y is given by:

P(X = 0, Y = 0) =0.800

P(X = 1, Y = 0) =0.050

P(X = 0, Y = 1) =0.025

P(X = 1, Y = 1) =0.125.

Calculate E(Y |X = 1) and E(Y 2|X = 1).

Problem 11.5.10
The stock prices of two companies at the end of any given year are modeled
with random variables X and Y that follow a distribution with joint density
function

fXY (x, y) =

{
2x 0 < x < 1, x < y < x+ 1
0 otherwise.

Find E(Y |X = x) and E(Y 2|X = x).

Problem 11.5.11
An actuary determines that the annual numbers of tornadoes in counties P
and Q are jointly distributed as follows:

X\Y 0 1 2 PX(x)
0 0.12 0.13 0.05 0.30
1 0.06 0.15 0.15 0.36
2 0.05 0.12 0.10 0.27
3 0.02 0.03 0.02 0.07
pY (y) 0.25 0.43 0.32 1
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where X is the number of tornadoes in county Q and Y that of county P.
Calculate E(X|Y = 0) and E(X2|Y = 0).

Problem 11.5.12
Let X and Y be two continuous random variables with joint density function

fXY (x, y) =

{
2 0 < x < y < 1
0 otherwise.

For 0 < x < 1, find E(Y |X = x) and E(Y 2|X = x).

Problem 11.5.13
Suppose that the number of stops X in a day for a UPS delivery truck driver
is Poisson with mean λ and that the expected distance driven by the driver
Y, given that there are X = x stops, has a normal distribution with a mean
of αx miles. Find the mean of the number of miles driven per day.

Problem 11.5.14
New dental and medical plan options will be offered to state employees next
year. An actuary uses the following density function to model the joint
distribution of the proportion X of state employees who will choose Dental
Option 1 and the proportion Y who will choose Medical Option 1 under the
new plan options:

f(x, y) =


0.50 for 0 < x, y < 0.5
1.25 for 0 < x < 0.5, 0.5 < y < 1
1.50 for 0.5 < x < 1, 0 < y < 0.5
0.75 for 0.5 < x < 1, 0.5 < y < 1.

Calculate E(Y 2|X = 0.75).

Problem 11.5.15
There are some bulbs in a box. 30% of them are style A bulbs, which can
last 10 hours with standard deviation 1 hour; the other are style B bulbs,
which can last 15 hours with standard deviation 2 hour. If you choose one
bulb randomly, what is the expectation of its lifetime?

Problem 11.5.16
Let X1, X2, · · · , be independent random variables with the same mean. Let
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N be a non-negative integer valued random variable that is independent of
the X ′is. Show that

E[
N∑
i=1

Xi] = E(N)E(X1).

Problem 11.5.17
Suppose that the number of people entering a department store on a given
day is a random variable with mean 50. Suppose further that the amounts of
money spent by these customers are independent random variables having a
common mean of 8 dollars. Finally, suppose also that the amount of money
spent by a customer is also independent of the total number of customers
who enter the store. What is the expected amount of money spent in the
store on a given day?

Problem 11.5.18
Suppose that the number of timesN we roll a die is a Poisson random variable
with λ = 10. Let Xi denote the the value of the ith roll. Find the expected
number from the N rolls.

Problem 11.5.19
Let X and Y be independent exponentially distributed random variables
with parameters µ and λ respectively. Using conditioning, find P(Y < X).

Problem 11.5.20
Let X and Y be independent exponential random variables with parameter
λ. Show that X + Y is a Gamma random variable with parameters (2, λ).

Problem 11.5.21 ‡
In a large population of patients, 20% have early stage cancer, 10% have
advanced stage cancer, and the other 70% do not have cancer. Six patients
from this population are randomly selected.
Calculate the expected number of selected patients with advanced stage can-
cer, given that at least one of the selected patients has early stage cancer.

Problem 11.5.22 ‡
A motorist just had an accident. The accident is minor with probability 0.75
and is otherwise major. Let b be a positive constant. If the accident is minor,
then the loss amount follows a uniform distribution on the interval [0, b]. If
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the accident is major, then the loss amount follows a uniform distribution
on the interval [b, 3b]. The median loss amount due to this accident is 672.
Calculate the mean loss amount due to this accident.

Problem 11.5.23 ‡
For a certain insurance company, 10% of its policies are Type A, 50% are
Type B, and 40% are Type C. The annual number of claims for an individ-
ual Type A, Type B, and Type C policy follow Poisson distributions with
respective means 1, 2, and 10. Let X represent the annual number of claims
of a randomly selected policy. Calculate the variance of X.

Problem 11.5.24 ‡
An actuary is studying hurricane models. A year is classified as a high,
medium, or low hurricane year with probabilities 0.1, 0.3, and 0.6, respec-
tively. The numbers of hurricanes in high, medium, and low years follow
Poisson distributions with means 20, 15, and 10, respectively. Calculate the
variance of the number of hurricanes in a randomly selected year.

Problem 11.5.25 ‡
An auto insurance company insures an automobile worth 15,000 for one year
under a policy with a 1,000 deductible. During the policy year there is a
0.04 chance of partial damage to the car and a 0.02 chance of a total loss of
the car. If there is partial damage to the car, the amount X of damage (in
thousands) follows a distribution with density function

fX(x) =

{
0.5003e−

x
2 0 < x < 15

0 otherwise.

What is the expected claim payment?
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11.6 Conditional Variance

In this section, we introduce the concept of conditional variance. Just as
we have defined the conditional expectation of X given that Y = y, we can
define the conditional variance of X given Y as follows

Var(X|Y = y) = E[(X − E(X|Y ))2|Y = y].

Note that the conditional variance is a random variable since it is a function
of Y.

Example 11.6.1
Let X and Y be two random variables with joint density function given by

X\Y 0 1 2 pX(x)
0 1/8 2/8 1/8 4/8
1 2/8 1/8 1/8 4/8
pY (y) 3/8 3/8 2/8 1

What is the conditional variance of Y given X = 0?

Solution.
We first find E(Y |X = 0) :

E(Y |X = 0) =
2∑
y=0

ypY |0(y|0) =
2∑
y=0

y
pXY (0, y)

pX(0)

=(0)
1
8
4
8

+ (1)
2
8
4
8

+ (2)
1
8
4
8

= 1.

Thus,

Var(Y |Y = 0) =E[(Y − E(Y |X = 0))2|X = 0] = E[(Y − 1)2|X = 0]

=
2∑
y=0

(y − 1)2pY |0(y|0) =
2∑
y=0

(y − 1)2pXY (0, y)

pX(0)

=(0− 1)2

(
1

4

)
+ (1− 1)2

(
2

4

)
+ (2− 1)2

(
1

4

)
= 0.5

Next, we introduce some of the major properties of the conditional variance.



11.6. CONDITIONAL VARIANCE 519

Theorem 11.6.1
Let X and Y be random variables. Then
(a) Var(X|Y ) = E(X2|Y )− [E(X|Y )]2.
(b) E(Var(X|Y )) = E[E(X2|Y )− (E(X|Y ))2] = E(X2)− E[(E(X|Y ))2].
(c) Var(E(X|Y )) = E[(E(X|Y ))2]− (E(X))2.
(d) Law of Total Variance: Var(X) = E[Var(X|Y )] + Var(E(X|Y )).

Proof.
(a) We have

Var(X|Y ) =E[(X − E(X|Y ))2|Y ]

=E[(X2 − 2XE(X|Y ) + (E(X|Y ))2|Y ]

=E(X2|Y )− 2E(X|Y )E(X|Y ) + (E(X|Y ))2

=E(X2|Y )− [E(X|Y )]2.

(b) Taking E of both sides of the result in (a) we find

E(Var(X|Y )) = E[E(X2|Y )− (E(X|Y ))2] = E(X2)− E[(E(X|Y ))2].

(c) Since E(E(X|Y )) = E(X) we have

Var(E(X|Y )) = E[(E(X|Y ))2]− (E(X))2.

(d) The result follows by adding the two equations in (b) and (c)

Example 11.6.2
Suppose that X and Y have joint distribution

fXY (x, y) =

{
3y2

x3
0 < y < x < 1

0 otherwise.

Find E(X), E(X2), V ar(X), E(Y |X), V ar(Y |X), E[V ar(Y |X)], V ar[E(Y |X)],
and V ar(Y ).

Solution.
First we find marginal density functions.

fX(x) =

∫ x

0

3y2

x3
dy = 1, 0 < x < 1
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fY (y) =

∫ 1

y

3y2

x3
dx =

3

2
(1− y2), 0 < y < 1

Now,

E(X) =

∫ 1

0

xdx =
1

2

E(X2) =

∫ 1

0

x2dx =
1

3

Thus,

V ar(X) =
1

3
− 1

4
=

1

12
.

Next, we find conditional density of Y given X = x

fY |X(x|y) =
fXY (x, y)

fX(x)
=

3y2

x3
, 0 < x < y < 1

Hence,

E(Y |X = x) =

∫ x

0

3y3

x3
dy =

3

4
x

and

E(Y 2|X = x) =

∫ x

0

3y4

x3
dy =

3

5
x2

Thus,

V ar(Y |X = x) = E(Y 2|X = x)− [E(Y |X = x)]2 =
3

5
x2 − 9

16
x2 =

3

80
x2

Also,

V ar[E(Y |X)] = V ar

(
3

4
x

)
=

9

16
V ar(X) =

9

16
× 1

12
=

3

64

and

E[V ar(Y |X)] = E

(
3

80
X2

)
=

3

80
E(X2) =

3

80
× 1

3
=

1

80
.

Finally,

V ar(Y ) = V ar[E(Y |X)] + E[V ar(Y |X)] =
19

320

Two random variables X and Y are said to have bivariate normal distri-
bution if
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(a) X and Y are normal random variables;
(b) X|Y = y is a normal random variable with mean µX + ρσX

σY
(y− µY ) and

variance Var(X|Y ) = σ2
X(1− ρ2);

(c) Y |X = x is a normal random variable with mean µY + ρ σY
σX

(x− µX) and

variance Var(Y |X) = σ2
Y (1− ρ2).

Example 11.6.3
Let X and Y be two bivariate normal random variables with E(X) =
0, E(Y ) = −1, E(XY ) = 1, E(Y |X = 2) = 1, and E(X|Y = 0) = 1

16
.

Calculate Var(Y |X = −2).

Solution.
Since X and Y have the bivariate normal distribution, we have

Var(Y |X = −2) = (1− ρ2)Var(Y ).

Now,

ρ =
Cov(X, Y )

σX · σY
=
E(XY )− E(X)E(Y )

σX · σY
=

1

σX · σY
E(Y |X = 2) =µY + ρ

σY
σX

(x− µX) = −1 +
1

σX · σY
σY
σX

(2)

=− 1 +
2

σ2
X

= 1

σX =1

E(X|Y = 0) =µX + ρ
σX
σY

(y − µY ) = 0 +
1

σX · σY
σX
σY

(0− (−1)) =
1

σ2
Y

=
1

16

σY =4

ρ =
1

1(4)
=

1

4
.

Hence,

Var(Y |X = −2) = (1− ρ2)Var(Y ) =

(
1− 1

16

)
(16) = 15
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Practice Problems

Problem 11.6.1 ‡
A diagnostic test for the presence of a disease has two possible outcomes: 1
for disease present and 0 for disease not present. Let X denote the disease
state of a patient, and let Y denote the outcome of the diagnostic test. The
joint probability function of X and Y is given by:

P(X = 0, Y = 0) =0.800

P(X = 1, Y = 0) =0.050

P(X = 0, Y = 1) =0.025

P(X = 1, Y = 1) =0.125.

Calculate Var(Y |X = 1).

Problem 11.6.2 ‡
The stock prices of two companies at the end of any given year are modeled
with random variables X and Y that follow a distribution with joint density
function

fXY (x, y) =

{
2x 0 < x < 1, x < y < x+ 1
0 otherwise.

What is the conditional variance of Y given that X = x?

Problem 11.6.3 ‡
An actuary determines that the annual numbers of tornadoes in counties P
and Q are jointly distributed as follows:

X\Y 0 1 2 PX(x)
0 0.12 0.13 0.05 0.30
1 0.06 0.15 0.15 0.36
2 0.05 0.12 0.10 0.27
3 0.02 0.03 0.02 0.07
pY (y) 0.25 0.43 0.32 1

where X is the number of tornadoes in county Q and Y that of county P.
Calculate the conditional variance of the annual number of tornadoes in
county Q, given that there are no tornadoes in county P.
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Problem 11.6.4
Let X be a random variable with mean 3 and variance 2, and let Y be
a random variable such that for every x, the conditional distribution of Y
given X = x has a mean of x and a variance of x2. What is the variance of
the marginal distribution of Y ?

Problem 11.6.5
Let X and Y be two continuous random variables with joint density function

fXY (x, y) =

{
2 0 < x < y < 1
0 otherwise.

For 0 < x < 1, find Var(Y |X = x).

Problem 11.6.6
Suppose that the number of stops X in a day for a UPS delivery truck driver
is Poisson with mean λ and that the distance driven by the driver Y, given
that there are X = x stops, has a normal distribution with a mean of αx
miles, and a standard deviation of βx miles. Find the mean and variance of
the number of miles driven per day.

Problem 11.6.7 ‡
The number of workplace injuries, N, occurring in a factory on any given day
is Poisson distributed with mean λ. The parameter λ is a random variable
that is determined by the level of activity in the factory, and is uniformly
distributed on the interval [0, 3].
Calculate Var(N).

Problem 11.6.8 ‡
New dental and medical plan options will be offered to state employees next
year. An actuary uses the following density function to model the joint
distribution of the proportion X of state employees who will choose Dental
Option 1 and the proportion Y who will choose Medical Option 1 under the
new plan options:

f(x, y) =


0.50 for 0 < x, y < 0.5
1.25 for 0 < x < 0.5, 0.5 < y < 1
1.50 for 0.5 < x < 1, 0 < y < 0.5
0.75 for 0.5 < x < 1, 0.5 < y < 1.

Calculate Var(Y |X = 0.75).
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Problem 11.6.9 ‡
A motorist makes three driving errors, each independently resulting in an
accident with probability 0.25.
Each accident results in a loss that is exponentially distributed with mean
0.80. Losses are mutually independent and independent of the number of
accidents. The motorist’s insurer reimburses 70% of each loss due to an
accident.
Calculate the variance of the total unreimbursed loss the motorist experiences
due to accidents resulting from these driving errors.

Problem 11.6.10 ‡
The number of hurricanes that will hit a certain house in the next ten years
is Poisson distributed with mean 4.
Each hurricane results in a loss that is exponentially distributed with mean
1000. Losses are mutually independent and independent of the number of
hurricanes.
Calculate the variance of the total loss due to hurricanes hitting this house
in the next ten years.

Problem 11.6.11 ‡
The intensity of a hurricane is a random variable that is uniformly distributed
on the interval [0, 3]. The damage from a hurricane with a given intensity y
is exponentially distributed with a mean equal to y.
Calculate the variance of the damage from a random hurricane.

Problem 11.6.12 ‡
On Main Street, a driver’s speed just before an accident is uniformly dis-
tributed on [5, 20]. Given the speed, the resulting loss from the accident is
exponentially distributed with mean equal to three times the speed.
Calculate the variance of a loss due to an accident on Main Street.

Problem 11.6.13
Let X and Y be random variables with joint probability function given below.

Y \X 0 1 2 3 4 pY (y)
0 0.02 0.02 0.00 0.10 0.00 0.14
1 0.02 0.04 0.10 0.00 0.00 0.16
2 0.02 0.06 0.00 0.10 0.00 0.18
3 0.02 0.08 0.10 0.00 0.05 0.25
4 0.02 0.10 0.00 0.10 0.05 0.27
pX(x) 0.10 0.30 0.20 0.30 0.10 1
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Calculate Var(Y |X = 2).

Problem 11.6.14
Let X and Y be random variables with joint density function

fXY (x, y) =

{
4
5
(xy + x+ y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

Calculate Var(Y |X = x).

Problem 11.6.15
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
2
π

x2 + y2 ≤ 1, y ≥ 0
0 otherwise.

Calculate Var(Y |X = x).

Problem 11.6.16
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
e−y 0 ≤ x ≤ y
0 otherwise.

Calculate Var(Y |X = x).

Problem 11.6.17 ‡
The joint probability density for X and Y is

fXY (x, y) =

{
2e−(x+2y), x > 0, y > 0

0, otherwise.

Calculate the variance of Y given that X > 3 and Y > 3.

Problem 11.6.18 ‡
A fire in an apartment building results in a loss, X, to the owner and a
loss, Y, to the tenants. The variables X and Y have a bivariate normal
distribution with E(X) = 40, Var(X) = 76, E(Y ) = 30, Var(Y ) = 32, and
Var(X|Y = 28.5) = 57. Calculate Var(Y |X = 25).
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Problem 11.6.19 ‡
A machine has two components and fails when both components fail. The
number of years from now until the first component fails, X, and the number
of years from now until the machine fails, Y, are random variables with joint
density function

fXY (x, y) =

{
1
18
e−

(x+y)
6 for 0 < x < y

0 otherwise.

Calculate Var(Y |X = 2).

Problem 11.6.20 ‡
The annual profits that company A and company B earn follow a bivariate
normal distribution. Company A′s annual profit has mean 2000 and standard
deviation 1000. Company B′s annual profit has mean 3000 and standard
deviation 500. The correlation coefficient between these annual profits is
0.80.
Calculate the probability that company B′s annual profit is less than 3900,
given that company A′s annual profit is 2300.

Problem 11.6.21 ‡
The returns on two investments, X and Y, follow the joint probability density
function

fXY (x, y) =

{
k, 0 < |x|+ |y| < 1
0, otherwise.

Calculate the maximum value of Var(Y |X = x), − 1 < x < 1.

Problem 11.6.22 ‡
Let X be the annual number of hurricanes hitting Florida, and let Y be
the annual number of hurricanes hitting Texas. X and Y are independent
Poisson variables with respective means 1.70 and 2.30.
Calculate Var(X − Y |X + Y = 3).

Problem 11.6.23 ‡
The number of tornadoes in a given year follows a Poisson distribution with
mean 3. Calculate the variance of the number of tornadoes in a year given
that at least one tornado occurs.



Chapter 12

Moment Generating Functions
and the Central Limit Theorem

For a positive integer n and a random variable X, we call E(Xn) moments.
As you have already experienced in some cases, the mean E(X) and the vari-
ance Var(X) = E(X2)−(E(X))2, which are functions of moments, are some-
times difficult to find. Special functions, called moment-generating functions,
can sometimes make finding the mean and variance of a random variable sim-
pler. In this Chapter, we’ll learn what a moment-generating function is, and
then we’ll learn how to use these functions in finding moments and functions
of moments such as the mean and the variance. Also, we will use moment
generating functions to identify the distribution of a random variable. We
conclude this section with an important probability result known as the Cen-
tral Limit Theorem (CLT).

527
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12.1 Moment Generating Functions

The moment generating function of a random variable X, denoted by
MX(t), is defined as

MX(t) = E[etX ]

provided that the expectation exists for t in some neighborhood of 0.
For a discrete random variable with a pmf p(x) we have

MX(t) =
∑
x

etxp(x)

and for a continuous random variable with pdf f,

MX(t) =

∫ ∞
−∞

etxf(x)dx.

Example 12.1.1
Let X be a discrete random variable with pmf given by the following table

x 1 2 3 4 5
pX(x) 0.15 0.20 0.40 0.15 0.10

Find MX(t).

Solution.
We have

MX(t) = 0.15et + 0.20e2t + 0.40e3t + 0.15e4t + 0.10e5t

Example 12.1.2
Let X be the uniform random variable on the interval [a, b]. Find MX(t).

Solution.
We have

MX(t) =

∫ b

a

etx

b− a
dx =

1

t(b− a)
[etb − eta]

As the name suggests, the moment generating function can be used to gen-
erate moments E(Xn) for n = 1, 2, · · · . Our first result shows how to use the
moment generating function to calculate moments.
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Proposition 12.1.1

E(Xn) = Mn
X(0)

where

Mn
X(0) =

dn

dtn
MX(t)

∣∣∣∣
t=0

.

Proof.
We prove the result for a continuous random variable X with pdf f. The
discrete case is shown similarly. In what follows we always assume that we can
differentiate under the integral sign. This interchangeability of differentiation
and expectation is not very limiting, since all of the distributions we will
consider enjoy this property. We have

d

dt
MX(t) =

d

dt

∫ ∞
−∞

etxf(x)dx =

∫ ∞
−∞

(
d

dt
etx
)
f(x)dx

=

∫ ∞
−∞

xetxf(x)dx = E[XetX ]

Hence,
d

dt
MX(t) |t=0 = E[XetX ] |t=0 = E(X).

By induction on n we find

dn

dtn
MX(t) |t=0 = E[XnetX ] |t=0 = E(Xn)

We next compute MX(t) for some common distributions.

Example 12.1.3
Let X be a binomial random variable with parameters n and p. Find the
expected value and the variance of X using moment generating functions.

Solution.
We can write

MX(t) =E(etX) =
n∑
k=0

etknCkp
k(1− p)n−k

=
n∑
k=0

nCk(pe
t)k(1− p)n−k = (pet + 1− p)n.
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Differentiating yields

d

dt
MX(t) = npet(pet + 1− p)n−1.

Thus,

E(X) =
d

dt
MX(t) |t=0 = np.

To find E(X2), we differentiate a second time to obtain

d2

dt2
MX(t) = n(n− 1)p2e2t(pet + 1− p)n−2 + npet(pet + 1− p)n−1.

Evaluating at t = 0, we find

E(X2) = M ′′
X(0) = n(n− 1)p2 + np.

The variance of X is

V ar(X) = E(X2)− (E(X))2 = n(n− 1)p2 + np− n2p2 = np(1− p)

Example 12.1.4
Let X be a Poisson random variable with parameter λ. Find the expected
value and the variance of X using moment generating functions.

Solution.
We can write

MX(t) =E(etX) =
∞∑
n=0

etne−λλn

n!
= e−λ

∞∑
n=0

etnλn

n!

=e−λ
∞∑
n=0

(λet)n

n!
= e−λeλe

t

= eλ(et−1).

Differentiating for the first time, we find

M ′
X(t) = λeteλ(et−1).

Thus,

E(X) = M ′
X(0) = λ.
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Differentiating a second time, we find

M ′′
X(t) = (λet)2eλ(et−1) + λeteλ(et−1).

Hence,
E(X2) = M ′′

X(0) = λ2 + λ.

The variance is then

V ar(X) = E(X2)− (E(X))2 = λ

Example 12.1.5
Let X be an exponential random variable with parameter λ. Find the ex-
pected value and the variance of X using moment generating functions.

Solution.
We can write

MX(t) = E(etX) =
∫∞

0
etxλe−λxdx = λ

∫∞
0
e−(λ−t)xdx = λ

λ−t

where t < λ. Differentiation twice yields

M ′
X(t) = λ

(λ−t)2 and M ′′
X(t) = 2λ

(λ−t)3 .

Hence,

E(X) = M ′
X(0) = 1

λ
and E(X2) = M ′′

X(0) = 2
λ2
.

The variance of X is given by

V ar(X) = E(X2)− (E(X))2 =
1

λ2
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Practice Problems

Problem 12.1.1
Let X be a discrete random variable with range {1, 2, · · · , n} so that its pmf
is given by pX(j) = 1

n
for 1 ≤ j ≤ n. Find E(X) and V ar(X) using moment

generating functions.

Problem 12.1.2
Let X be a geometric distribution function with pX(n) = p(1 − p)n−1. Find
the expected value and the variance of X using moment generating functions.

Problem 12.1.3
The following problem exhibits a random variable with no moment generating
function. Let X be a random variable with pmf given by

pX(n) =
6

π2n2
, n = 1, 2, · · ·

Show that MX(t) does not exist in any neighborhood of 0.

Problem 12.1.4
Let X be a gamma random variable with parameters α and λ. Find the
expected value and the variance of X using moment generating functions.

Problem 12.1.5
Let X be a random variable with pdf given by

f(x) =
1

π(1 + x2)
, −∞ < x <∞.

Find MX(t).

Problem 12.1.6 ‡
Let X1, X2, X3 be three independent discrete random variables with common
probability mass function

p(x) =


1
3

x = 0
2
3

x = 1
0 otherwise

Determine the moment generating function M(t), of Y = X1X2X3.
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Problem 12.1.7
Suppose a random variable X has moment generating function

MX(t) =

(
2 + et

3

)9

.

Find the variance of X.

Problem 12.1.8
Let X be a random variable with density function

f(x) =

{
(k + 1)x2 0 < x < 1

0 otherwise

Find the moment generating function of X

Problem 12.1.9
If the moment generating function for the random variable X is MX(t) = 1

t+1
,

find E[(X − 2)3].

Problem 12.1.10
Find the moment generating function of the standard normal distribution.

Problem 12.1.11
If X has a standard normal distribution and Y = eX , what is the kth moment
of Y ?

Problem 12.1.12
The random variable X has an exponential distribution with parameter b. It
is found that MX(−b2) = 0.2. Find b.

Problem 12.1.13 ‡
The value of a piece of factory equipment after three years of use is 100(0.5)X

where X is a random variable having moment generating function

MX(t) = 1
1−2t

for t < 1
2
.

Calculate the expected value of this piece of equipment after three years of
use.
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Problem 12.1.14
Let X be a random variable with density function

f(x) =
λ

2
e−λ|x|

for a fixed λ > 0. Find MX(t). What is the domain of MX(t)?

Problem 12.1.15
Let X be a random variable with cumulative distribution

F (x) = 1 + 3e−4x − 4e−3x

for x ≥ 0 and 0 otherwise. Find MX(t).

Problem 12.1.16
Let X be a random variable, and let a and b be finite constants. Show that

MaX+b(t) = ebtMX(at).

Problem 12.1.17
Let X be a normal random variable with parameters µ and σ2. Find the
expected value and the variance of X using moment generating functions.

Problem 12.1.18 ‡
An actuary determines that the claim size for a certain class of accidents is
a random variable, X, with moment generating function

MX(t) =
1

(1− 2500t)4

Determine the standard deviation of the claim size for this class of accidents.

Problem 12.1.19 ‡
Let X represent the number of policies sold by an agent in a day. The
moment generating function of X is

MX(t) = 0.45et + 0.35e2t + 0.15e3t + 0.05e4t, −∞ < t <∞.

Calculate the standard deviation of X.

Problem 12.1.20 ‡
A homeowners insurance policy covers losses due to theft, with a deductible
of 3. Theft losses are uniformly distributed on [0, 10]. Determine the moment
generating function, M(t), for t 6= 0, of the claim payment on a theft.
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12.2 Moment Generating Functions of Sums

of Independent RVs

Another use of moment generating functions is to identify which probability
mass(density) function a random variable X follows. The moment generat-
ing function uniquely determines the distribution as shown in the following
result.

Theorem 12.2.1
If random variables X and Y both have moment generating functions MX(t)
and MY (t) that exist in some neighborhood of zero and if MX(t) = MY (t)
for all t in this neighborhood, then X and Y have the same distributions.

The general proof of this is an inversion problem involving Laplace transform
theory and is omitted.

Example 12.2.1
Identify the random variable whose moment generating function is given by

MX(t) =

(
3

4
et +

1

4

)15

.

Solution.
Using Example 12.1.3, X is the binomial random variable with p = 3

4
and

n = 15

Moment generating functions are also useful in establishing the distribution
of sums of independent random variables. Before we look at some examples,
we first establish a relationship between the moment generating function of a
sum of independent random variables and the moment generating functions
of its component variables. Let X1, X2, · · · , XN be independent random vari-
ables. Then, the moment generating function of Y = X1 + · · ·+XN is

MY (t) =E(et(X1+X2+···+Xn)) = E(eX1t · · · eXN t)

=
N∏
k=1

E(eXkt) =
N∏
k=1

MXk(t)

where we used Proposition 11.1.5.
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Example 12.2.2
If X and Y are independent binomial random variables with parameters
(n, p) and (m, p), respectively, what is the pmf of X + Y ?

Solution.
We have

MX+Y (t) =MX(t)MY (t)

=(pet + 1− p)n(pet + 1− p)m

=(pet + 1− p)n+m

where we used Example 12.1.3. Since (pet + 1− p)n+m is the moment gener-
ating function of a binomial random variable having parameters m + n and
p, X + Y is a binomial random variable with this same pmf

Example 12.2.3
If X and Y are independent Poisson random variables with parameters λ1

and λ2, respectively, what is the pmf of X + Y ?

Solution.
We have

MX+Y (t) =MX(t)MY (t)

=eλ1(et−1)eλ2(et−1)

=e(λ1+λ2)(et−1)

where we used Example 12.1.4. Since e(λ1+λ2)(et−1) is the moment generating
function of a Poisson random variable having parameter λ1 + λ2, X + Y is a
Poisson random variable with this same pmf

Example 12.2.4
IfX and Y are independent normal random variables with parameters (µ1, σ

2
1)

and (µ2, σ
2
2), respectively, what is the distribution of X + Y ?

Solution.
Using independence and Problem 12.1.17, we have

MX+Y (t) =MX(t)MY (t)

=e
σ21t

2

2
+µ1t · e

σ22t
2

2
+µ2t

=e
(σ21+σ

2
2)t

2

2
+(µ1+µ2)t
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which is the moment generating function of a normal random variable with
mean µ1 +µ2 and variance σ2

1 +σ2
2. Because the moment generating function

uniquely determines the distribution then X+Y is a normal random variable
with the same distribution

Example 12.2.5
Suppose that X is a random variable with moment generating function
MX(t) =

∑∞
j=0

e(tj−1)

j!
. Find P(X = 2).

Solution.
The moment generating function for a non-negative discrete integer-valued
random variable X with probability function p is defined to be MX(t) =∑∞

j=0 e
tjp(j). Since we are given that MX(t) =

∑∞
j=0

e(tj−1)

j!
and it is known

that the distribution of a random variable is uniquely determined by its mo-
ment generating function (i.e., there is precisely one probability distribution
with that specified m.g.f.), it follows that p(j) = e−1

j!
. Since p(j) = P(X = j),

it follows that P(X = 2) = 1
2e

Joint Moment Generating Functions
For any random variables X1, X2, · · · , Xn, the joint moment generating func-
tion is defined by

M(t1, t2, · · · , tn) = E(et1X1+t2X2+···+tnXn).

Example 12.2.6
Let X and Y be two independent normal random variables with parameters
(µ1, σ

2
1) and (µ2, σ

2
2) respectively. Find the joint moment generating function

of X + Y and X − Y.

Solution.
The joint moment generating function is

M(t1, t2) =E(et1(X+Y )+t2(X−Y )) = E(e(t1+t2)X+(t1−t2)Y )

=E(e(t1+t2)X)E(e(t1−t2)Y ) = MX(t1 + t2)MY (t1 − t2)

=e(t1+t2)µ1+ 1
2

(t1+t2)2σ2
1e(t1−t2)µ2+ 1

2
(t1−t2)2σ2

2

=e(t1+t2)µ1+(t1−t2)µ2+ 1
2

(t21+t22)σ2
1+ 1

2
(t21+t22)σ2

2+t1t2(σ2
1−σ2

2)
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Example 12.2.7
Let X and Y be two random variables with joint distribution function

fXY (x, y) =

{
e−x−y x > 0, y > 0

0 otherwise

Using the joint moment generating function, find E(XY ), E(X), E(Y ).

Solution.
We note first that fXY (x, y) = fX(x)fY (y) so that X and Y are independent.
Thus, the joint moment generating function of X and Y is given by

M(t1, t2) = E(et1X+t2Y ) = E(et1X)E(et2Y ) =
1

1− t1
1

1− t2
.

Thus,

E(XY ) =
∂2

∂t2∂t1
M(t1, t2)

∣∣∣∣
(0,0)

=
1

(1− t1)2(1− t2)2

∣∣∣∣
(0,0)

= 1

E(X) =
∂

∂t1
M(t1, t2)

∣∣∣∣
(0,0)

=
1

(1− t1)2(1− t2)

∣∣∣∣
(0,0)

= 1

E(Y ) =
∂

∂t2
M(t1, t2)

∣∣∣∣
(0,0)

=
1

(1− t1)(1− t2)2

∣∣∣∣
(0,0)

= 1
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Practice Problems

Problem 12.2.1
LetX be an exponential random variable with parameter λ. Find the moment
generating function of Y = 3X − 2.

Problem 12.2.2
Identify the random variable whose moment generating function is given by

MY (t) = e−2t

(
3

4
e3t +

1

4

)15

.

Problem 12.2.3
The moment generating function of X is MX(t) = e2et−2and that of Y is

MY (t) =
(

3
4
et + 1

4

)10
. Find E(XY ) if X and Y are independent.

Problem 12.2.4
Let X and Y be independent random variables with density functions

fX(x) =
1√

2πσ1

e
− (x−µ1)

2

2σ21

and

fY (y) =
1√

2πσ2

e
− (y−µ2)

2

2σ22

Using moment generating functions, find the probability density function of
aX + bY where a and b are constants.

Problem 12.2.5 ‡
Two instruments are used to measure the height, h, of a tower. The error
made by the less accurate instrument is normally distributed with mean 0 and
standard deviation 0.0056h. The error made by the more accurate instrument
is normally distributed with mean 0 and standard deviation 0.0044h. The
errors from the two instruments are independent of each other.
Calculate the probability that the average value of the two measurements is
within 0.005h of the height of the tower.

Problem 12.2.6
Using moment generating functions, show that the sum of n independently
exponential random variable each with parameter λ is a gamma random
variable with parameters n and λ.
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Problem 12.2.7 ‡
X and Y are independent random variables with common moment generating

function M(t) = e
t2

2 . Let W = X + Y and Z = X − Y. Determine the joint
moment generating function, M(t1, t2) of W and Z.

Problem 12.2.8 ‡
A company insures homes in three cities, J, K, and L . Since sufficient distance
separates the cities, it is reasonable to assume that the losses occurring in
these cities are independent.
The moment generating functions for the loss distributions of the cities are:

MJ(t) =(1− 2t)−3

MK(t) =(1− 2t)−2.5

ML(t) =(1− 2t)−4.5

Let X represent the combined losses from the three cities. Calculate E(X3).

Problem 12.2.9
Let X1, X2, · · · , Xn be independent geometric random variables each with
parameter p. Define Y = X1 +X2 + · · ·Xn.
(a) Find the moment generating function of Xi, 1 ≤ i ≤ n.
(b) Find the moment generating function of a negative binomial random
variable with parameters (n, p).
(c) Show that Y defined above is a negative binomial random variable with
parameters (n, p).

Problem 12.2.10
Let X1 and X2 be two random variables with joint density function

fX1X2(x1, x2) =

{
1 0 < x1 < 1, 0 < x2 < 1
0 otherwise

Find the joint moment generating function M(t1, t2) = E(et1X1+t2X2).

Problem 12.2.11
The moment generating function for the joint distribution of random vari-
ables X and Y is M(t1, t2) = 1

3(1−t2)
+ 2

3
et1 · 2

(2−t2)
, t2 < 1. Find Var(X).
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Problem 12.2.12
Let X and Y be two independent random variables with moment generating
functions

MX(t) = et
2+2t and MY (t) = e3t2+t

Determine the moment generating function of X + 2Y.

Problem 12.2.13
Let X1 and X2 be random variables with joint moment generating function

M(t1, t2) = 0.3 + 0.1et1 + 0.2et2 + 0.4et1+t2

What is E(2X1 −X2)?

Problem 12.2.14
Suppose X and Y are random variables whose joint distribution has moment
generating function

MXY (t1, t2) =

(
1

4
et1 +

3

8
et2 +

3

8

)10

for all t1, t2. Find the covariance between X and Y.

Problem 12.2.15
Independent random variables X, Y and Z are identically distributed. Let
W = X+Y. The moment generating function of W is MW (t) = (0.7+0.3et)6.
Find the moment generating function of V = X + Y + Z.

Problem 12.2.16 ‡
Let X and Y be identically distributed independent random variables such
that the moment generating function of X + Y is

M(t) = 0.09e−2t + 0.24e−t + 0.34 + 0.24et + 0.09e2t, −∞ < t <∞.

Calculate P(X ≤ 0).

Problem 12.2.17 ‡
An insurance company insures two types of cars, economy cars and luxury
cars. The damage claim resulting from an accident involving an economy car
has normal N(7, 1) distribution, the claim from a luxury car accident has
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normal N(20, 6) distribution.
Suppose the company receives three claims from economy car accidents and
one claim from a luxury car accident. Assuming that these four claims are
mutually independent, what is the probability that the total claim amount
from the three economy car accidents exceeds the claim amount from the
luxury car accident?

Problem 12.2.18
Let X1, X2, · · · , Xn be n independent identically distributed random vari-
ables and let X = X1+X2+···+Xn

n
. Find MX(t).

Problem 12.2.19
Let X1, X2, and X3 be three independent gamma random variables with
parameters α = 7 and λ = 5. Find the distribution of the random variable
Y = X1 +X2 +X3.

Problem 12.2.20
Let X1, X2, and X3 be three independent gamma random variables with
parameters α = 7 and λ = 5. Find the distribution of the random variable
X = X1+X2+X3

3
.

Problem 12.2.21 ‡
For Company A there is a 60% chance that no claim is made during the
coming year. If one or more claims are made, the total claim amount is
normally distributed with mean 10,000 and standard deviation 2,000.
For Company B there is a 70% chance that no claim is made during the
coming year. If one or more claims are made, the total claim amount is
normally distributed with mean 9,000 and standard deviation 2,000.
The total claim amounts of the two companies are independent. Calculate
the probability that, in the coming year, Company B′s total claim amount
will exceed Company A′s total claim amount.

Problem 12.2.22 ‡
A certain brand of refrigerator has a useful life that is normally distributed
with mean 10 years and standard deviation 3 years. The useful lives of these
refrigerators are independent. Calculate the probability that the total useful
life of two randomly selected refrigerators will exceed 1.9 times the useful life
of a third randomly selected refrigerator.
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Problem 12.2.23 ‡
Two independent estimates are to be made on a building damaged by fire.
Each estimate is normally distributed with mean 10b and variance b2 .
Calculate the probability that the first estimate is at least 20 percent higher
than the second.

Problem 12.2.24 ‡
The random variable X has moment generating function M(t). Determine
which of the following is the moment generating function of some random
variable.
i) M(t)M(5t)
ii) 2M(t)
iii) etM(t).

Problem 12.2.25 ‡
A delivery service owns two cars that consume 15 and 30 miles per gallon.
Fuel costs 3 per gallon. On any given business day, each car travels a number
of miles that is independent of the other and is normally distributed with
mean 25 miles and standard deviation 3 miles. Calculate the probability that
on any given business day, the total fuel cost to the delivery service will be
less than 7.

Problem 12.2.26 ‡
Every day, the 30 employees at an auto plant each have probability 0.03 of
having one accident and zero probability of having more than one accident.
Given there was an accident, the probability of it being major is 0.01. All
other accidents are minor. The numbers and severities of employee accidents
are mutually independent. Let X and Y represent the numbers of major
accidents and minor accidents, respectively, occurring in the plant today.
Determine the joint moment generating function MXY (s, t).
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12.3 The Central Limit Theorem

The central limit theorem is one of the most remarkable theorems among
the limit theorems. This theorem says that the sum of a large number of
independent identically distributed random variables is well-approximated
by a normal random variable.

Theorem 12.3.1 (CLT)
Let X1, X2, · · · be a sequence of independent and identically distributed ran-
dom variables, each with mean µ and variance σ2. Then,

P

(√
n

σ

(
X1 +X2 + · · ·+Xn

n
− µ

)
≤ a

)
→ 1√

2π

∫ a

−∞
e−

x2

2 dx

as n→∞.

The Central Limit Theorem says that regardless of the underlying distribu-
tion of the variables Xi, so long as they are independent, the distribution of√
n
σ

(
X1+X2+···+Xn

n
− µ

)
converges to the same, normal, distribution.

The central limit theorem suggests approximating the random variable

√
n

σ

(
X1 +X2 + · · ·+Xn

n
− µ

)
with a standard normal random variable. This implies that the sample mean
has approximately a normal distribution with mean µ and variance σ2

n
.

Also, a sum of n independent and identically distributed random variables
with common mean µ and variance σ2 can be approximated by a normal
distribution with mean nµ and variance nσ2.

Example 12.3.1
Let Xi, i = 1, 2, · · · , 48 be independent random variables that are uni-
formly distributed on the interval [−0.5, 0.5]. Find the approximate prob-
ability P(|X| ≤ 0.05), where X is the arithmetic average of the X ′is.

Solution.
Since each Xi is uniformly distributed on [−0.5, 0.5], its mean is µ = 0

and its variance is σ2 =
∫ 0.5

−0.5
x2dx = x3

3

]0.5

−0.5
= 1

12
. By the Central Limit
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Theorem, X has approximate distribution N(µ, σ
2

n
) = N(0, 1

242
). Thus 24X

is approximately standard normal, so

P(|X| ≤ 0.05) ≈P(24 · (−0.05) ≤ 24X ≤ 24 · (0.05))

=P (−1.2 ≤ Z ≤ 1.2) = Φ(1.2)− Φ(−1.2)

=2Φ(1.2)− 1 = 0.7698

Example 12.3.2
Let X1, X2, X3, X4 be a random sample of size 4 from a normal distribution
with mean 2 and variance 10, and let X be the sample mean. Determine a
such that P(X ≤ a) = 0.90.

Solution.
The sample mean X is normal with mean µ = 2 and variance σ2

n
= 10

4
= 2.5,

and standard deviation
√

2.5 ≈ 1.58, so

0.90 = P(X ≤ a) ≈ P

(
X − 2

1.58
<
a− 2

1.58

)
= Φ

(
a− 2

1.58

)
.

From the normal table, we get a−2
1.58

= 1.28, so a = 4.02

Example 12.3.3
Assume that the weights of individuals are independent and normally dis-
tributed with a mean of 160 pounds and a standard deviation of 30 pounds.
Suppose that 25 people squeeze into an elevator that is designed to hold 4300
pounds.
(a) What is the probability that the load (total weight) exceeds the design
limit?
(b) What design limit is exceeded by 25 occupants with probability 0.001?

Solution.
(a) Let X be an individual’s weight. Then, X has a normal distribution with
µ = 160 pounds and σ = 30 pounds. Let Y = X1 + X2 + · · · + X25, where
Xi denotes the ith person’s weight. Then, Y has a normal distribution with
E(Y ) = 25E(X) = 25 · (160) = 4000 pounds and Var(Y ) = 25Var(X) =
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25 · (900) = 22500. Now, the desired probability is

P(Y > 4300) ≈P
(
Y − 4000√

22500
>

4300− 4000√
22500

)
=P(Z > 2) = 1− P(Z ≤ 2)

=1− 0.9772 = 0.0228

(b) We want to find x such that P(Y > x) = 0.001. Note that

P(Y > x) ≈P
(
Y − 4000√

22500
>
x− 4000√

22500

)
=P

(
Z >

x− 4000√
22500

)
= 0.01

It is equivalent to P
(
Z ≤ x−4000√

22500

)
= 0.999. From the normal Table we find

P(Z ≤ 3.09) = 0.999. So (x − 4000)/150 = 3.09. Solving for x we find
x ≈ 4463.5 pounds



12.3. THE CENTRAL LIMIT THEOREM 547

Practice Problems

Problem 12.3.1
Letter envelopes are packaged in boxes of 100. It is known that, on average,
the envelopes weigh 1 ounce, with a standard deviation of 0.05 ounces. What
is the probability that 1 box of envelopes weighs more than 100.4 ounces?

Problem 12.3.2
In the SunBelt Conference men basketball league, the standard deviation in
the distribution of players’ height is 2 inches. A random group of 25 players
are selected and their heights are measured. Estimate the probability that the
average height of the players in this sample is within 1 inch of the conference
average height.

Problem 12.3.3
A radio battery manufacturer claims that the lifespan of its batteries has a
mean of 54 days and a standard deviation of 6 days. A random sample of
50 batteries were picked for testing. Assuming the manufacturer’s claims are
true, what is the probability that the sample has a mean lifetime of less than
52 days?

Problem 12.3.4
If 10 fair dice are rolled, find the approximate probability that the sum
obtained is between 30 and 40, inclusive.

Problem 12.3.5
Let Xi, i = 1, 2, · · · , 10 be independent random variables each uniformly
distributed over (0,1). Calculate an approximation to P(

∑10
i=1Xi > 6).

Problem 12.3.6
Suppose that Xi, i = 1, · · · , 100 are exponentially distributed random vari-

ables with parameter λ = 1
1000

. Let X =
∑100
i=1Xi
100

. Approximate P(950 ≤ X ≤
1050).

Problem 12.3.7
A baseball team plays 100 independent games. It is found that the probability
of winning a game is 0.8. Estimate the probability that team wins at least
90 games.
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Problem 12.3.8
A small auto insurance company has 10,000 automobile policyholders. It
has found that the expected yearly claim per policyholder is $240 with a
standard deviation of $800. Estimate the probability that the total yearly
claim exceeds $2.7 million.

Problem 12.3.9
Let X1, X2, · · · , Xn be n independent random variables each with mean 100
and standard deviation 30. Let X be the sum of these random variables.
Find n such that P(X > 2000) ≥ 0.95.

Problem 12.3.10 ‡
A charity receives 2025 contributions. Contributions are assumed to be inde-
pendent and identically distributed with mean 3125 and standard deviation
250.
Calculate the approximate 90th percentile for the distribution of the total
contributions received.

Problem 12.3.11 ‡
An insurance company issues 1250 vision care insurance policies. The number
of claims filed by a policyholder under a vision care insurance policy during
one year is a Poisson random variable with mean 2. Assume the numbers of
claims filed by distinct policyholders are independent of one another.
What is the approximate probability that there is a total of between 2450
and 2600 claims during a one-year period?

Problem 12.3.12 ‡
A company manufactures a brand of light bulb with a lifetime in months
that is normally distributed with mean 3 and variance 1 . A consumer buys
a number of these bulbs with the intention of replacing them successively as
they burn out. The light bulbs have independent lifetimes.
What is the smallest number of bulbs to be purchased so that the succession
of light bulbs produces light for at least 40 months with probability at least
0.9772?

Problem 12.3.13 ‡
Let X and Y be the number of hours that a randomly selected person watches
movies and sporting events, respectively, during a three-month period. The
following information is known about X and Y :
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E(X) = 50
E(Y) = 20
Var(X) = 50
Var(Y) = 30
Cov (X,Y) = 10

One hundred people are randomly selected and observed for these three
months. Let T be the total number of hours that these one hundred people
watch movies or sporting events during this three-month period.
Approximate the value of P(T < 7100).

Problem 12.3.14 ‡
The total claim amount for a health insurance policy follows a distribution
with density function

f(x) =

{
1

1000
e−

x
1000 x > 0

0 otherwise

The premium for the policy is set at 100 over the expected total claim
amount. If 100 policies are sold, what is the approximate probability that
the insurance company will have claims exceeding the premiums collected?

Problem 12.3.15 ‡
A city has just added 100 new female recruits to its police force. The city will
provide a pension to each new hire who remains with the force until retire-
ment. In addition, if the new hire is married at the time of her retirement,
a second pension will be provided for her husband. A consulting actuary
makes the following assumptions:

(i) Each new recruit has a 0.4 probability of remaining with the police force
until retirement.
(ii) Given that a new recruit reaches retirement with the police force, the
probability that she is not married at the time of retirement is 0.25.
(iii) The number of pensions that the city will provide on behalf of each new
hire is independent of the number of pensions it will provide on behalf of any
other new hire.
Determine the probability that the city will provide at most 90 pensions to
the 100 new hires and their husbands.
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Problem 12.3.16
(a) Give the approximate sampling distribution for the following quantity
based on random samples of independent observations:

X =

∑100
i=1Xi

100
, E(Xi) = 100, Var(Xi) = 400.

(b) What is the approximate probability the sample mean will be between
96 and 104?

Problem 12.3.17 ‡
In an analysis of healthcare data, ages have been rounded to the nearest
multiple of 5 years. The difference between the true age and the rounded age
is assumed to be uniformly distributed on the interval from −2.5 years to 2.5
years. The healthcare data are based on a random sample of 48 people.
What is the approximate probability that the mean of the rounded ages is
within 0.25 years of the mean of the true ages?

Problem 12.3.18 ‡
Claims filed under auto insurance policies follow a normal distribution with
mean 19,400 and standard deviation 5,000.
Calculate the probability that the average of 25 randomly selected claims
exceeds 20,000.

Problem 12.3.19 ‡
The amounts of automobile losses reported to an insurance company are
mutually independent, and each loss is uniformly distributed between 0 and
20,000. The company covers each such loss subject to a deductible of 5,000.
Calculate the probability that the total payout on 200 reported losses is
between 1,000,000 and 1,200,000.

Problem 12.3.20 ‡
Claim amounts at an insurance company are independent of one another.
In year one, claim amounts are modeled by a normal random variable X
with mean 100 and standard deviation 25. In year two, claim amounts are
modeled by the random variable Y = 1.04X + 5.
Calculate the probability that a random sample of 25 claim amounts in year
two average between 100 and 110.
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Problem 12.3.21 ‡
At the start of a week, a coal mine has a high-capacity storage bin that is
half full. During the week, 20 loads of coal are added to the storage bin.
Each load of coal has a volume that is normally distributed with mean 1.50
cubic yards and standard deviation 0.25 cubic yards.
During the same week, coal is removed from the storage bin and loaded into
4 railroad cars. The amount of coal loaded into each railroad car is normally
distributed with mean 7.25 cubic yards and standard deviation 0.50 cubic
yards.
The amounts added to the storage bin or removed from the storage bin
are mutually independent. Calculate the probability that the storage bin
contains more coal at the end of the week than it had at the beginning of
the week.

Problem 12.3.22 ‡
A company provides a death benefit of 50,000 for each of its 1000 employees.
There is a 1.4% chance that any one employee will die next year, indepen-
dent of all other employees. The company establishes a fund such that the
probability is at least 0.99 that the fund will cover next year’s death benefits.
Calculate, using the Central Limit Theorem, the smallest amount of money,
rounded to the nearest 50 thousand, that the company must put into the
fund.

Problem 12.3.23 ‡
An investor invests 100 dollars in a stock. Each month, the investment has
probability 0.5 of increasing by 1.10 dollars and probability 0.5 of decreasing
by 0.90 dollars. The changes in price in different months are mutually inde-
pendent. Calculate the probability that the investment has a value greater
than 91 dollars at the end of month 100.
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Sample Exam 1

Duration: 3 hours

Problem 1 ‡
A survey of a group’s viewing habits over the last year revealed the following
information

(i) 28% watched gymnastics
(ii) 29% watched baseball
(iii) 19% watched soccer
(iv) 14% watched gymnastics and baseball
(v) 12% watched baseball and soccer
(vi) 10% watched gymnastics and soccer
(vii) 8% watched all three sports.

Calculate the percentage of the group that watched none of the three sports
during the last year.

(A) 24% (B) 36% (C) 41% (D) 52% (E) 60%

Problem 2 ‡
A doctor is studying the relationship between blood pressure and heartbeat
abnormalities in her patients. She tests a random sample of her patients
and notes their blood pressures (high, low, or normal) and their heartbeats
(regular or irregular). She finds that:

553
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(i) 14% have high blood pressure.
(ii) 22% have low blood pressure.
(iii) 15% have an irregular heartbeat.
(iv) Of those with an irregular heartbeat, one-third have high blood pressure.
(v) Of those with normal blood pressure, one-eighth have an irregular heartbeat.

What portion of the patients selected have a regular heartbeat and low blood
pressure?

(A) 2%
(B) 5%
(C) 8%
(D) 9%
(E) 20

Problem 3 ‡
A health study tracked a group of persons for five years. At the beginning of
the study, 20% were classified as heavy smokers, 30% as light smokers, and
50% as nonsmokers.
Results of the study showed that light smokers were twice as likely as non-
smokers to die during the five-year study, but only half as likely as heavy
smokers.
A randomly selected participant from the study died over the five-year pe-
riod. Calculate the probability that the participant was a heavy smoker.

(A) 0.20
(B) 0.25
(C) 0.35
(D) 0.42
(E) 0.57

Problem 4 ‡
A large pool of adults earning their first driver’s license includes 50% low-risk
drivers, 30% moderate-risk drivers, and 20% high-risk drivers. Because these
drivers have no prior driving record, an insurance company considers each
driver to be randomly selected from the pool.
This month, the insurance company writes four new policies for adults earn-
ing their first driver’s license.
Calculate the probability that these four will contain at least two more high-
risk drivers than low-risk drivers.
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(A) 0.006
(B) 0.012
(C) 0.018
(D) 0.049
(E) 0.073

Problem 5 ‡
A company takes out an insurance policy to cover accidents that occur at its
manufacturing plant. The probability that one or more accidents will occur
during any given month is 3

5
.

The number of accidents that occur in any given month is independent of
the number of accidents that occur in all other months.
Calculate the probability that there will be at least four months in which
no accidents occur before the fourth month in which at least one accident
occurs.
(A) 0.01
(B) 0.12
(C) 0.23
(D) 0.29
(E) 0.41

Problem 6 ‡
An auto insurance company insures an automobile worth 15,000 for one year
under a policy with a 1,000 deductible. During the policy year there is a
0.04 chance of partial damage to the car and a 0.02 chance of a total loss of
the car. If there is partial damage to the car, the amount X of damage (in
thousands) follows a distribution with density function

f(x) =

{
0.5003e−

x
2 , 0 < x < 15

0, otherwise.

Calculate the expected claim payment.

(A) 320
(B) 328
(C) 352
(D) 380
(E) 540
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Problem 7 ‡
The owner of an automobile insures it against damage by purchasing an in-
surance policy with a deductible of 250 . In the event that the automobile is
damaged, repair costs can be modeled by a uniform random variable on the
interval [0, 1500].
Determine the standard deviation of the insurance payment in the event that
the automobile is damaged.

(A) 361
(B) 403
(C) 433
(D) 464
(E) 521

Problem 8 ‡
Claim amounts for wind damage to insured homes are mutually independent
random variables with common density function

f(x) =

{
3
x4

x > 1
0 otherwise,

where x is the amount of a claim in thousands. Suppose 3 such claims will
be made. Calculate the expected value of the largest of the three claims.

(A) 2025
(B) 2700
(C) 3232
(D) 3375
(E) 4500

Problem 9 ‡
In an analysis of healthcare data, ages have been rounded to the nearest
multiple of 5 years. The difference between the true age and the rounded age
is assumed to be uniformly distributed on the interval from −2.5 years to 2.5
years. The healthcare data are based on a random sample of 48 people.
What is the approximate probability that the mean of the rounded ages is
within 0.25 years of the mean of the true ages?

(A) 0.14
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(B) 0.38
(C) 0.57
(D) 0.77
(E) 0.88

Problem 10 ‡
Let T1 and T2 represent the lifetimes in hours of two linked components in
an electronic device. The joint density function for T1 and T2 is uniform over
the region defined by 0 ≤ t1 ≤ t2 ≤ L, where L is a positive constant.
Determine the expected value of the sum of the squares of T1 and T2.

(A) L2

3

(B) L2

2

(C) 2L2

3

(D) 3L2

4

(E) L2

Problem 11 ‡
Let X denote the size of a surgical claim and let Y denote the size of the
associated hospital claim. An actuary is using a model in which E(X) =
5, E(X2) = 27.4, E(Y ) = 7, E(Y 2) = 51.4, and Var(X + Y ) = 8.
Let C1 = X+Y denote the size of the combined claims before the application
of a 20% surcharge on the hospital portion of the claim, and let C2 denote
the size of the combined claims after the application of that surcharge.
Calculate Cov(C1, C2).

(A) 8.80
(B) 9.60
(C) 9.76
(D) 11.52
(E) 12.32

Problem 12 ‡
A company is reviewing tornado damage claims under a farm insurance pol-
icy. Let X be the portion of a claim representing damage to the house and
let Y be the portion of the same claim representing damage to the rest of
the property. The joint density function of X and Y is

fXY (x, y) =

{
6[1− (x+ y)] x > 0, y > 0, x+ y < 1

0 otherwise.
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Determine the probability that the portion of a claim representing damage
to the house is less than 0.2.

(A) 0.360
(B) 0.480
(C) 0.488
(D) 0.512
(E) 0.520

Problem 13 ‡
The amounts of automobile losses reported to an insurance company are
mutually independent, and each loss is uniformly distributed between 0 and
20,000. The company covers each such loss subject to a deductible of 5,000.
Calculate the probability that the total payout on 200 reported losses is be-
tween 1,000,000 and 1,200,000.

(A) 0.0803
(B) 0.1051
(C) 0.1799
(D) 0.8201
(E) 0.8575

Problem 14 ‡
Let X and Y be identically distributed independent random variables such
that the moment generating function of X + Y is

M(t) = 0.09e−2t + 0.24e−t + 0.34 + 0.24et + 0.09e2t, −∞ < t <∞.

Calculate P(X ≤ 0).

(A) 0.33
(B) 0.34
(C) 0.50
(D) 0.67
(E) 0.70

Problem 15 ‡
The amount of a claim that a car insurance company pays out follows an
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exponential distribution. By imposing a deductible of d, the insurance com-
pany reduces the expected claim payment by 10%.
Calculate the percentage reduction on the variance of the claim payment.

(A) 1%
(B) 5%
(C) 10%
(D) 20%
(E) 25%

Problem 16 ‡
Let X be a continuous random variable with density function

f(x) =

{
p−1
xp
, x > 1

0, otherwise.

Calculate the value of p such that E(X) = 2.

(A) 1
(B) 2.5
(C) 3
(D) 5
(E) There is no such p.

Problem 17 ‡
Damages to a car in a crash are modeled by a random variable with density
function

f(x) =

{
c(x2 − 60x+ 800), 0 < x < 20

0, otherwise

where c is a constant. A particular car is insured with a deductible of 2.
This car was involved in a crash with resulting damages in excess of the de-
ductible. Calculate the probability that the damages exceeded 10.

(A) 0.12
(B) 0.16
(C) 0.20
(D) 0.26
(E) 0.78
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Problem 18 ‡
In a group of 25 factory workers, 20 are low-risk and five are high-risk. Two
of the 25 factory workers are randomly selected without replacement.
Calculate the probability that exactly one of the two selected factory workers
is low-risk.

(A) 0.160
(B) 0.167
(C) 0.320
(D) 0.333
(E) 0.633

Problem 19 ‡
The number of policies that an agent sells has a Poisson distribution with
modes at 2 and 3. K is the smallest number such that the probability of
selling more than K policies is less than 25%. Calculate K.

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Problem 20 ‡
On any given day, a certain machine has either no malfunctions or exactly
one malfunction. The probability of malfunction on any given day is 0.40.
Machine malfunctions on different days are mutually independent. Calculate
the probability that the machine has its third malfunction on the fifth day,
given that the machine has not had three malfunctions in the first three days.

(A) 0.064
(B) 0.138
(C) 0.148
(D 0.230
(E) 0.246

Problem 21 ‡
A policyholder purchases automobile insurance for two years. Define the
following events:
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F = the policyholder has exactly one accident in year one.
G = the policyholder has one or more accidents in year two.

Define the following events:
i) The policyholder has exactly one accident in year one and has more than
one accident in year two.
ii) The policyholder has at least two accidents during the two-year period.
iii) The policyholder has exactly one accident in year one and has at least
one accident in year two.
iv) The policyholder has exactly one accident in year one and has a total of
two or more accidents in the two-year period.
v) The policyholder has exactly one accident in year one and has more acci-
dents in year two than in year one.
Determine the number of events from the above list of five that are the same
as F ∩G.

(A) None
(B) Exactly one
(C) Exactly two
(D) Exactly three
(E) All

Problem 22 ‡
For a certain health insurance policy, losses are uniformly distributed on the
interval [0, b]. The policy has a deductible of 180 and the expected value of
the un-reimbursed portion of a loss is 144. Calculate b.

(A) 236
(B) 288
(C) 388
(D) 450
(E) 468

Problem 23 ‡
The random variables X and Y have joint probability function p(x, y) for
x = 0, 1 and y = 0, 1, 2. Suppose 3p(1, 1) = p(1, 2), and p(1, 1) maximizes
the variance of XY. Calculate the probability that X or Y is 0.

(A) 11/25
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(B) 23/50
(C) 23/49
(D) 26/49
(E) 14/25

Problem 24 ‡
In a group of 15 health insurance policyholders diagnosed with cancer, each
policyholder has probability 0.90 of receiving radiation and probability 0.40
of receiving chemotherapy. Radiation and chemotherapy treatments are in-
dependent events for each policyholder, and the treatments of different pol-
icyholders are mutually independent. The policyholders in this group all
have the same health insurance that pays 2 for radiation treatment and 3 for
chemotherapy treatment.
Calculate the variance of the total amount the insurance company pays for
the radiation and chemotherapy treatments for these 15 policyholders.

(A) 13.5
(B) 37.8
(C) 108.0
(D) 202.5
(E) 567.0

Problem 25 ‡
Each week, a subcommittee of four individuals is formed from among the
members of a committee comprising seven individuals. Two subcommittee
members are then assigned to lead the subcommittee, one as chair and the
other as secretary.
Calculate the maximum number of consecutive weeks that can elapse with-
out having the subcommittee contain four individuals who have previously
served together with the same subcommittee chair.

(A) 70
(B) 140
(C) 210
(D) 420
(E) 840

Problem 26 ‡
A machine has two parts labeled A and B. The probability that part A works
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for one year is 0.8 and the probability that part B works for one year is 0.6.
The probability that at least one part works for one year is 0.9.
Calculate the probability that part B works for one year, given that part A
works for one year.

(A) 1/2
(B) 3/5
(C) 5/8
(D) 3/4
(E) 5/6

Problem 27 ‡
The time until the next car accident for a particular driver is exponentially
distributed with a mean of 200 days.
Calculate the probability that the driver has no accidents in the next 365
days, but then has at least one accident in the 365-day period that follows
this initial 365-day period.

(A) 0.026
(B) 0.135
(C) 0.161
(D) 0.704
(E) 0.839

Problem 28 ‡
Losses under an insurance policy have the density function

f(x) =

{
0.25e−0.25x x ≥ 0

0 otherwise.

The deductible is 1 for each loss.
Calculate the median amount that the insurer pays a policyholder for a loss
under the policy.

(A) 1.77
(B) 2.08
(C) 2.12
(D) 2.77
(E) 3.12
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Problem 29 ‡
The loss L due to a boat accident is exponentially distributed. Boat insur-
ance policy A covers up to 1 unit for each loss. Boat insurance policy B
covers up to 2 units for each loss.
The probability that a loss is fully covered under policy B is 1.9 times the
probability that it is fully covered under policy A.
Calculate the variance of L.

(A) 0.1
(B) 0.4
(C) 2.4
(D) 9.5
(E) 90.1

Problem 30 ‡
The random variable X has moment generating function M(t). Determine
which of the following is the moment generating function of some random
variable.
i) M(t)M(5t)
ii) 2M(t)
iii) etM(t).

(A) at most one of i, ii, and iii
(B) i and ii only
(C) i and iii only
(D) ii and iii only
(E) i, ii, and iii

Problem 31 ‡
The number of workplace injuries, N, occurring in a factory on any given day
is Poisson distributed with mean λ. The parameter λ is a random variable
that is determined by the level of activity in the factory, and is uniformly
distributed on the interval [0, 3].
Calculate Var(N).

(A) λ
(B) 2λ
(C) 0.75
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(D) 0.150
(E) 2.25

Problem 32 ‡
The intensity of a hurricane is a random variable that is uniformly distributed
on the interval [0, 3]. The damage from a hurricane with a given intensity y
is exponentially distributed with a mean equal to y.
Calculate the variance of the damage from a random hurricane.

(A) 1.73
(B) 1.94
(C) 3.00
(D) 3.75
(E) 6.00



566 SAMPLE EXAM 1

Answers
1. D
2. E
3. D
4. D
5. D
6. B
7. B
8. A
9. D
10. C
11. A
12. C
13. D
14. E
15. A
16. C
17. D
18. D
19. D
20. C
21. C
22. D
23. C
24. B
25. B
26. C
27. B
28. A
29. E
30. C
31. E
32. D



Sample Exam 2

Duration: 3 hours

Problem 1 ‡
The probability that a visit to a primary care physician’s (PCP) office results
in neither lab work nor referral to a specialist is 35% . Of those coming to a
PCP’s office, 30% are referred to specialists and 40% require lab work.
Determine the probability that a visit to a PCP’s office results in both lab
work and referral to a specialist.

(A) 0.05
(B) 0.12
(C) 0.18
(D) 0.25
(E) 0.35

Problem 2 ‡
An actuary is studying the prevalence of three health risk factors, denoted
by A,B, and C, within a population of women. For each of the three factors,
the probability is 0.1 that a woman in the population has only this risk factor
(and no others). For any two of the three factors, the probability is 0.12 that
she has exactly these two risk factors (but not the other). The probability
that a woman has all three risk factors, given that she has A and B, is 1

3
.

What is the probability that a woman has none of the three risk factors,
given that she does not have risk factor A?

567
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(A) 0.280
(B) 0.311
(C) 0.467
(D) 0.484
(E) 0.700

Problem 3 ‡
An actuary studied the likelihood that different types of drivers would be
involved in at least one collision during any one-year period. The results of
the study are presented below.

Probability
Type of Percentage of of at least one
driver all drivers collision
Teen 8% 0.15
Young adult 16% 0.08
Midlife 45% 0.04
Senior 31% 0.05
Total 100%

Given that a driver has been involved in at least one collision in the past
year, what is the probability that the driver is a young adult driver?

(A) 0.06
(B) 0.16
(C) 0.19
(D) 0.22
(E) 0.25

Problem 4 ‡
The loss due to a fire in a commercial building is modeled by a random
variable X with density function

f(x) =

{
0.005(20− x) 0 < x < 20

0 otherwise.

Given that a fire loss exceeds 8, what is the probability that it exceeds 16 ?

(A) 1/25
(B) 1/9
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(C) 1/8
(D) 1/3
(E) 3/7

Problem 5 ‡
An insurance policy pays 100 per day for up to 3 days of hospitalization and
50 per day for each day of hospitalization thereafter.
The number of days of hospitalization, X, is a discrete random variable with
probability function

p(k) =

{
6−k
15

k = 1, 2, 3, 4, 5
0 otherwise.

Determine the expected payment for hospitalization under this policy.

(A) 123
(B) 210
(C) 220
(D) 270
(E) 367

Problem 6 ‡
An insurance company’s monthly claims are modeled by a continuous, pos-
itive random variable X, whose probability density function is proportional
to (1 + x)−4, where 0 < x <∞ and 0 otherwise.
Determine the company’s expected monthly claims.

(A) 1/6
(B) 1/3
(C) 1/2
(D) 1
(E) 3

Problem 7 ‡
A baseball team has scheduled its opening game for April 1. If it rains on
April 1, the game is postponed and will be played on the next day that it
does not rain. The team purchases insurance against rain. The policy will
pay 1000 for each day, up to 2 days, that the opening game is postponed.
The insurance company determines that the number of consecutive days of
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rain beginning on April 1 is a Poisson random variable with mean 0.6 .
What is the standard deviation of the amount the insurance company will
have to pay?

(A) 668
(B) 699
(C) 775
(D) 817
(E) 904

Problem 8 ‡
A device runs until either of two components fails, at which point the de-
vice stops running. The joint density function of the lifetimes of the two
components, both measured in hours, is

fXY (x, y) =

{
x+y

8
0 < x, y < 2

0 otherwise

What is the probability that the device fails during its first hour of operation?

(A) 0.125
(B) 0.141
(C) 0.391
(D) 0.625
(E) 0.875

Problem 9 ‡
The waiting time for the first claim from a good driver and the waiting time
for the first claim from a bad driver are independent and follow exponential
distributions with means 6 years and 3 years, respectively.
What is the probability that the first claim from a good driver will be filed
within 3 years and the first claim from a bad driver will be filed within 2
years?

(A) 1
18

(1− e− 2
3 − e− 1

2 + e−
7
6 )

(B) 1
18
e−

7
6

(C) 1− e− 2
3 − e− 1

2 + e−
7
6

(D) 1− e− 2
3 − e− 1

2 + e−
1
3 )

(E) 1− 1
3
e−

2
3 − 1

6
e−

1
2 + 1

8
e−

7
6
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Problem 10 ‡
Let X1, X2, X3 be three independent discrete random variables with common
probability mass function

P(x) =


1
3

x = 0
2
3

x = 1
0 otherwise

Determine the moment generating function M(t), of Y = X1X2X3.

(A) 19
27

+ 8
27
et

(B) 1 + 2et

(C)
(

1
3

+ 2
3
et
)3

(D) 1
27

+ 8
27
e3t

(E) 1
3

+ 2
3
e3t

Problem 11 ‡
A device containing two key components fails when, and only when, both
components fail. The lifetimes, X and Y , of these components are inde-
pendent with common density function f(t) = e−t, t > 0. The cost, Z, of
operating the device until failure is 2X + Y.
Find the probability density function of Z.

(A) e−
z
2 − e−z

(B) 2(e−
z
2 − e−z)

(C) z2e−z

2

(D) e−
z
2

2

(E) e−
z
3

3

Problem 12 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
15y x2 ≤ y ≤ x
0 otherwise.

Find the marginal density function of Y.

(A)

fY (y) =

{
15y 0 < y < 1
0, otherwise.
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(B)

fY (y) =

{
15y2

2
x2 < y < x

0, otherwise.

(C)

fY (y) =

{
15y2

2
0 < y < 1

0, otherwise.

(D)

fY (y) =

{
15y

3
2 (1− y 1

2 ) x2 < y < x
0, otherwise.

(E)

fY (y) =

{
15y

3
2 (1− y 1

2 ) 0 < y < 1
0, otherwise.

Problem 13 ‡
An insurance agent offers his clients auto insurance, homeowners insurance
and renters insurance. The purchase of homeowners insurance and the pur-
chase of renters insurance are mutually exclusive. The profile of the agent’s
clients is as follows:
i) 17% of the clients have none of these three products.
ii) 64% of the clients have auto insurance.
iii) Twice as many of the clients have homeowners insurance as have renters
insurance.
iv) 35% of the clients have two of these three products.
v) 11% of the clients have homeowners insurance, but not auto insurance.
Calculate the percentage of the agent’s clients that have both auto and renters
insurance.

(A) 7%
(B) 10%
(C) 16%
(D) 25%
(E) 28%
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Problem 14 ‡
A machine consists of two components, whose lifetimes have the joint density
function

f(x, y) =

{
1
50

for x > 0, y > 0, x+ y < 10
0 otherwise.

The machine operates until both components fail. Calculate the expected
operational time of the machine.

(A) 1.7
(B) 2.5
(C) 3.3
(D) 5.0
(E) 6.7

Problem 15 ‡
The number of hurricanes that will hit a certain house in the next ten years
is Poisson distributed with mean 4.
Each hurricane results in a loss that is exponentially distributed with mean
1000. Losses are mutually independent and independent of the number of
hurricanes.
Calculate the variance of the total loss due to hurricanes hitting this house
in the next ten years.

(A) 4,000,000
(B) 4,004,000
(C) 8,000,000
(D) 16,000,000
(E) 20,000,000

Problem 16 ‡
The figure below shows the cumulative distribution function of a random
variable, X.
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Calculate E(X).

(A) 0.00
(B) 0.50
(C) 1.00
(D) 1.25
(E) 2.50

Problem 17 ‡
Two fair dice, one red and one blue, are rolled.
Let I be the event that the number rolled on the red die is odd.
Let J be the event that the number rolled on the blue die is odd.
Let H be the event that the sum of the numbers rolled on the two dice is
odd.
Determine which of the following is true.

(A) I, J, and H are not mutually independent, but each pair is indepen-
dent.
(B) I, J, and H are mutually independent.
(C) Exactly one pair of the three events is independent.
(D) Exactly two of the three pairs are independent.
(E) No pair of the three events is independent.

Problem 18 ‡
The proportionX of yearly dental claims that exceed 200 is a random variable
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with probability density function

f(x) =

{
60x3(1− x)2, 0 < x < 1

0, otherwise.

Calculate Var
[

X
1−X

]
.

(A) 149/900
(B) 10/7
(C) 6
(D) 8
(E) 10

Problem 19 ‡
Two fair dice are tossed. One die is red and one die is green. Calculate the
probability that the sum of the numbers on the two dice is an odd number
given that the number that shows on the red die is larger than the number
that shows on the green die.

(A) 1/4
(B) 5/12
(C) 3/7
(D) 1/2
(E) 3/5

Problem 20 ‡
In a certain group of cancer patients, each patient’s cancer is classified in
exactly one of the following five stages: stage 0, stage 1, stage 2, stage 3, or
stage 4.
i) 75% of the patients in the group have stage 2 or lower.
ii) 80% of the patients in the group have stage 1 or higher.
iii) 80% of the patients in the group have stage 0, 1, 3, or 4.
One patient from the group is randomly selected. Calculate the probability
that the selected patient’s cancer is stage 1.

(A) 0.20
(B) 0.25
(C) 0.35
(D) 0.48
(E) 0.65
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Problem 21 ‡
An insurance company categorizes its policyholders into three mutually ex-
clusive groups: high-risk, medium-risk, and low-risk. An internal study of
the company showed that 45% of the policyholders are low-risk and 35% are
medium-risk. The probability of death over the next year, given that a poli-
cyholder is high-risk is two times the probability of death of a medium-risk
policyholder. The probability of death over the next year, given that a poli-
cyholder is medium-risk is three times the probability of death of a low-risk
policyholder. The probability of death of a randomly selected policyholder,
over the next year, is 0.009.
Calculate the probability of death of a policyholder over the next year, given
that the policyholder is high-risk.

(A) 0.0025
(B) 0.0200
(C) 0.1215
(D) 0.2000
(E) 0.3750

Problem 22 ‡
The working lifetime, in years, of a particular model of bread maker is nor-
mally distributed with mean 10 and variance 4.
Calculate the 12th percentile of the working lifetime, in years.

(A) 5.30
(B) 7.65
(C) 8.41
(D) 12.35
(E) 14.70

Problem 23 ‡
As a block of concrete is put under increasing pressure, engineers measure the
pressure X at which the first fracture appears and the pressure Y at which
the second fracture appears. X and Y are measured in tons per square inch
and have joint density function

fXY (x, y) =

{
24x(1− y) for 0 < x < y < 1

0 otherwise.
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Calculate the average pressure (in tons per square inch) at which the second
fracture appears, given that the first fracture appears at 1/3 ton per square
inch.

(A) 4/9
(B) 5/9
(C) 2/3
(D) 3/4
(E) 80/81

Problem 24 ‡
In a large population of patients, 20% have early stage cancer, 10% have
advanced stage cancer, and the other 70% do not have cancer. Six patients
from this population are randomly selected.
Calculate the expected number of selected patients with advanced stage can-
cer, given that at least one of the selected patients has early stage cancer.

(A) 0.403
(B) 0.500
(C) 0.547
(D) 0.600
(E) 0.625

Problem 25 ‡
Bowl I contains eight red balls and six blue balls. Bowl II is empty. Four
balls are selected at random, without replacement, and transferred from bowl
I to bowl II. One ball is then selected at random from bowl II.
Calculate the conditional probability that two red balls and two blue balls
were transferred from bowl I to bowl II, given that the ball selected from
bowl II is blue.

(A) 0.21
(B) 0.24
(C) 0.43
(D) 0.49
(E) 0.57

Problem 26 ‡
Six claims are to be randomly selected from a group of thirteen different
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claims, which includes two workers compensation claims, four homeowners
claims and seven auto claims.
Calculate the probability that the six claims selected will include one workers
compensation claim, two homeowners claims and three auto claims.

(A) 0.025
(B) 0.107
(C) 0.153
(D) 0.245
(E) 0.643

Problem 27 ‡
The annual profit of a life insurance company is normally distributed. The
probability that the annual profit does not exceed 2000 is 0.7642. The prob-
ability that the annual profit does not exceed 3000 is 0.9066.
Calculate the probability that the annual profit does not exceed 1000.

(A) 0.1424
(B) 0.3022
(C) 0.5478
(D) 0.6218
(E) 0.7257

Problem 28 ‡
A company has purchased a policy that will compensate for the loss of rev-
enue due to severe weather events. The policy pays 1000 for each severe
weather event in a year after the first two such events in that year. The
number of severe weather events per year has a Poisson distribution with
mean 1. Calculate the expected amount paid to this company in one year.

(A) 80
(B) 104
(C) 368
(D) 512
(E) 632

Problem 29 ‡
Losses, X, under an insurance policy are exponentially distributed with mean
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10. For each loss, the claim payment Y is equal to the amount of the loss in
excess of a deductible d > 0.
Calculate Var(Y ).

(A) 100− d
(B) (10− d)2

(C) 100e−
d
10

(D) 100(2e−
d
10 − e− d5 )

(E) (10− d)2(2e−
d
10 − e− d5 )

Problem 30 ‡
The number of boating accidents X a policyholder experiences this year is
modeled by a Poisson random variable with variance 0.10. An insurer reim-
burses only the first accident. Let Y be the number of unreimbursed accidents
the policyholder experiences this year and let p be the probability function
of Y. Determine p(y).

(A)

p(y) =

{
1.1e−0.1, y = 0

(0.1)y+1

(y+1)!
e−0.1, y = 1, 2, 3, · · ·

(B)

p(y) =

{
1.1e−0.1, y = 0

(0.1)y

y!
e−0.1, y = 1, 2, 3, · · ·

(C)

p(y) =

{
1.1e−0.1, y = 0

(0.1)y−1

(y−1)!
e−0.1, y = 1, 2, 3, · · ·

(D) p(y) = (0.1)y+1

(y+1)!
e−0.1, y = 0, 1, 2, 3, · · ·

(E) p(y) = (0.1)y−1

(y−1)!
e−0.1, y = 0, 1, 2, 3, · · ·

Problem 31 ‡
Let X denote the loss amount sustained by an insurance company’s policy-
holder in an auto collision. Let Z denote the portion of X that the insurance
company will have to pay. An actuary determines that X and Z are inde-
pendent with respective density and probability functions

f(x) =

{
1
8
e−

x
8 , x > 0

0, otherwise
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and

P (Z = z) =

{
0.45, z = 1
0.55, otherwise.

Calculate the variance of the insurance company’s claim payment ZX.

(A) 13.0
(B) 15.8
(C) 28.8
(D) 35.2
(E) 44.6

Problem 32 ‡
Random variables X and Y have joint distribution

X = 0 X = 1 X = 2
Y = 0 1/15 a 2/15
Y = 1 a b a
Y = 2 2/15 a 1/15

Let a be the value that minimizes the variance of X. Calculate the variance
of Y.

(A) 2/5
(B) 8/15
(C) 16/25
(D) 2/3
(E) 7/10

Problem 33 ‡
An insurance company has an equal number of claims in each of three terri-
tories. In each territory, only three claim amounts are possible: 100, 500, and
1000. Based on the company’s data, the probabilities of each claim amount
are:

Claim Amount
100 500 1000

Territory 1 0.90 0.08 0.02
Territory 2 0.80 0.11 0.09
Territory 3 0.70 0.20 0.10
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Calculate the standard deviation of a randomly selected claim amount.

(A) 254
(B) 291
(C) 332
(D) 368
(E) 396
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Answers
1. A
2. C
3. D
4. B
5. C
6. C
7. B
8. D
9. C
10. A
11. A
12. E
13. B
14. D
15. C
16. D
17. A
18. C
19. E
20. C
21. B
22. B
23. B
24. C
25. D
26. D
27. C
28. B
29. D
30. A
31. E
32. A
33. A



Sample Exam 3

Duration: 3 hours

Problem 1 ‡
You are given P (A ∪B) = 0.7 and P (A ∪Bc) = 0.9. Determine P (A).

(A) 0.2
(B) 0.3
(C) 0.4
(D) 0.6
(E) 0.8

Problem 2 ‡
In modeling the number of claims filed by an individual under an auto-
mobile policy during a three-year period, an actuary makes the simplifying
assumption that for all integers n ≥ 0, pn+1 = 1

5
pn, where pn represents the

probability that the policyholder files n claims during the period.
Under this assumption, what is the probability that a policyholder files more
than one claim during the period?

(A) 0.04
(B) 0.16
(C) 0.20
(D) 0.80
(E) 0.96

583
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Problem 3 ‡
The number of injury claims per month is modeled by a random variable N
with

P (N = n) =
1

(n+ 1)(n+ 2)
, n ≥ 0.

Determine the probability of at least one claim during a particular month,
given that there have been at most four claims during that month.

(A) 1/3
(B) 2/5
(C) 1/2
(D) 3/5
(E) 5/6

Problem 4 ‡
The lifetime of a machine part has a continuous distribution on the inter-
val (0, 40) with probability density function f, where f(x) is proportional to
(10 + x)−2.
Calculate the probability that the lifetime of the machine part is less than 6.

(A) 0.04
(B) 0.15
(C) 0.47
(D) 0.53
(E) 0.94

Problem 5 ‡
Let X be a continuous random variable with density function

f(x) =

{ |x|
10
−2 ≤ x ≤ 4

0 otherwise.

Calculate the expected value of X.

(A) 1/5
(B) 3/5
(C) 1
(D) 28/15
(E) 12/5
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Problem 6 ‡
An insurance policy is written to cover a loss, X, where X has the density
function

f(x) =

{
1

1000
0 ≤ x ≤ 1000

0 otherwise.

The policy has a deductible, d, and the expected payment under the policy
is 25% of what it would be with no deductible.
Calculate d.

(A) 250
(B) 375
(C) 500
(D) 625
(E) 750

Problem 7 ‡
An insurance policy reimburses dental expense, X, up to a maximum benefit
of 250. The probability density function for X is:

f(x) =

{
ce−0.004x x ≥ 0

0 otherwise

where c is a constant. Calculate the median benefit for this policy.

(A) 161
(B) 165
(C) 173
(D) 182
(E) 250

Problem 8 ‡
A device contains two components. The device fails if either component fails.
The joint density function of the lifetimes of the components, measured in
hours, is f(s, t), where 0 < s < 1 and 0 < t < 1.
Determine which of the following represents the probability that the device
fails during the first half hour of operation.

(A)
∫ 0.5

0

∫ 0.5

0
f(s, t)dsdt

(B)
∫ 1

0

∫ 0.5

0
f(s, t)dsdt
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(C)
∫ 1

0.5

∫ 1

0.5
f(s, t)dsdt

(D)
∫ 0.5

0

∫ 1

0
f(s, t)dsdt+

∫ 1

0

∫ 0.5

0
f(s, t)dsdt

(E)
∫ 0.5

0

∫ 1

0.5
f(s, t)dsdt+

∫ 1

0

∫ 0.5

0
f(s, t)dsdt

Problem 9 ‡
The future lifetimes (in months) of two components of a machine have the
following joint density function:

fXY (x, y) =

{
6

125000
(50− x− y) 0 < x < 50− y < 50

0 otherwise.

What is the probability that both components are still functioning 20 months
from now?

(A) 6
125,000

∫ 20

0

∫ 20

0
(50− x− y)dydx

(B) 6
125,000

∫ 30

20

∫ 50−x
20

(50− x− y)dydx

(C) 6
125,000

∫ 30

20

∫ 50−x−y
20

(50− x− y)dydx

(D) 6
125,000

∫ 50

20

∫ 50−x
20

(50− x− y)dydx

(E) 6
125,000

∫ 50

20

∫ 50−x−y
20

(50− x− y)dydx

Problem 10 ‡
An insurance policy pays a total medical benefit consisting of two parts for
each claim. Let X represent the part of the benefit that is paid to the sur-
geon, and let Y represent the part that is paid to the hospital. The variance
of X is 5000, the variance of Y is 10,000, and the variance of the total benefit,
X + Y, is 17,000.
Due to increasing medical costs, the company that issues the policy decides
to increase X by a flat amount of 100 per claim and to increase Y by 10%
per claim.
Calculate the variance of the total benefit after these revisions have been
made.

(A) 18,200
(B) 18,800
(C) 19,300
(D) 19,520
(E) 20,670
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Problem 11 ‡
A company offers earthquake insurance. Annual premiums are modeled by
an exponential random variable with mean 2. Annual claims are modeled
by an exponential random variable with mean 1. Premiums and claims are
independent. Let X denote the ratio of claims to premiums.
What is the density function of X?

(A) 1
2x+1

(B) 2
(2x+1)2

(C) e−x

(D) 2e−2x

(E) xe−x

Problem 12 ‡
An auto insurance policy will pay for damage to both the policyholder’s car
and the other driver’s car in the event that the policyholder is responsible
for an accident. The size of the payment for damage to the policyholder’s
car, X, has a marginal density function of 1 for 0 < x < 1. Given X = x, the
size of the payment for damage to the other driver’s car, Y, has conditional
density of 1 for x < y < x+ 1.
If the policyholder is responsible for an accident, what is the probability that
the payment for damage to the other driver’s car will be greater than 0.5?

(A) 3/8
(B) 1/2
(C) 3/4
(D) 7/8
(E) 15/16

Problem 13 ‡
The cumulative distribution function for health care costs experienced by a
policyholder is modeled by the function

F (x) =

{
1− e− x

100 , for x > 0
0, otherwise.

The policy has a deductible of 20. An insurer reimburses the policyholder
for 100% of health care costs between 20 and 120 less the deductible. Health
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care costs above 120 are reimbursed at 50%. Let G be the cumulative distri-
bution function of reimbursements given that the reimbursement is positive.
Calculate G(115).

(A) 0.683
(B) 0.727
(C) 0.741
(D) 0.757
(E) 0.777

Problem 14 ‡
A driver and a passenger are in a car accident. Each of them independently
has probability 0.3 of being hospitalized. When a hospitalization occurs, the
loss is uniformly distributed on [0, 1]. When two hospitalizations occur, the
losses are independent.
Calculate the expected number of people in the car who are hospitalized,
given that the total loss due to hospitalizations from the accident is less than
1.

(A) 0.510
(B) 0.534
(C) 0.600
(D) 0.628
(E) 0.800

Problem 15 ‡
A motorist makes three driving errors, each independently resulting in an
accident with probability 0.25.
Each accident results in a loss that is exponentially distributed with mean
0.80. Losses are mutually independent and independent of the number of
accidents. The motorist’s insurer reimburses 70% of each loss due to an ac-
cident.
Calculate the variance of the total unreimbursed loss the motorist experi-
ences due to accidents resulting from these driving errors.

(A) 0.0432
(B) 0.0756
(C) 0.1782
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(D) 0.2520
(E) 0.4116

Problem 16 ‡
Two fair dice are rolled. Let X be the absolute value of the difference be-
tween the two numbers on the dice. Calculate the probability that X < 3.

(A) 2/9
(B) 1/3
(C) 4/9
(D) 5/9
(E) 2/3

Problem 17 ‡
An urn contains four fair dice. Two have faces numbered 1, 2, 3, 4, 5, and 6;
one has faces numbered 2, 2, 4, 4, 6, and 6; and one has all six faces numbered
6. One of the dice is randomly selected from the urn and rolled. The same die
is rolled a second time. Calculate the probability that a 6 is rolled both times.

(A) 0.174
(B) 0.250
(C) 0.292
(D) 0.380
(E) 0.417

Problem 18 ‡
This year, a medical insurance policyholder has probability 0.70 of having no
emergency room visits, 0.85 of having no hospital stays, and 0.61 of having
neither emergency room visits nor hospital stays.
Calculate the probability that the policyholder has at least one emergency
room visit and at least one hospital stay this year.

(A) 0.045
(B) 0.060
(C) 0.390
(D) 0.667
(E) 0.840
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Problem 19 ‡
In 1982 Abby’s mother scored at the 93rd percentile in the math SAT exam.
In 1982 the mean score was 503 and the variance of the scores was 9604.
In 2008 Abby took the math SAT and got the same numerical score as her
mother had received 26 years before. In 2008 the mean score was 521 and
the variance of the scores was 10,201.
Math SAT scores are normally distributed and stated in multiples of ten.
Calculate the percentile for Abby’s score.

(A) 89th
(B) 90th
(C) 91st
(D) 92nd
(E) 93rd

Problem 20 ‡
A car is new at the beginning of a calendar year. The time, in years, before
the car experiences its first failure is exponentially distributed with mean 2.
Calculate the probability that the car experiences its first failure in the last
quarter of some calendar year.

(A) 0.081
(B) 0.088
(C) 0.102
(D) 0.205
(E) 0.250

Problem 21 ‡
A policy covers a gas furnace for one year. During that year, only one of
three problems can occur:
i) The igniter switch may need to be replaced at a cost of 60. There is a 0.10
probability of this.
ii) The pilot light may need to be replaced at a cost of 200. There is a 0.05
probability of this.
iii) The furnace may need to be replaced at a cost of 3000. There is a 0.01
probability of this.
Calculate the deductible that would produce an expected claim payment of
30.



591

(A) 100
(B) At least 100 but less than 150
(C) At least 150 but less than 200
(D) At least 200 but less than 250
(E) At least 250

Problem 22 ‡
The profits of life insurance companies A and B are normally distributed
with the same mean. The variance of company B’s profit is 2.25 times the
variance of company A’s profit. The 14th percentile of company A’s profit is
the same as the pth percentile of company B’s profit. Calculate p.

(A) 5.3
(B) 9.3
(C) 21.0
(D) 23.6
(E) 31.6

Problem 23 ‡
The number of severe storms that strike city J in a year follows a binomial
distribution with n = 5 and p = 0.6. Given that m severe storms strike city
J in a year, the number of severe storms that strike city K in the same year
is: m with probability 1/2, m + 1 with probability 1/3, and m + 2 with
probability 1/6.
Calculate the expected number of severe storms that strike city J in a year
during which 5 severe storms strike city K.

(A) 3.5
(B) 3.7
(C) 3.9
(D) 4.0
(E) 5.7

Problem 24 ‡
Four distinct integers are chosen randomly and without replacement from the
first twelve positive integers. Let X be the random variable representing the
second largest of the four selected integers, and let p(x) be the probability
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mass function of X. Determine p(x), for integer values of x, where p(x) > 0.

(A) (x−1)(x−2)(12−x)
990

(B) (x−1)(x−2)(12−x)
495

(C) (x−1)(11−x)(12−x)
495

(D) (x−1)(11−x)(12−x)
990

(E) (10−x)(11−x)(12−x)
990

Problem 25 ‡
An actuary has done an analysis of all policies that cover two cars. 70% of
the policies are of type A for both cars, and 30% of the policies are of type B
for both cars. The number of claims on different cars across all policies are
mutually independent. The distributions of the number of claims on a car
are given in the following table.

Number of Claims Type A Type B
0 40% 25%
1 30% 25%
2 20% 25%
3 10% 25%

Four policies are selected at random. Calculate the probability that exactly
one of the four policies has the same number of claims on both covered cars.

(A) 0.104
(B) 0.250
(C) 0.285
(D) 0.417
(E) 0.739

Problem 26 ‡
A drawer contains four pairs of socks, with each pair a different color. One
sock at a time is randomly drawn from the drawer until a matching pair is
obtained. Calculate the probability that the maximum number of draws is
required.

(A) 0.0006
(B) 0.0095
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(C) 0.0417
(D) 0.1429
(E) 0.2286

Problem 27 ‡
Individuals purchase both collision and liability insurance on their automo-
biles. The value of the insured’s automobile is V. Assume the loss L on an
automobile claim is a random variable with cumulative distribution function

F (`) =

{
3
4

(
`
V

)3
, 0 ≤ ` < V

1− 1
10
e−

`−V
V , ` ≥ V.

Calculate the probability that the loss on a randomly selected claim is greater
than the value of the automobile.

(A) 0.00
(B) 0.10
(C) 0.25
(D) 0.75
(E) 0.90

Problem 28 ‡
A company provides each of its employees with a death benefit of 100. The
company purchases insurance that pays the cost of total death benefits in
excess of 400 per year. The number of employees who will die during the year
is a Poisson random variable with mean 2. Calculate the expected annual
cost to the company of providing the death benefits, excluding the cost of
the insurance.

(A) 171
(B) 189
(C) 192
(D) 200
(E) 208

Problem 29 ‡
For a certain insurance company, 10% of its policies are Type A, 50% are
Type B, and 40% are Type C. The annual number of claims for an individ-
ual Type A, Type B, and Type C policy follow Poisson distributions with
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respective means 1, 2, and 10. Let X represent the annual number of claims
of a randomly selected policy. Calculate the variance of X.

(A) 5.10
(B) 16.09
(C) 21.19
(D) 42.10
(E) 47.20

Problem 30 ‡
Let X be a continuous random variable with probability density function

f(x) =

{
λe−λx, x > 0

0, otherwise

where λ > 0. Let Y be the smallest integer greater than or equal to X. De-
termine the probability function of Y.

(A) 1− e−λy, y = 1, 2, 3, · · ·
(B) e−λy(eλ − 1), y = 1, 2, 3, · · ·
(C) e−λy(1− e−λ), y = 1, 2, 3, · · ·
(D) λe−λy y = 1, 2, 3, · · ·
(E) λye−λ

y!
, y = 1, 2, 3, · · ·

Problem 31 ‡
A city with borders forming a square with sides of length 1 has its city hall
located at the origin when a rectangular coordinate system is imposed on
the city so that two sides of the square are on the positive axes. The density
function of the population is

f(x, y) =

{
1.5(x2 + y2) for 0 < x, y < 1

0 otherwise.

A resident of the city can travel to the city hall only along a route whose
segments are parallel to the city borders.
Calculate the expected value of the travel distance to the city hall of a ran-
domly chosen resident of the city.

(A) 1/2
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(B) 3/4
(C) 1
(D) 5/4
(E) 3/2

Problem 32 ‡
Annual windstorm losses, X and Y, in two different regions are independent,
and each is uniformly distributed on the interval [0,10]. Calculate the covari-
ance of X and Y , given that X + Y < 10.

(A) −50/9
(B) −25/9
(C) 0
(D) 25/9
(E) 50/9

Problem 33 ‡
A loss under a liability policy is modeled by an exponential distribution. The
insurance company will cover the amount of that loss in excess of a deductible
of 2000. The probability that the reimbursement is less than 6000, given that
the loss exceeds the deductible, is 0.50.
Calculate the probability that the reimbursement is greater than 3000 but
less than 9000, given that the loss exceeds the deductible.

(A) 0.28
(B) 0.35
(C) 0.50
(D) 0.65
(E) 0.72
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Answers
1. D
2. A
3. B
4. C
5. D
6. C
7. C
8. E
9. B
10. C
11. B
12. D
13. B
14. B
15. B
16. E
17. C
18. B
19. B
20. D
21. C
22. D
23. C
24. A
25. D
26. E
27. B
28. C
29. C
30. B
31. D
32. B
33. B



Sample Exam 4

Duration: 3 hours

Problem 1 ‡
An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red
balls and an unknown number of blue balls. A single ball is drawn from each
urn. The probability that both balls are the same color is 0.44. Calculate
the number of blue balls in the second urn.

(A) 4
(B) 20
(C) 24
(D) 44
(E) 64

Problem 2 ‡
An insurer offers a health plan to the employees of a large company. As
part of this plan, the individual employees may choose exactly two of the
supplementary coverages A,B, and C, or they may choose no supplementary
coverage. The proportions of the company’s employees that choose coverages
A,B, and C are 1

4
, 1

3
, and , 5

12
respectively.

Determine the probability that a randomly chosen employee will choose no
supplementary coverage.

(A) 0
(B) 47/144

597
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(C) 1/2
(D) 97/144
(E) 7/9

Problem 3 ‡
A blood test indicates the presence of a particular disease 95% of the time
when the disease is actually present. The same test indicates the presence of
the disease 0.5% of the time when the disease is not present. One percent of
the population actually has the disease.
Calculate the probability that a person has the disease given that the test
indicates the presence of the disease.

(A) 0.324
(B) 0.657
(C) 0.945
(D) 0.950
(E) 0.995

Problem 4 ‡
A group insurance policy covers the medical claims of the employees of a
small company. The value, V, of the claims made in one year is described by

V = 100000Y

where Y is a random variable with density function

f(y) =

{
k(1− y)4 0 < y < 1

0 otherwise

where k is a constant.
What is the conditional probability that V exceeds 40,000, given that V ex-
ceeds 10,000?

(A) 0.08
(B) 0.13
(C) 0.17
(D) 0.20
(E) 0.51
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Problem 5 ‡
A device that continuously measures and records seismic activity is placed
in a remote region. The time, T, to failure of this device has the density
function

f(t) =

{
1
3
e−

t
3 0 ≤ x ≤ ∞

0 otherwise.

Since the device will not be monitored during its first two years of service,
the time to discovery of its failure is X = max (T, 2).
Calculate E(X).

(A) 2 + 1
3
e−6

(B) 2− 2e−
2
3 + 5e−

4
3

(C) 3

(D) 2 + 3e−
2
3

(E) 5

Problem 6 ‡
An actuary determines that the claim size for a certain class of accidents is
a continuous random variable, X, with moment generating function

MX(t) =
1

(1− 2500t)4
.

Calculate the standard deviation of the claim size for this class of accidents.

(A) 1,340
(B) 5,000
(C) 8,660
(D) 10,000
(E) 11,180

Problem 7 ‡
The time to failure of a component in an electronic device has an exponential
distribution with a median of four hours.
Calculate the probability that the component will work without failing for
at least five hours.

(A) 0.07
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(B) 0.29
(C) 0.38
(D) 0.42
(E) 0.57

Problem 8 ‡
A charity receives 2025 contributions. Contributions are assumed to be inde-
pendent and identically distributed with mean 3125 and standard deviation
250.
Calculate the approximate 90th percentile for the distribution of the total
contributions received.

(A) 6,328,000
(B) 6,338,000
(C) 6,343,000
(D) 6,784,000
(E) 6,977,000

Problem 9 ‡
An insurance company sells two types of auto insurance policies: Basic and
Deluxe. The time until the next Basic Policy claim is an exponential random
variable with mean two days. The time until the next Deluxe Policy claim
is an independent exponential random variable with mean three days.
What is the probability that the next claim will be a Deluxe Policy claim?

(A) 0.172
(B) 0.223
(C) 0.400
(D) 0.487
(E) 0.500

Problem 10 ‡
A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car,
the dealer also tries to persuade the customer to buy an extended warranty
for the car. Let X denote the number of luxury cars sold in a given day, and
let Y denote the number of extended warranties sold. Given the following
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information

P (X = 0, Y = 0) =
1

6

P (X = 1, Y = 0) =
1

12

P (X = 1, Y = 1) =
1

6

P (X = 2, Y = 0) =
1

12

P (X = 2, Y = 1) =
1

3

P (X = 2, Y = 2) =
1

6

What is the variance of X?

(A) 0.47
(B) 0.58
(C) 0.83
(D) 1.42
(E) 2.58

Problem 11 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
24xy 0 < x < 1, 0 < y < 1− x

0 otherwise.

Calculate P
(
Y < X|X = 1

3

)
.

(A) 1/27
(B) 2/27
(C) 1/4
(D) 1/3
(E) 4/9

Problem 12 ‡
An insurance policy is written to cover a loss X where X has density function

fX(x) =

{
3
8
x2 0 ≤ x ≤ 2
0 otherwise.



602 SAMPLE EXAM 4

The time T (in hours) to process a claim of size x, where 0 ≤ x ≤ 2, is
uniformly distributed on the interval from x to 2x.
Calculate the probability that a randomly chosen claim on this policy is pro-
cessed in three hours or more.

(A) 0.17
(B) 0.25
(C) 0.32
(D) 0.58
(E) 0.83

Problem 13 ‡
The value of a piece of factory equipment after three years of use is 100(0.5)X

where X is a random variable having moment generating function

MX(t) = 1
1−2t

for t < 1
2
.

Calculate the expected value of this piece of equipment after three years of
use.

(A) 12.5
(B) 25.0
(C) 41.9
(D) 70.7
(E) 83.8

Problem 14 ‡
Each time a hurricane arrives, a new home has a 0.4 probability of experi-
encing damage. The occurrences of damage in different hurricanes are inde-
pendent. Calculate the mode of the number of hurricanes it takes for the
home to experience damage from two hurricanes.

(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

Problem 15 ‡
An automobile insurance company issues a one-year policy with a deductible
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of 500. The probability is 0.8 that the insured automobile has no accident
and 0.0 that the automobile has more than one accident. If there is an acci-
dent, the loss before application of the deductible is exponentially distributed
with mean 3000.
Calculate the 95th percentile of the insurance company payout on this policy.

(A) 3466
(B) 3659
(C) 4159
(D) 8487
(E) 8987

Problem 16 ‡
An auto insurance policy has a deductible of 1 and a maximum claim pay-
ment of 5. Auto loss amounts follow an exponential distribution with mean
2. Calculate the expected claim payment made for an auto loss.

(A) 0.5e−2 − 0.5e−12

(B) 2e−
1
2 − 7e−3

(C) 2e−
1
2 − 2e−3

(D) 2e−
1
2

(E) 3e−
1
2 − 2e−3

Problem 17 ‡
An insurance agent meets twelve potential customers independently, each of
whom is equally likely to purchase an insurance product. Six are interested
only in auto insurance, four are interested only in homeowners insurance,
and two are interested only in life insurance.
The agent makes six sales. Calculate the probability that two are for auto
insurance, two are for homeowners insurance, and two are for life insurance.

(A) 0.001
(B) 0.024
(C) 0.069
(D) 0.097
(E) 0.500

Problem 18 ‡
An insurer offers a travelers insurance policy. Losses under the policy are



604 SAMPLE EXAM 4

uniformly distributed on the interval [0,5]. The insurer reimburses a policy-
holder for a loss up to a maximum of 4.
Determine the cumulative distribution function, F, of the benefit that the
insurer pays a policyholder who experiences exactly one loss under the policy.

(A)

F (x) =


0, x < 0

0.20x, 0 ≤ x < 4
1 x ≥ 4

(B)

F (x) =


0, x < 0

0.20x, 0 ≤ x < 5
1 x ≥ 5

(C)

F (x) =


0, x < 0

0.25x, 0 ≤ x < 4
1 x ≥ 4

(D)

F (x) =


0, x < 0

0.5x, 0 ≤ x < 5
1 x ≥ 5

(E)

F (x) =


0, x < 1

0.25x, 1 ≤ x < 5
1 x ≥ 5

Problem 19 ‡
A certain brand of refrigerator has a useful life that is normally distributed
with mean 10 years and standard deviation 3 years. The useful lives of these
refrigerators are independent. Calculate the probability that the total useful
life of two randomly selected refrigerators will exceed 1.9 times the useful life
of a third randomly selected refrigerator.

(A) 0.407
(B) 0.444
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(C) 0.556
(D) 0.593
(E) 0.604

Problem 20 ‡
In a shipment of 20 packages, 7 packages are damaged. The packages are
randomly inspected, one at a time, without replacement, until the fourth
damaged package is discovered. Calculate the probability that exactly 12
packages are inspected.

(A) 0.079
(B) 0.119
(C) 0.237
(D) 0.243
(E) 0.358

Problem 21 ‡
On a block of ten houses, k are not insured. A tornado randomly damages
three houses on the block. The probability that none of the damaged houses
are insured is 1/120. Calculate the probability that at most one of the dam-
aged houses is insured.

(A) 1/5
(B) 7/40
(C) 11/60
(D) 49/60
(E) 119/120

Problem 22 ‡
The distribution of values of the retirement package offered by a company to
new employees is modeled by the probability density function

fX(x) =

{
1
5
e−

(x−5)
5 , x ≥ 5,

0 otherwise

Calculate the variance of the retirement package value for a new employee,
given that the value is at least 10.

(A) 15
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(B) 20
(C) 25
(D) 30
(E) 35

Problem 23 ‡
Let X denote the proportion of employees at a large firm who will choose to
be covered under the firm’s medical plan, and let Y denote the proportion
who will choose to be covered under both the firm’s medical and dental
plans.
Suppose that for 0 ≤ y ≤ x ≤ 1, X and Y have the joint cumulative
distribution function

FXY (x, y) = y(x2 + xy − y2).

Calculate the expected proportion of employees who will choose to be cov-
ered under both plans.

(A) 0.06
(B) 0.33
(C) 0.42
(D) 0.50
(E) 0.75

Problem 24 ‡
An insurance policy covers losses incurred by a policyholder, subject to a
deductible of 10,000. Incurred losses follow a normal distribution with mean
12,000 and standard deviation c. The probability that a loss is less than k
is 0.9582, where k is a constant. Given that the loss exceeds the deductible,
there is a probability of 0.9500 that it is less than k.
Calculate c.

(A) 2045
(B) 2267
(C) 2393
(D) 2505
(E) 2840

Problem 25 ‡
A company sells two types of life insurance policies (P and Q) and one type
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of health insurance policy. A survey of potential customers revealed the fol-
lowing:
i) No survey participant wanted to purchase both life policies.
ii) Twice as many survey participants wanted to purchase life policy P as
life policy Q.
iii) 45% of survey participants wanted to purchase the health policy.
iv) 18% of survey participants wanted to purchase only the health policy.
v) The event that a survey participant wanted to purchase the health policy
was independent of the event that a survey participant wanted to purchase
a life policy.
Calculate the probability that a randomly selected survey participant wanted
to purchase exactly one policy.

(A) 0.51
(B) 0.60
(C) 0.69
(D) 0.73
(E) 0.78

Problem 26 ‡
At a mortgage company, 60% of calls are answered by an attendant. The
remaining 40% of callers leave their phone numbers. Of these 40%, 75% re-
ceive a return phone call the same day. The remaining 25% receive a return
call the next day.
Of those who initially spoke to an attendant, 80% will apply for a mortgage.
Of those who received a return call the same day, 60% will apply. Of those
who received a return call the next day, 40% will apply.
Calculate the probability that a person initially spoke to an attendant, given
that he or she applied for a mortgage.

(A) 0.06
(B) 0.26
(C) 0.48
(D) 0.60
(E) 0.69

Problem 27 ‡
The lifetime of a machine part is exponentially distributed with a mean of
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five years. Calculate the mean lifetime of the part, given that it survives less
than ten years.

(A) 0.865
(B) 1.157
(C) 2.568
(D) 2.970
(E) 3.435

Problem 28 ‡
The number of burglaries occurring on Burlington Street during a one-year
period is Poisson distributed with mean 1. Calculate the expected number
of burglaries on Burlington Street in a one-year period, given that there are
at least two burglaries.

(A) 0.63
(B) 2.39
(C) 2.54
(D) 3.00
(E) 3.78

Problem 29 ‡
The number of tornadoes in a given year follows a Poisson distribution with
mean 3. Calculate the variance of the number of tornadoes in a year given
that at least one tornado occurs.

(A) 1.63
(B) 1.73
(C) 2.66
(D) 3.00
(E) 3.16

Problem 30 ‡
Batteries A and B have lifetimes that are independent and exponentially
distributed with a common mean of m years. The probability that battery
B outlasts battery A by more than one year is 0.33. Calculate m.

(A) 0.42
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(B) 0.59
(C) 0.90
(D) 1.80
(E) 2.41

Problem 31 ‡
A couple takes out a medical insurance policy that reimburses them for days
of work missed due to illness. Let X and Y denote the number of days missed
during a given month by the wife and husband, respectively. The policy pays
a monthly benefit of 50 times the maximum of X and Y, subject to a benefit
limit of 100. X and Y are independent, each with a discrete uniform distri-
bution on the set {0, 1, 2, 3, 4}. Calculate the expected monthly benefit for
missed days of work that is paid to the couple.

(A) 70
(B) 90
(C) 92
(D) 95
(E) 140

Problem 32 ‡
Let X be a random variable that takes on the values −1, 0, and 1 with equal
probabilities. Let Y = X2. Which of the following is true?
(A) Cov(X, Y ) > 0; the random variables X and Y are dependent.
(B) Cov(X, Y ) > 0; the random variables X and Y are independent.
(C) Cov(X, Y ) = 0; the random variables X and Y are dependent.
(D) Cov(X, Y ) = 0; the random variables X and Y are independent.
(E) Cov(X, Y ) < 0; the random variables X and Y are dependent.
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Answers
1. A
2. C
3. B
4. B
5. D
6. B
7. D
8. C
9. C
10. B
11. C
12. A
13. C
14. B
15. B
16. C
17. D
18. A
19. C
20. B
21. C
22. C
23. C
24. A
25. A
26. E
27. E
28. B
29. C
30. E
31. B
32. C



Sample Exam 5

Duration: 3 hours

Problem 1 ‡
An auto insurance has 10,000 policyholders. Each policyholder is classified
as

(i) young or old;
(ii) male or female;
(iii) married or single.

Of these policyholders, 3,000 are young, 4,600 are male, and 7,000 are mar-
ried. The policyholders can also be classified as 1,320 young males, 3,010
married males, and 1,400 young married persons. Finally, 600 of the policy-
holders are young married males.
How many of the company’s policyholders are young, female, and single?

(A) 280
(B) 423
(C) 486
(D) 880
(E) 896 6.

Problem 2 ‡
An insurance company determines that N, the number of claims received
in a week, is a random variable with P [N = n] = 1

2n+1 , where n ≥ 0. The
company also determines that the number of claims received in a given week

611
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is independent of the number of claims received in any other week.
Determine the probability that exactly seven claims will be received during
a given two-week period.

(A) 1/256
(B) 1/128
(C) 7/512
(D) 1/64
(E) 1/32

Problem 3 ‡
The probability that a randomly chosen male has a blood circulation prob-
lem is 0.25 . Males who have a blood circulation problem are twice as likely
to be smokers as those who do not have a blood circulation problem.
What is the conditional probability that a male has a blood circulation prob-
lem, given that he is a smoker?

(A) 1/4
(B) 1/3
(C) 2/5
(D) 1/2
(E) 2/3

Problem 4 ‡
The lifetime of a printer costing 200 is exponentially distributed with mean 2
years. The manufacturer agrees to pay a full refund to a buyer if the printer
fails during the first year following its purchase, and a one-half refund if it
fails during the second year.
If the manufacturer sells 100 printers, how much should it expect to pay in
refunds?

(A) 6,321
(B) 7,358
(C) 7,869
(D) 10,256
(E) 12,642

Problem 5 ‡
A piece of equipment is being insured against early failure. The time from
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purchase until failure of the equipment has density function

f(t) =

{
1
10
e−

t
10 0 < t <∞

0 otherwise.

The insurance will pay an amount x if the equipment fails during the first
year, and it will pay 0.5x if failure occurs during the second or third year. If
failure occurs after the first three years, no payment will be made.
Calculate x such that the expected payment made under this insurance is
1000.

(A) 3858
(B) 4449
(C) 5382
(D) 5644
(E) 7235

Problem 6 ‡
A company insures homes in three cities, J, K, and L . Since sufficient distance
separates the cities, it is reasonable to assume that the losses occurring in
these cities are independent.
The moment generating functions for the loss distributions of the cities are:

MJ(t) =(1− 2t)−3

MK(t) =(1− 2t)−2.5

ML(t) =(1− 2t)−4.5

Let X represent the combined losses from the three cities. Calculate E(X3).

(A) 1,320
(B) 2,082
(C) 5,760
(D) 8,000
(E) 10,560

Problem 7 ‡
Claims filed under auto insurance policies follow a normal distribution with
mean 19,400 and standard deviation 5,000.
Calculate the probability that the average of 25 randomly selected claims
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exceeds 20,000.

(A) 0.01
(B) 0.15
(C) 0.27
(D) 0.33
(E) 0.45

Problem 8 ‡
An insurance company insures a large number of drivers. Let X be the
random variable representing the company’s losses under collision insurance,
and let Y represent the company’s losses under liability insurance. X and Y
have joint density function

fXY (x, y) =

{
2x+2−y

4
0 < x < 1, 0 < y < 2

0 otherwise

What is the probability that the total loss is at least 1?

(A) 0.33
(B) 0.38
(C) 0.41
(D) 0.71
(E) 0.75

Problem 9 ‡
The profit for a new product is given by Z = 3X − Y − 5 where X and Y
are independent random variables with Var(X) = 1 and Var(Y ) = 2.
Calculate Var(Z).

(A) 1
(B) 5
(C) 7
(D) 11
(E) 16

Problem 10 ‡
Once a fire is reported to a fire insurance company, the company makes an
initial estimate, X, of the amount it will pay to the claimant for the fire loss.
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When the claim is finally settled, the company pays an amount, Y, to the
claimant. The company has determined that X and Y have the joint density
function

fXY (x, y) =

{
2

x2(x−1)
y−(2x−1)/(x−1) x > 1, y > 1

0 otherwise.

Given that the initial claim estimated by the company is 2, determine the
probability that the final settlement amount is between 1 and 3 .

(A) 1/9
(B) 2/9
(C) 1/3
(D) 2/3
(E) 8/9

Problem 11 ‡
Let X represent the age of an insured automobile involved in an accident.
Let Y represent the length of time the owner has insured the automobile at
the time of the accident. X and Y have joint probability density function

fXY (x, y) =

{
1
64

(10− xy2) 2 ≤ x ≤ 10, 0 ≤ y ≤ 1
0 otherwise.

Calculate the expected age of an insured automobile involved in an accident.

(A) 4.9
(B) 5.2
(C) 5.8
(D) 6.0
(E) 6.4

Problem 12 ‡
Let N1 and N2 represent the numbers of claims submitted to a life insurance
company in April and May, respectively. The joint probability function of
N1 and N2 is

P (n1, n2) =

{
3
4

(
1
4

)n1−1
e−n1(1− e−n1)n2−1, for n1 = 1, 2, 3, · · · and n2 = 1, 2, 3, · · ·

0 otherwise.

Calculate the expected number of claims that will be submitted to the com-
pany in May if exactly 2 claims were submitted in April.
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(A) 3
16

(e2 − 1)
(B) 3

16
e2

(C) 3e
4−e

(D) e2 − 1
(E) e2

Problem 13 ‡
Thirty items are arranged in a 6-by-5 array as shown.

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16 A17 A18 A19 A20

A21 A22 A23 A24 A25

A26 A27 A28 A29 A30

Calculate the number of ways to form a set of three distinct items such that
no two of the selected items are in the same row or same column.

(A) 200
(B) 760
(C) 1200
(D) 4560
(E) 7200

Problem 14 ‡
From 27 pieces of luggage, an airline luggage handler damages a random
sample of four. The probability that exactly one of the damaged pieces of
luggage is insured is twice the probability that none of the damaged pieces
are insured. Calculate the probability that exactly two of the four damaged
pieces are insured.

(A) 0.06
(B) 0.13
(C) 0.27
(D) 0.30
(E) 0.31
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Problem 15 ‡
An actuary analyzes a company’s annual personal auto claims, M, and
annual commercial auto claims, N. The analysis reveals that Var(M) =
1600, Var(N) = 900, and the correlation between M and N is 0.64. Calcu-
late Var(M +N).

(A) 768
(B) 2500
(C) 3268
(D) 4036
(E) 4420

Problem 16 ‡
The return on two investments, X and Y, follows the joint probability density
function

fXY (x, y) =

{
1
2
, 0 < |x|+ |y| < 1

0, otherwise.

Calculate Var(X).

(A) 1/6
(B) 1/3
(C) 1/2
(D) 2/3
(E) 5/6

Problem 17 ‡
A company issues auto insurance policies. There are 900 insured individuals.
Fifty-four percent of them are male. If a female is randomly selected from
the 900, the probability she is over 25 years old is 0.43. There are 395 total
insured individuals over 25 years old.
A person under 25 years old is randomly selected. Calculate the probability
that the person selected is male.

(A) 0.47
(B) 0.53
(C) 0.54
(D) 0.55
(E) 0.56
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Problem 18 ‡
A fire in an apartment building results in a loss, X, to the owner and a
loss, Y, to the tenants. The variables X and Y have a bivariate normal dis-
tribution with E(X) = 40, Var(X) = 76, E(Y ) = 30, Var(Y ) = 32, and
Var(X|Y = 28.5) = 57. Calculate Var(Y |X = 25).

(A) 13
(B) 24
(C) 32
(D) 50
(E) 57

Problem 19 ‡
A theme park conducts a study of families that visit the park during a year.
The fraction of such families of size m is 8−m

28
, m = 1, 2, 3, 4, 5, 6, and 7.

For a family of size m that visits the park, the number of members of the
family that ride the roller coaster follows a discrete uniform distribution on
the set {1, · · · ,m}.
Calculate the probability that a family visiting the park has exactly six mem-
bers, given that exactly five members of the family ride the roller coaster

(A) 0.17
(B) 0.21
(C) 0.24
(D) 0.28
(E) 0.31

Problem 20 ‡
In a casino game, a gambler selects four different numbers from the first
twelve positive integers. The casino then randomly draws nine numbers
without replacement from the first twelve positive integers. The gambler
wins the jackpot if the casino draws all four of the gambler’s selected num-
bers.
Calculate the probability that the gambler wins the jackpot.

(A) 0.002
(B) 0.255
(C) 0.296
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(D) 0.573
(E) 0.625

Problem 21 ‡
Insurance companies A and B each earn an annual profit that is normally
distributed with the same positive mean. The standard deviation of com-
pany A’s annual profit is one half of its mean.
In a given year, the probability that company B has a loss (negative profit)
is 0.9 times the probability that company A has a loss.
Calculate the ratio of the standard deviation of company B’s annual profit
to the standard deviation of company A’s annual profit.

(A) 0.49
(B) 0.90
(C) 0.98
(D) 1.11
(E) 1.71

Problem 22 ‡
Let N denote the number of accidents occurring during one month on the
northbound side of a highway and let S denote the number occurring on the
southbound side.
Suppose that N and S are jointly distributed as indicated in the table.

N\S 0 1 2 3 or more
0 0.04 0.06 0.10 0.04
1 0.10 0.18 0.08 0.03
2 0.12 0.06 0.05 0.02

3 or more 0.05 0.04 0.02 0.01

Calculate P (N |N + S = 2).

(A) 0.48
(B) 0.55
(C) 0.67
(D) 0.91
(E) 1.25
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Problem 23 ‡
Losses covered by an insurance policy have the density function

f(x) =

{
0.001 0 ≤ x ≤ 1000

0 otherwise.

An insurance company reimburses losses in excess of a deductible of 250.
Calculate the difference between the median and the 20th percentile of the
insurance company reimbursement, over all losses.

(A) 225
(B) 250
(C) 300
(D) 375
(E) 500

Problem 24 ‡
A state is starting a lottery game. To enter this lottery, a player uses a
machine that randomly selects six distinct numbers from among the first 30
positive integers. The lottery randomly selects six distinct numbers from the
same 30 positive integers. A winning entry must match the same set of six
numbers that the lottery selected. The entry fee is 1, each winning entry
receives a prize amount of 500,000, and all other entries receive no prize.
Calculate the probability that the state will lose money, given that 800,000
entries are purchased.

(A) 0.33
(B) 0.39
(C) 0.61
(D) 0.67
(E) 0.74

Problem 25 ‡
An insurance company studies back injury claims from a manufacturing com-
pany. The insurance company finds that 40% of workers do no lifting on the
job, 50% do moderate lifting and 10% do heavy lifting. During a given year,
the probability of filing a claim is 0.05 for a worker who does no lifting, 0.08
for a worker who does moderate lifting and 0.20 for a worker who does heavy
lifting. A worker is chosen randomly from among those who have filed a back
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injury claim.
Calculate the probability that the worker’s job involves moderate or heavy
lifting.

(A) 0.75
(B) 0.81
(C) 0.85
(D) 0.86
(E) 0.89

Problem 26 ‡
Let X be a random variable with density function

f(x) =

{
2e−2x, x > 0

0, otherwise.

Calculate P (X ≤ 0.5|X ≤ 1.0).

(A) 0.433
(B) 0.547
(C) 0.632
(D) 0.731
(E) 0.865

Problem 27 ‡
Losses incurred by a policyholder follow a normal distribution with mean
20,000 and standard deviation 4,500. The policy covers losses, subject to a
deductible of 15,000. Calculate the 95th percentile of losses that exceed the
deductible. Round your answer to the nearest hundreds.

(A) 27,400
(B) 27,700
(C) 28,100
(D) 28,400
(E) 28,800

Problem 28 ‡
A government employee’s yearly dental expense follows a uniform distribu-
tion on the interval from 200 to 1200. The government’s primary dental plan
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reimburses an employee for up to 400 of dental expense incurred in a year,
while a supplemental plan pays up to 500 of any remaining dental expense.
Let Y represent the yearly benefit paid by the supplemental plan to a gov-
ernment employee. Calculate Var(Y ).

(A) 20,833
(B) 26,042
(C) 41,042
(D) 53,333
(E) 83,333

Problem 29 ‡
A car and a bus arrive at a railroad crossing at times independently and
uniformly distributed between 7:15 and 7:30. A train arrives at the crossing
at 7:20 and halts traffic at the crossing for five minutes. Calculate the prob-
ability that the waiting time of the car or the bus at the crossing exceeds
three minutes.

(A) 0.25
(B) 0.27
(C) 0.36
(D) 0.40
(E) 0.56

Problem 30 ‡
An individual experiences a loss due to property damage and a loss due to
bodily injury. Losses are independent and uniformly distributed on the in-
terval [0,3]. Calculate the expected loss due to bodily injury, given that at
least one of the losses is less than 1.

(A) 0.50
(B) 1.00
(C) 1.10
(D) 1.25
(E) 1.50

Problem 31 ‡
Losses follow an exponential distribution with mean 1. Two independent
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losses are observed.
Calculate the expected value of the smaller loss.

(A) 0.25
(B) 0.50
(C) 0.75
(D) 1.00
(E) 1.50

Problem 32 ‡
An insurance company sells an auto insurance policy that covers losses in-
curred by a policyholder, subject to a deductible of 100 . The cumulative
distribution function for the incurred losses is given by

F (x) = 1− e−
1

300
x, x > 0

and 0 otherwise. What is the 95th percentile of actual losses that exceed the
deductible?

(A) 600
(B) 700
(C) 800
(D) 900
(E) 1000
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Answers
1. D
2. D
3. C
4. D
5. D
6. E
7. C
8. D
9. D
10. E
11. C
12. E
13. C
14. C
15. D
16. A
17. B
18. B
19. E
20. B
21. C
22. B
23. B
24. B
25. A
26. D
27. B
28. C
29. A
30. C
31. B
32. E



Sample Exam 6

Duration: 3 hours

Problem 1 ‡
A public health researcher examines the medical records of a group of 937
men who died in 1999 and discovers that 210 of the men died from causes
related to heart disease. Moreover, 312 of the 937 men had at least one
parent who suffered from heart disease, and, of these 312 men, 102 died from
causes related to heart disease.
Determine the probability that a man randomly selected from this group died
of causes related to heart disease, given that neither of his parents suffered
from heart disease.
(A) 0.115
(B) 0.173
(C) 0.224
(D) 0.327
(E) 0.514

Problem 2 ‡
An insurance company pays hospital claims. The number of claims that
include emergency room or operating room charges is 85% of the total num-
ber of claims. The number of claims that do not include emergency room
charges is 25% of the total number of claims. The occurrence of emergency
room charges is independent of the occurrence of operating room charges on
hospital claims.
Calculate the probability that a claim submitted to the insurance company

625
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includes operating room charges.

(A) 0.10
(B) 0.20
(C) 0.25
(D) 0.40
(E) 0.80

Problem 3 ‡
A study of automobile accidents produced the following data:

Probability of
Model Proportion of involvement
year all vehicles in an accident
1997 0.16 0.05
1998 0.18 0.02
1999 0.20 0.03
Other 0.46 0.04

An automobile from one of the model years 1997, 1998, and 1999 was in-
volved in an accident. Determine the probability that the model year of this
automobile is 1997.

(A) 0.22
(B) 0.30
(C) 0.33
(D) 0.45
(E) 0.50

Problem 4 ‡
An insurance company insures a large number of homes. The insured value,
X, of a randomly selected home is assumed to follow a distribution with
density function

f(x) =

{
3x−4 x > 1

0 otherwise.

Given that a randomly selected home is insured for at least 1.5, what is the
probability that it is insured for less than 2 ?

(A) 0.578
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(B) 0.684
(C) 0.704
(D) 0.829
(E) 0.875

Problem 5 ‡
An insurance policy on an electrical device pays a benefit of 4000 if the de-
vice fails during the first year. The amount of the benefit decreases by 1000
each successive year until it reaches 0 . If the device has not failed by the
beginning of any given year, the probability of failure during that year is 0.4.
What is the expected benefit under this policy?

(A) 2234
(B) 2400
(C) 2500
(D) 2667
(E) 2694

Problem 6 ‡
A loss random variable X has the density function

f(x) =

{
2.5(200)2.5

x3.5
x > 200

0 otherwise.

Calculate the difference between the 30th and 70th percentiles of X.

(A) 35
(B) 93
(C) 124
(D) 231
(E) 298

Problem 7 ‡
The time, T, that a manufacturing system is out of operation has cumulative
distribution function

F (t) =

{
1−

(
2
t

)2
t > 2

0 otherwise
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The resulting cost to the company is Y = T 2. Determine the density function
of Y, for y > 4.

(A) 4
y2

(B) 8

y
3
2

(C) 8
y3

(D) 16
y

(E) 1024
y5

Problem 8 ‡
An insurance company issues 1250 vision care insurance policies. The number
of claims filed by a policyholder under a vision care insurance policy during
one year is a Poisson random variable with mean 2. Assume the numbers of
claims filed by distinct policyholders are independent of one another.
What is the approximate probability that there is a total of between 2450
and 2600 claims during a one-year period?

(A) 0.68
(B) 0.82
(C) 0.87
(D) 0.95
(E) 1.00

Problem 9 ‡
Two insurers provide bids on an insurance policy to a large company. The
bids must be between 2000 and 2200 . The company decides to accept the
lower bid if the two bids differ by 20 or more. Otherwise, the company will
consider the two bids further. Assume that the two bids are independent
and are both uniformly distributed on the interval from 2000 to 2200.
Determine the probability that the company considers the two bids further.

(A) 0.10
(B) 0.19
(C) 0.20
(D) 0.41
(E) 0.60
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Problem 10 ‡
A company has two electric generators. The time until failure for each gen-
erator follows an exponential distribution with mean 10. The company will
begin using the second generator immediately after the first one fails.
Calculate the variance of the total time that the generators produce electric-
ity.

(A) 10
(B) 20
(C) 50
(D) 100
(E) 200

Problem 11 ‡
A company offers a basic life insurance policy to its employees, as well as a
supplemental life insurance policy. To purchase the supplemental policy, an
employee must first purchase the basic policy.
Let X denote the proportion of employees who purchase the basic policy, and
Y the proportion of employees who purchase the supplemental policy. Let
X and Y have the joint density function fXY (x, y) = 2(x+ y) on the region
where the density is positive.
Given that 10% of the employees buy the basic policy, what is the probability
that fewer than 5% buy the supplemental policy?

(A) 0.010
(B) 0.013
(C) 0.108
(D) 0.417
(E) 0.500

Problem 12 ‡
A device contains two circuits. The second circuit is a backup for the first,
so the second is used only when the first has failed. The device fails when
and only when the second circuit fails.
Let X and Y be the times at which the first and second circuits fail, respec-
tively. X and Y have joint probability density function

fXY (x, y) =

{
6e−xe−2y 0 < x < y <∞

0 otherwise.
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What is the expected time at which the device fails?

(A) 0.33
(B) 0.50
(C) 0.67
(D) 0.83
(E) 1.50

Problem 13 ‡
A store has 80 modems in its inventory, 30 coming from Source A and the
remainder from Source B. Of the modems from Source A, 20% are defective.
Of the modems from Source B, 8% are defective.
Calculate the probability that exactly two out of a random sample of five
modems from the store’s inventory are defective.

(A) 0.010
(B) 0.078
(C) 0.102
(D) 0.105
(E) 0.125

Problem 14 ‡
An auto insurance company is implementing a new bonus system. In each
month, if a policyholder does not have an accident, he or she will receive a
5.00 cash-back bonus from the insurer.
Among the 1,000 policyholders of the auto insurance company, 400 are clas-
sified as low-risk drivers and 600 are classified as high-risk drivers.
In each month, the probability of zero accidents for high-risk drivers is 0.80
and the probability of zero accidents for low-risk drivers is 0.90.
Calculate the expected bonus payment from the insurer to the 1000 policy-
holders in one year.

(A) 48,000
(B) 50,400
(C) 51,000
(D) 54,000
(E) 60,000
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Problem 15 ‡
Let X represent the number of customers arriving during the morning hours
and let Y represent the number of customers arriving during the afternoon
hours at a diner. You are given:
(i) X and Y are Poisson distributed.
(ii) The first moment of X is less than the first moment of Y by 8.
(iii) The second moment of X is 60% of the second moment of Y.
Calculate the variance of Y.

(A) 4
(B) 12
(C) 16
(D) 27
(E) 35

Problem 16 ‡
The joint probability density function of X and Y is given by

fXY (x, y) =

{
x+y

8
0 < x < 2, 0 < y < 2

0 otherwise.

Calculate Var(0.5(X + Y )).

(A) 10/72
(B) 11/72
(C) 12/72
(D) 20/72
(E) 22/72

Problem 17 ‡
In a given region, the number of tornadoes in a one-week period is modeled
by a Poisson distribution with mean 2. The numbers of tornadoes in different
weeks are mutually independent.
Calculate the probability that fewer than four tornadoes occur in a three-
week period.

(A) 0.13
(B) 0.15
(C) 0.29
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(D) 0.43
(E) 0.86

Problem 18 ‡
An insurance company insures red and green cars. An actuary compiles the
following data:

Color of car Red Green
Number insured 300 700

Probability an accident occurs 0.10 0.05
Probability that the claim exceeds
the deductible, given an accident 0.90 0.80

occurs from this group

The actuary randomly picks a claim from all claims that exceed the de-
ductible. Calculate the probability that the claim is on a red car.

(A) 0.300
(B) 0.462
(C) 0.491
(D) 0.667
(E) 0.692

Problem 19 ‡
Losses covered by a flood insurance policy are uniformly distributed on the
interval [0,2]. The insurer pays the amount of the loss in excess of a de-
ductible d. The probability that the insurer pays at least 1.20 on a random
loss is 0.30.
Calculate the probability that the insurer pays at least 1.44 on a random loss.

(A) 0.06
(B) 0.16
(C) 0.18
(D) 0.20
(E) 0.28

Problem 20 ‡
The following information is given about a group of high-risk borrowers.
i) Of all these borrowers, 30% defaulted on at least one student loan.
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ii) Of the borrowers who defaulted on at least one car loan, 40% defaulted
on at least one student loan.
iii) Of the borrowers who did not default on any student loans, 28% defaulted
on at least one car loan.
A statistician randomly selects a borrower from this group and observes that
the selected borrower defaulted on at least one student loan.
Calculate the probability that the selected borrower defaulted on at least one
car loan.

(A) 0.33
(B) 0.40
(C) 0.44
(D) 0.65
(E) 0.72

Problem 21 ‡
The number of days an employee is sick each month is modeled by a Poisson
distribution with mean 1. The numbers of sick days in different months are
mutually independent.
Calculate the probability that an employee is sick more than two days in a
three-month period.

(A) 0.199
(B) 0.224
(C) 0.423
(D) 0.577
(E) 0.801

Problem 22 ‡
Let X represent the number of policies sold by an agent in a day. The
moment generating function of X is

MX(t) = 0.45et + 0.35e2t + 0.15e3t + 0.05e4t, −∞ < t <∞.

Calculate the standard deviation of X.

(A) 0.76
(B) 0.87
(C) 1.48
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(D) 1.80
(E) 4.00

Problem 23 ‡
An insurance company sells automobile liability and collision insurance. Let
X denote the percentage of liability policies that will be renewed at the end
of their terms and Y the percentage of collision policies that will be renewed
at the end of their terms. X and Y have the joint cumulative distribution
function

FXY (x, y) =
xy(x+ y)

2, 000, 000
, 0 ≤ x ≤ 100, 0 ≤ y ≤ 100.

Calculate Var(X).

(A) 764
(B) 833
(C) 3402
(D) 4108
(E) 4167

Problem 24 ‡
The annual profits that company A and company B earn follow a bivariate
normal distribution. Company A′s annual profit has mean 2000 and standard
deviation 1000. Company B′s annual profit has mean 3000 and standard de-
viation 500. The correlation coefficient between these annual profits is 0.80.
Calculate the probability that company B′s annual profit is less than 3900,
given that company A′s annual profit is 2300.

(A) 0.8531
(B) 0.9192
(C) 0.9641
(D) 0.9744
(E) 0.9953

Problem 25 ‡
A life insurance company has found there is a 3% probability that a randomly
selected application contains an error. Assume applications are mutually in-
dependent in this respect. An auditor randomly selects 100 applications.
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Calculate the probability that 95% or less of the selected applications are
error-free.

(A) 0.08
(B) 0.10
(C) 0.13
(D) 0.15
(E) 0.18

Problem 26 ‡
The number of traffic accidents occurring on any given day in Coralville is
Poisson distributed with mean 5. The probability that any such accident
involves an uninsured driver is 0.25, independent of all other such accidents.
Calculate the probability that on a given day in Coralville there are no traffic
accidents that involve an uninsured driver.

(A) 0.007
(B) 0.010
(C) 0.124
(D) 0.237
(E) 0.287

Problem 27 ‡
Events E and F are independent with P (E) = 0.84 and P (F ) = 0.65. Cal-
culate the probability that exactly one of the two events occurs.

(A) 0.056
(B) 0.398
(C) 0.546
(D) 0.650
(E) 0.944

Problem 28 ‡
For a certain health insurance policy, losses are uniformly distributed on the
interval [0,450]. The policy has a deductible of d and the expected value of
the unreimbursed portion of a loss is 56. Calculate d.

(A) 60
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(B) 87
(C) 112
(D) 169
(E) 224

Problem 29 ‡
Under a liability insurance policy, losses are uniformly distributed on [0, b],
where b is a positive constant. There is a deductible of 0.5b. Calculate the
ratio of the variance of the claim payment (greater than or equal to zero)
from a given loss to the variance of the loss.

(A) 1:8
(B) 3:16
(C) 1:4
(D) 5:16
(E) 1:2

Problem 30 ‡
An insurance company sells automobile liability and collision insurance. Let
X denote the percentage of liability policies that will be renewed at the end
of their terms and Y the percentage of collision policies that will be renewed
at the end of their terms. X and Y have the joint cumulative distribution
function

FXY (x, y) =
xy(x+ y)

2, 000, 000
, 0 ≤ x ≤ 100, 0 ≤ y ≤ 100.

Calculate Var(X).

(A) 0.072
(B) 0.200
(C) 0.280
(D) 0.360
(E) 0.488

Problem 31 ‡
The table below shows the joint probability function of a sailor’s number of
boating accidents X and number of hospitalizations from these accidents Y
for this year.
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Y \X 0 1 2 3
0 0.70 0 0 0
1 0.15 0.05 0 0
2 0.06 0.02 0.01 0
3 0.005 0.002 0.002 0.001

Calculate the sailor’s expected number of hospitalizations from boating ac-
cidents this year.

(A) 0.085
(B) 0.099
(C) 0.410
(D) 1.000
(E) 1.500

Problem 32 ‡
A delivery service owns two cars that consume 15 and 30 miles per gallon.
Fuel costs 3 per gallon. On any given business day, each car travels a number
of miles that is independent of the other and is normally distributed with
mean 25 miles and standard deviation 3 miles. Calculate the probability that
on any given business day, the total fuel cost to the delivery service will be
less than 7.

(A) 0.13
(B) 0.23
(C) 0.29
(D) 0.38
(E) 0.47
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Answers
1. B
2. D
3. D
4. A
5. E
6. B
7. A
8. B
9. B
10. E
11. D
12. D
13. C
14. B
15. E
16. A
17. B
18. C
19. C
20. C
21. D
22. B
23. A
24. E
25. E
26. E
27. B
28. A
29. D
30. A
31. B
32. B
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Duration: 3 hours

Problem 1 ‡
An insurance company estimates that 40% of policyholders who have only
an auto policy will renew next year and 60% of policyholders who have only
a homeowners policy will renew next year. The company estimates that 80%
of policyholders who have both an auto and a homeowners policy will renew
at least one of those policies next year. Company records show that 65% of
policyholders have an auto policy, 50% of policyholders have a homeowners
policy, and 15% of policyholders have both an auto and a homeowners policy.
Using the company’s estimates, calculate the percentage of policyholders that
will renew at least one policy next year.

(A) 20%
(B) 29%
(C) 41%
(D) 53%
(E) 70%

Problem 2 ‡
Two instruments are used to measure the height, h, of a tower. The error
made by the less accurate instrument is normally distributed with mean 0
and standard deviation 0.0056h. The error made by the more accurate instru-
ment is normally distributed with mean 0 and standard deviation 0.0044h.
The errors from the two instruments are independent of each other.

639
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Calculate the probability that the average value of the two measurements is
within 0.005h of the height of the tower.

(A) 0.38
(B) 0.47
(C) 0.68
(D) 0.84
(E) 0.90

Problem 3 ‡
A hospital receives 1/5 of its flu vaccine shipments from Company X and the
remainder of its shipments from other companies. Each shipment contains a
very large number of vaccine vials.
For Company X shipments, 10% of the vials are ineffective. For every other
company, 2% of the vials are ineffective. The hospital tests 30 randomly
selected vials from a shipment and finds that one vial is ineffective.
What is the probability that this shipment came from Company X?

(A) 0.10
(B) 0.14
(C) 0.37
(D) 0.63
(E) 0.86

Problem 4 ‡
A company prices its hurricane insurance using the following assumptions:

(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05 .
(iii) The number of hurricanes in any calendar year is independent of the

number of hurricanes in any other calendar year.

Using the company’s assumptions, calculate the probability that there are
fewer than 3 hurricanes in a 20-year period.

(A) 0.06
(B) 0.19
(C) 0.38
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(D) 0.62
(E) 0.92

Problem 5 ‡
A company buys a policy to insure its revenue in the event of major snow-
storms that shut down business. The policy pays nothing for the first such
snowstorm of the year and $10,000 for each one thereafter, until the end of
the year. The number of major snowstorms per year that shut down business
is assumed to have a Poisson distribution with mean 1.5 .
What is the expected amount paid to the company under this policy during
a one-year period?

(A) 2,769
(B) 5,000
(C) 7,231
(D) 8,347
(E) 10,578

Problem 6 ‡
A recent study indicates that the annual cost of maintaining and repairing a
car in a town in Ontario averages 200 with a variance of 260. A tax of 20%
is introduced on all items associated with the maintenance and repair of cars
(i.e., everything is made 20% more expensive).
Calculate the variance of the annual cost of maintaining and repairing a car
after the tax is introduced.

(A) 208
(B) 260
(C) 270
(D) 312
(E) 374

Problem 7 ‡
An investment account earns an annual interest rate R that follows a uni-
form distribution on the interval (0.04, 0.08). The value of a 10,000 initial
investment in this account after one year is given by V = 10, 000eR.
Determine the cumulative distribution function, FV (v) of V.
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(A) 10,000v
v

10,000−10,408
425

(B) 25v
v

10,000 − 0.04
(C) v−10,408

10,833−10,408

(D) 25
v

(E) 25
[
ln
(

v
10,000

)
− 0.04

]
Problem 8 ‡
A company manufactures a brand of light bulb with a lifetime in months
that is normally distributed with mean 3 and variance 1 . A consumer buys
a number of these bulbs with the intention of replacing them successively as
they burn out. The light bulbs have independent lifetimes.
What is the smallest number of bulbs to be purchased so that the succession
of light bulbs produces light for at least 40 months with probability at least
0.9772?

(A) 14
(B) 16
(C) 20
(D) 40
(E) 55

Problem 9 ‡
A family buys two policies from the same insurance company. Losses under
the two policies are independent and have continuous uniform distributions
on the interval from 0 to 10. One policy has a deductible of 1 and the other
has a deductible of 2. The family experiences exactly one loss under each
policy.
Calculate the probability that the total benefit paid to the family does not
exceed 5.

(A) 0.13
(B) 0.25
(C) 0.30
(D) 0.32
(E) 0.42

Problem 10 ‡
In a small metropolitan area, annual losses due to storm, fire, and theft are
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assumed to be independent, exponentially distributed random variables with
respective means 1.0, 1.5, and 2.4 .
Determine the probability that the maximum of these losses exceeds 3.

(A) 0.002
(B) 0.050
(C) 0.159
(D) 0.287
(E) 0.414

Problem 11 ‡
Two life insurance policies, each with a death benefit of 10,000 and a one-
time premium of 500, are sold to a couple, one for each person. The policies
will expire at the end of the tenth year. The probability that only the wife
will survive at least ten years is 0.025, the probability that only the husband
will survive at least ten years is 0.01, and the probability that both of them
will survive at least ten years is 0.96 .
What is the expected excess of premiums over claims, given that the husband
survives at least ten years?

(A) 350
(B) 385
(C) 397
(D) 870
(E) 897

Problem 12 ‡
You are given the following information about N, the annual number of
claims for a randomly selected insured:

P(N = 0) =
1

2

P(N = 1) =
1

3

P(N > 1) =
1

6

Let S denote the total annual claim amount for an insured. When N = 1, S
is exponentially distributed with mean 5 . When N > 1, S is exponentially
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distributed with mean 8 . Determine P(4 < S < 8).

(A) 0.04
(B) 0.08
(C) 0.12
(D) 0.24
(E) 0.25

Problem 13 ‡
A man purchases a life insurance policy on his 40th birthday. The policy will
pay 5000 if he dies before his 50th birthday and will pay 0 otherwise. The
length of lifetime, in years from birth, of a male born the same year as the
insured has the cumulative distribution function

F (t) =

{
0, t ≤ 0

1− e 1−1.1t

1000 , t > 0.

Calculate the expected payment under this policy.

(A) 333
(B) 348
(C) 421
(D) 549
(E) 574

Problem 14 ‡
The probability that a member of a certain class of homeowners with liability
and property coverage will file a liability claim is 0.04, and the probability
that a member of this class will file a property claim is 0.10. The probability
that a member of this class will file a liability claim but not a property claim
is 0.01.
Calculate the probability that a randomly selected member of this class of
homeowners will not file a claim of either type.

(A) 0.850
(B) 0.860
(C) 0.864
(D) 0.870
(E) 0.890



645

Problem 15 ‡
Automobile policies are separated into two groups: low-risk and high-risk.
Actuary Rahul examines low-risk policies, continuing until a policy with a
claim is found and then stopping. Actuary Toby follows the same procedure
with high-risk policies. Each low-risk policy has a 10% probability of having
a claim. Each high-risk policy has a 20% probability of having a claim. The
claim statuses of policies are mutually independent.
Calculate the probability that Actuary Rahul examines fewer policies than
Actuary Toby.

(A) 0.2857
(B) 0.3214
(C) 0.3333
(D) 0.3571
(E) 0.4000

Problem 16 ‡
A student takes a multiple-choice test with 40 questions. The probability
that the student answers a given question correctly is 0.5, independent of
all other questions. The probability that the student answers more than N
questions correctly is greater than 0.10. The probability that the student
answers more than N + 1 questions correctly is less than 0.10. Calculate N
using a normal approximation with the continuity correction.

(A) 23
(B) 25
(C) 32
(D) 33
(E) 35

Problem 17 ‡
A policyholder has probability 0.7 of having no claims, 0.2 of having exactly
one claim, and 0.1 of having exactly two claims. Claim amounts are uni-
formly distributed on the interval [0,60] and are independent. The insurer
covers 100% of each claim. Calculate the probability that the total benefit
paid to the policyholder is 48 or less.

(A) 0.320
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(B) 0.400
(C) 0.800
(D) 0.892
(E) 0.924

Problem 18 ‡
X is a random variable with probability density function

fX(x) =

{
e−2x, x ≥ 0
2e4x, x < 0.

Determine the probability density function for T = X2 for positive values of t.

(A) f(t) = e−2
√
t

2
√
t

+ e−4
√
t

√
t

(B) f(t) = e−2
√
t

2
√
t

(C) f(t) = e−2t + 2e−4t

(D) f(t) = 2te−2t2 + 4te−4t2

(E) f(t) = 2te−2t2

Problem 19 ‡
The lifespan, in years, of a certain computer is exponentially distributed.
The probability that its lifespan exceeds four years is 0.30.
Let f(x) represent the density function of the computer’s lifespan, in years,
for x > 0. Determine the formula for f(x).

(A) 1− (0.3)−
x
4

(B) 1− (0.7)
x
4

(C) 1− (0.3)
x
4

(D) − ln 0.7
4

(0.7)
x
4

(E) − ln 0.3
4

(0.3)
x
4

Problem 20 ‡
A machine has two components and fails when both components fail. The
number of years from now until the first component fails, X, and the number
of years from now until the machine fails, Y, are random variables with joint
density function

fXY (x, y) =

{
1
18
e−

(x+y)
6 for 0 < x < y

0 otherwise.
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Find Var(Y |X = 2).

(A) 6
(B) 8
(C) 36
(D) 45
(E) 64

Problem 21 ‡
The number of traffic accidents per week at intersection Q has a Poisson
distribution with mean 3. The number of traffic accidents per week at inter-
section R has a Poisson distribution with mean 1.5.
Let A be the probability that the number of accidents at intersection Q ex-
ceeds its mean. Let B be the corresponding probability for intersection R.
Calculate B − A.

(A) 0.00
(B) 0.09
(C) 0.13
(D) 0.19
(E) 0.31

Problem 22 ‡
Claim amounts at an insurance company are independent of one another.
In year one, claim amounts are modeled by a normal random variable X
with mean 100 and standard deviation 25. In year two, claim amounts are
modeled by the random variable Y = 1.04X + 5.
Calculate the probability that a random sample of 25 claim amounts in year
two average between 100 and 110.

(A) 0.48
(B) 0.53
(C) 0.54
(D) 0.67
(E) 0.68

Problem 23 ‡
A hurricane policy covers both water damage, X, and wind damage, Y, where
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X and Y have joint density function

fXY (x, y) =

{
0.13e−0.5x−0.2y − 0.06e−x−0.2y − 0.06e−0.5x−0.4y + 0.12e−x−0.4y, x > 0, y > 0,

0, otherwise.

Calculate the standard deviation of X.

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Problem 24 ‡
An insurance agent’s files reveal the following facts about his policyholders:
i) 243 own auto insurance.
ii) 207 own homeowner insurance.
iii) 55 own life insurance and homeowner insurance.
iv) 96 own auto insurance and homeowner insurance.
v) 32 own life insurance, auto insurance and homeowner insurance.
vi) 76 more clients own only auto insurance than only life insurance.
vii) 270 own only one of these three insurance products.
Calculate the total number of the agent’s policyholders who own at least one
of these three insurance products.

(A) 389
(B) 407
(C) 423
(D) 448
(E) 483

Problem 25 ‡
Let A,B, and C be events such that P (A) = 0.2, P (B) = 0.1, and P (C) =
0.3. The events A and B are independent, the events B and C are indepen-
dent, and the events A and C are mutually exclusive. Calculate P (A∪B∪C).

(A) 0.496
(B) 0.540
(C) 0.544
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(D) 0.550
(E) 0.600

Problem 26 ‡
A group of 100 patients is tested, one patient at a time, for three risk factors
for a certain disease until either all patients have been tested or a patient
tests positive for more than one of these three risk factors. For each risk
factor, a patient tests positive with probability p, where 0 < p < 1. The
outcomes of the tests across all patients and all risk factors are mutually
independent.
Determine an expression for the probability that exactly n patients are tested,
where n is a positive integer less than 100.

(A) [3p2(1− p)][1− 3p2(1− p)]n−1

(B) [3p2(1− p) + p3][1− 3p2(1− p)− p3]n−1

(C) [3p2(1− p) + p3]n−1[1− 3p2(1− p)− p3]n−1

(D) n[3p2(1− p) + p3][1− 3p2(1− p)− p3]n−1

(E) 3[(1− p)n−1p]2[1− (1− p)n−1p] + [(1− p)n−1p]3

Problem 27 ‡
A flood insurance company determines that N, the number of claims received
in a month, is a random variable with P (N = n) = 2

3n+1 , for n = 0, 1, 2, · · ·
The numbers of claims received in different months are mutually indepen-
dent. Calculate the probability that more than three claims will be received
during a consecutive two-month period, given that fewer than two claims
were received in the first of the two months.

(A) 0.0062
(B) 0.0123
(C) 0.0139
(D) 0.0165
(E) 0.0185

Problem 28 ‡
A motorist just had an accident. The accident is minor with probability 0.75
and is otherwise major. Let b be a positive constant. If the accident is minor,
then the loss amount follows a uniform distribution on the interval [0, b]. If
the accident is major, then the loss amount follows a uniform distribution



650 SAMPLE EXAM 7

on the interval [b, 3b]. The median loss amount due to this accident is 672.
Calculate the mean loss amount due to this accident.

(A) 392
(B) 512
(C) 672
(D) 882
(E) 1008

Problem 29 ‡
A company’s annual profit, in billions, has a normal distribution with vari-
ance equal to the cube of its mean. The probability of an annual loss is 5%.
Calculate the company’s expected annual profit.

(A) 370 million
(B) 520 million
(C) 780 million
(D) 950 million
(E) 1645 million

Problem 30 ‡
Skateboarders A and B practice one difficult stunt until becoming injured
while attempting the stunt. On each attempt, the probability of becoming
injured is p, independent of the outcomes of all previous attempts.
Let F (x, y) represent the probability that skateboarders A and B make no
more than x and y attempts, respectively, where x and y are positive inte-
gers. It is given that F (2, 2) = 0.0441. Calculate F (1, 5).

(A) 0.0093
(B) 0.0216
(C) 0.0495
(D) 0.0551
(E) 0.1112

Problem 31 ‡
Every day, the 30 employees at an auto plant each have probability 0.03 of
having one accident and zero probability of having more than one accident.
Given there was an accident, the probability of it being major is 0.01. All
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other accidents are minor. The numbers and severities of employee accidents
are mutually independent. Let X and Y represent the numbers of major
accidents and minor accidents, respectively, occurring in the plant today.
Determine the joint moment generating function MXY (s, t).

(A) (0.01es + 0.02et + 0.97)30

(B) (0.0003es + 0.0297et + 0.97)30

(C) (0.01es + 0.99)30(0.02et + 0.98)30

(D) (0.01es + 0.99)30 + (0.02et + 0.98)30

(E) (0.0003es + 0.9997)30(0.0297et + 0.9703)30

Problem 32 ‡
Two independent estimates are to be made on a building damaged by fire.
Each estimate is normally distributed with mean 10b and variance b2 .
Calculate the probability that the first estimate is at least 20 percent higher
than the second.

(A) 0.023
(B) 0.100
(C) 0.115
(D) 0.221
(E) 0.444
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Answers
1. D
2. D
3. A
4. E
5. C
6. E
7. E
8. B
9. C
10. E
11. E
12. C
13. B
14. E
15. A
16. A
17. D
18. A
19. E
20. C
21. B
22. B
23. B
24. B
25. D
26. B
27. E
28. D
29. A
30. C
31. B
32. B
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Duration: 3 hours

Problem 1 ‡
Among a large group of patients recovering from shoulder injuries, it is found
that 22% visit both a physical therapist and a chiropractor, whereas 12% visit
neither of these. The probability that a patient visits a chiropractor exceeds
by 14% the probability that a patient visits a physical therapist.
Determine the probability that a randomly chosen member of this group vis-
its a physical therapist.

(A) 0.26
(B) 0.38
(C) 0.40
(D) 0.48
(E) 0.62

Problem 2 ‡
An auto insurance company insures drivers of all ages. An actuary compiled
the following statistics on the company’s insured drivers:

Age of Probability Portion of Company’s
Driver of Accident Insured Drivers
16 - 20 0.06 0.08
21 - 30 0.03 0.15
31 - 65 0.02 0.49
66 - 99 0.04 0.28

653
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A randomly selected driver that the company insures has an accident. Cal-
culate the probability that the driver was age 16-20.

(A) 0.13
(B) 0.16
(C) 0.19
(D) 0.23
(E) 0.40

Problem 3 ‡
The number of days that elapse between the beginning of a calendar year
and the moment a high-risk driver is involved in an accident is exponentially
distributed. An insurance company expects that 30% of high-risk drivers will
be involved in an accident during the first 50 days of a calendar year.
What portion of high-risk drivers are expected to be involved in an accident
during the first 80 days of a calendar year?

(A) 0.15
(B) 0.34
(C) 0.43
(D) 0.57
(E) 0.66

Problem 4 ‡
An insurance policy pays for a random loss X subject to a deductible of
C, where 0 < C < 1. The loss amount is modeled as a continuous random
variable with density function

f(x) =

{
2x 0 < x < 1
0 otherwise.

Given a random loss X, the probability that the insurance payment is less
than 0.5 is equal to 0.64 . Calculate C.

(A) 0.1
(B) 0.3
(C) 0.4
(D) 0.6
(E) 0.8
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Problem 5 ‡
A manufacturer’s annual losses follow a distribution with density function

f(x) =

{
2.5(0.6)2.5

x3.5
x > 0.6

0 otherwise.

To cover its losses, the manufacturer purchases an insurance policy with an
annual deductible of 2.
What is the mean of the manufacturer’s annual losses not paid by the insur-
ance policy?

(A) 0.84
(B) 0.88
(C) 0.93
(D) 0.95
(E) 1.00

Problem 6 ‡
A random variable X has the cumulative distribution function

F (x) =


0 x < 1

x2−2x+2
2

1 ≤ x < 2
1 x ≥ 2.

Calculate the variance of X.

(A) 7/72
(B) 1/8
(C) 5/36
(D) 4/3
(E) 23/12

Problem 7 ‡
An actuary models the lifetime of a device using the random variable Y =
10X0.8, where X is an exponential random variable with mean 1 year.
Determine the probability density function fY (y), for y > 0, of the random
variable Y.

(A) 10y0.8e−8y−0.2
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(B) 8y−0.2e−10y0.8

(C) 8y−0.2e−(0.1y)1.25

(D) (0.1y)1.25e−0.125(0.1y)0.25

(E) 0.125(0.1y)0.25e−(0.1y)1.25

Problem 8 ‡
Let X and Y be the number of hours that a randomly selected person watches
movies and sporting events, respectively, during a three-month period. The
following information is known about X and Y :

E(X) = 50
E(Y) = 20
Var(X) = 50
Var(Y) = 30
Cov (X,Y) = 10

One hundred people are randomly selected and observed for these three
months. Let T be the total number of hours that these one hundred people
watch movies or sporting events during this three-month period.
Approximate the value of P(T < 7100).

(A) 0.62
(B) 0.84
(C) 0.87
(D) 0.92
(E) 0.97

Problem 9 ‡
Let T1 be the time between a car accident and reporting a claim to the in-
surance company. Let T2 be the time between the report of the claim and
payment of the claim. The joint density function of T1 and T2, f(t1, t2), is
constant over the region 0 < t1 < 6, 0 < t2 < 6, t1 + t2 < 10, and zero other-
wise.
Determine E[T1 +T2], the expected time between a car accident and payment
of the claim.

(A) 4.9
(B) 5.0
(C) 5.7
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(D) 6.0
(E) 6.7

Problem 10 ‡
A joint density function is given by

fXY (x, y) =

{
kx 0 < x, y < 1
0 otherwise.

Find Cov(X, Y )

(A) −1
6

(B) 0
(C) 1/9
(D) 1/6
(E) 2/3

Problem 11 ‡
A diagnostic test for the presence of a disease has two possible outcomes: 1
for disease present and 0 for disease not present. Let X denote the disease
state of a patient, and let Y denote the outcome of the diagnostic test. The
joint probability function of X and Y is given by:

P(X = 0, Y = 0) =0.800

P(X = 1, Y = 0) =0.050

P(X = 0, Y = 1) =0.025

P(X = 1, Y = 1) =0.125.

Calculate Var(Y |X = 1).

(A) 0.13
(B) 0.15
(C) 0.20
(D) 0.51
(E) 0.71

Problem 12 ‡
The joint probability density for X and Y is

fXY (x, y) =

{
2e−(x+2y), x > 0, y > 0

0, otherwise.
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Calculate the variance of Y given that X > 3 and Y > 3.

(A) 0.25
(B) 0.50
(C) 1.00
(D) 3.25
(E) 3.50

Problem 13 ‡
A mattress store sells only king, queen and twin-size mattresses. Sales records
at the store indicate that one-fourth as many queen-size mattresses are sold
as king and twin-size mattresses combined. Records also indicate that three
times as many king-size mattresses are sold as twin-size mattresses.
Calculate the probability that the next mattress sold is either king or queen-
size.

(A) 0.12
(B) 0.15
(C) 0.80
(D) 0.85
(E) 0.95

Problem 14 ‡
A client spends X minutes in an insurance agent’s waiting room and Y
minutes meeting with the agent. The joint density function of X and Y can
be modeled by

f(x, y) =

{
1

800
e−

x
40
− y

20 for x > 0, y > 0
0 otherwise.

Find the probability that a client spends less than 60 minutes at the agent’s
office. You do NOT have to evaluate the integrals.

(A) 1
800

∫ 40

0

∫ 20

0
e−

x
40 e−

−y
20 dydx

(B) 1
800

∫ 40

0

∫ 20−x
0

e−
x
40 e−

−y
20 dydx

(C) 1
800

∫ 20

0

∫ 40−x
0

e−
x
40 e−

−y
20 dydx

(D) 1
800

∫ 60

0

∫ 60

0
e−

x
40 e−

−y
20 dydx

(E) 1
800

∫ 60

0

∫ 60−x
0

e−
x
40 e−

−y
20 dydx
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Problem 15 ‡
In a certain game of chance, a square board with area 1 is colored with sectors
of either red or blue. A player, who cannot see the board, must specify a
point on the board by giving an x−coordinate and a y−coordinate. The
player wins the game if the specified point is in a blue sector. The game can
be arranged with any number of red sectors, and the red sectors are designed
so that

Ri =

(
9

20

)i
where Ri is the area of the ith red sector.
Calculate the minimum number of red sectors that makes the chance of a
player winning less than 20%.

(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Problem 16 ‡
In each of the months June, July, and August, the number of accidents oc-
curring in that month is modeled by a Poisson random variable with mean 1.
In each of the other 9 months of the year, the number of accidents occurring
is modeled by a Poisson random variable with mean 0.5. Assume that these
12 random variables are mutually independent.
Calculate the probability that exactly two accidents occur in July through
November.

(A) 0.084
(B) 0.185
(C) 0.251
(D) 0.257
(E) 0.271

Problem 17 ‡
An electronic system contains three cooling components that operate inde-
pendently. The probability of each component’s failure is 0.05. The system
will overheat if and only if at least two components fail.
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Calculate the probability that the system will overheat.

(A) 0.007
(B) 0.045
(C) 0.098
(D) 0.135
(E) 0.143

Problem 18 ‡
George and Paul play a betting game. Each chooses an integer from 1 to
20 (inclusive) at random. If the two numbers differ by more than 3, George
wins the bet. Otherwise, Paul wins the bet. Calculate the probability that
Paul wins the bet.

(A) 0.27
(B) 0.32
(C) 0.40
(D) 0.48
(E) 0.66

Problem 19 ‡
The lifetime of a light bulb has density function

f(x) =

{
Kx2

1+x3
0 < x < 5

0 otherwise.

Find the mode of X.

(A) 0.00
(B) 0.79
(C) 1.26
(D) 4.42
(E) 5.00

Problem 20 ‡
The elapsed time, T, between the occurrence and the reporting of an accident
has probability density function

fT (t) =

{
8t−t2

72
for 0 < t < 6

0 otherwise.
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Given that T = t, the elapsed time between the reporting of the accident
and payment by the insurer is uniformly distributed on [2 + t, 10].
Calculate the probability that the elapsed time between the occurrence of
the accident and payment by the insurer is less than 4.

(A) 0.005
(B) 0.023
(C) 0.033
(D) 0.035
(E) 0.133

Problem 21 ‡
Losses due to accidents at an amusement park are exponentially distributed.
An insurance company offers the park owner two different policies, with dif-
ferent premiums, to insure against losses due to accidents at the park.
Policy A has a deductible of 1.44. For a random loss, the probability is 0.640
that under this policy, the insurer will pay some money to the park owner.
Policy B has a deductible of d. For a random loss, the probability is 0.512
that under this policy, the insurer will pay some money to the park owner.
Calculate d.

(A) 0.960
(B) 1.152
(C) 1.728
(D) 1.800
(E) 2.160

Problem 22 ‡
Random variables X ≥ 0 and Y ≥ 0 are uniformly distributed on the region
bounded by the x and y axes, and the curve y = 1− x2. Calculate E(XY ).

(A) 0.083
(B) 0.125
(C) 0.150
(D) 0.267
(E) 0.400

Problem 23 ‡
An insurance company has an equal number of claims in each of three terri-
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tories. In each territory, only three claim amounts are possible: 100, 500, and
1000. Based on the companys data, the probabilities of each claim amount
are:

Claim Amount
100 500 1000

Territory 1 0.90 0.08 0.02
Territory 2 0.80 0.11 0.09
Territory 3 0.70 0.20 0.10

Calculate the standard deviation of a randomly selected claim amount.

(A) 254
(B) 291
(C) 332
(D) 368
(E) 396

Problem 24 ‡
A profile of the investments owned by an agent’s clients follows:
i) 228 own annuities.
ii) 220 own mutual funds.
iii) 98 own life insurance and mutual funds.
iv) 93 own annuities and mutual funds.
v) 16 own annuities, mutual funds, and life insurance.
vi) 45 more clients own only life insurance than own only annuities.
vii) 290 own only one type of investment (i.e., annuity, mutual fund, or life
insurance).
Calculate the agent’s total number of clients.

(A) 455
(B) 495
(C) 496
(D) 500
(E) 516

Problem 25 ‡
The annual numbers of thefts a homeowners insurance policyholder experi-
ences are analyzed over three years. Define the following events:
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i) A = the event that the policyholder experiences no thefts in the three
years.
ii) B = the event that the policyholder experiences at least one theft in the
second year.
iii) C = the event that the policyholder experiences exactly one theft in the
first year.
iv) D = the event that the policyholder experiences no thefts in the third
year.
v) E = the event that the policyholder experiences no thefts in the second
year, and at least one theft in the third year.
Determine which three events satisfy the condition that the probability of
their union equals the sum of their probabilities.

(A) Events i, ii, and v
(B) Events i, iii, and v
(C) Events i, iv, and v
(D) Events ii, iii, and iv
(E) Events ii, iii, and v

Problem 26 ‡
A representative of a market research firm contacts consumers by phone in
order to conduct surveys. The specific consumer contacted by each phone
call is randomly determined. The probability that a phone call produces a
completed survey is 0.25.
Calculate the probability that more than three phone calls are required to
produce one completed survey.

(A) 0.32
(B) 0.42
(C) 0.44
(D) 0.56
(E) 0.58

Problem 27 ‡
Patients in a study are tested for sleep apnea, one at a time, until a patient
is found to have this disease. Each patient independently has the same prob-
ability of having sleep apnea. Let r represent the probability that at least
four patients are tested.
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Determine the probability that at least twelve patients are tested given that
at least four patients are tested.

(A) r
11
3

(B) r3

(C) r
8
3

(D) r2

(E) r
1
3

Problem 28 ‡
An insurance policy will reimburse only one claim per year. For a random
policyholder, there is a 20% probability of no loss in the next year, in which
case the claim amount is 0. If a loss occurs in the next year, the claim amount
is normally distributed with mean 1000 and standard deviation 400. Calcu-
late the median claim amount in the next year for a random policyholder.

(A) 663
(B) 790
(C) 873
(D) 994
(E) 1000

Problem 29 ‡
The number of claims X on a health insurance policy is a random variable
with E(X2) = 61 and E[(X − 1)2] = 47. Calculate the standard deviation of
the number of claims.

(A) 2.18
(B) 2.40
(C) 7.31
(D) 7.50
(E) 7.81

Problem 30 ‡
The number of minor surgeries, X, and the number of major surgeries, Y, for
a policyholder, this decade, has joint cumulative distribution function

F (x, y) = [1− (0.5)x+1][1− (0.2)y+1]
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for non-negative integers x and y. Calculate the probability that the poli-
cyholder experiences exactly three minor surgeries and exactly three major
surgeries this decade.

(A) 0.00004
(B) 0.00040
(C) 0.03244
(D) 0.06800
(E) 0.12440

Problem 31 ‡
The returns on two investments, X and Y, follow the joint probability density
function

fXY (x, y) =

{
k, 0 < |x|+ |y| < 1
0, otherwise.

Calculate the maximum value of Var(Y |X = x), − 1 < x < 1.

(A) 1/12
(B) 1/6
(C) 1/3
(D) 2/3
(E) 1

Problem 32 ‡
Two independent random variables X and Y have the same mean. The co-
efficients of variation of X and Y are 3 and 4 respectively. Calculate the
coefficient of variation of 0.5(X + Y ).

(A) 5/4
(B) 7/4
(C) 5/2
(D) 7/2
(E) 7
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Answers
1. D
2. B
3. C
4. B
5. C
6. C
7. E
8. B
9. C
10. B
11. C
12. A
13. C
14. E
15. C
16. B
17. A
18. B
19. C
20. A
21. E
22. B
23. A
24. D
25. A
26. B
27. C
28. C
29. A
30. B
31. C
32. C
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Duration: 3 hours

Problem 1 ‡
An insurance company examines its pool of auto insurance customers and
gathers the following information:

(i) All customers insure at least one car.
(ii) 70% of the customers insure more than one car.
(iii) 20% of the customers insure a sports car.
(iv) Of those customers who insure more than one car, 15% insure a sports car.

Calculate the probability that a randomly selected customer insures exactly
one car and that car is not a sports car.

(A) 0.13
(B) 0.21
(C) 0.24
(D) 0.25
(E) 0.30

Problem 2 ‡
An insurance company issues life insurance policies in three separate cate-
gories: standard, preferred, and ultra-preferred. Of the company’s policy-
holders, 50% are standard, 40% are preferred, and 10% are ultra-preferred.
Each standard policyholder has probability 0.010 of dying in the next year,

667
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each preferred policyholder has probability 0.005 of dying in the next year,
and each ultra-preferred policyholder has probability 0.001 of dying in the
next year.
A policyholder dies in the next year. What is the probability that the de-
ceased policyholder was ultra-preferred?

(A) 0.0001
(B) 0.0010
(C) 0.0071
(D) 0.0141
(E) 0.2817

Problem 3 ‡
An actuary has discovered that policyholders are three times as likely to file
two claims as to file four claims.
If the number of claims filed has a Poisson distribution, what is the variance
of the number of claims filed?

(A) 1√
3

(B) 1
(C)
√

2
(D) 2
(E) 4

Problem 4 ‡
A study is being conducted in which the health of two independent groups
of ten policyholders is being monitored over a one-year period of time. In-
dividual participants in the study drop out before the end of the study with
probability 0.2 (independently of the other participants).
What is the probability that at least 9 participants complete the study in
one of the two groups, but not in both groups?

(A) 0.096
(B) 0.192
(C) 0.235
(D) 0.376
(E) 0.469
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Problem 5 ‡
An insurance company sells a one-year automobile policy with a deductible
of 2 . The probability that the insured will incur a loss is 0.05 . If there is
a loss, the probability of a loss of amount N is K

N
, for N = 1, · · · , 5 and K

a constant. These are the only possible loss amounts and no more than one
loss can occur.
Calculate the expected payment for this policy.

(A) 0.031
(B) 0.066
(C) 0.072
(D) 0.110
(E) 0.150

Problem 6 ‡
The warranty on a machine specifies that it will be replaced at failure or
age 4, whichever occurs first. The machine’s age at failure, X, has density
function

f(x) =

{
1
5

0 ≤ x ≤ 5
0 otherwise

Let Y be the age of the machine at the time of replacement. Determine the
variance of Y.

(A) 1.3
(B) 1.4
(C) 1.7
(D) 2.1
(E) 7.5

Problem 7 ‡
Let T denote the time in minutes for a customer service representative to
respond to 10 telephone inquiries. T is uniformly distributed on the interval
with endpoints 8 minutes and 12 minutes. Let R denote the average rate, in
customers per minute, at which the representative responds to inquiries.
Find the density function fR(r) of R.

(A) 12
5

(B) 3− 5
2r
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(C) 3r − 5 ln r
2

(D) 10
r2

(E) 5
2r2

Problem 8 ‡
The total claim amount for a health insurance policy follows a distribution
with density function

f(x) =

{
1

1000
e−

x
1000 x > 0

0 otherwise

The premium for the policy is set at 100 over the expected total claim
amount. If 100 policies are sold, what is the approximate probability that
the insurance company will have claims exceeding the premiums collected?

(A) 0.001
(B) 0.159
(C) 0.333
(D) 0.407
(E) 0.460

Problem 9 ‡
X and Y are independent random variables with common moment generat-

ing function M(t) = e
t2

2 . Let W = X + Y and Z = X − Y. Determine the
joint moment generating function, M(t1, t2) of W and Z.

(A) e2t21+2t22

(B) e(t21−t2)2

(C) e(t21+t2)2

(D) e2t1t2

(E) et
2
1+t22

Problem 10 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
8
3
xy 0 ≤ x ≤ 1, x ≤ y ≤ 2x
0 otherwise.

Find Cov(X, Y ).
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(A) 0.04
(B) 0.25
(C) 0.67
(D) 0.80
(E) 1.24

Problem 11 ‡
The stock prices of two companies at the end of any given year are modeled
with random variables X and Y that follow a distribution with joint density
function

fXY (x, y) =

{
2x 0 < x < 1, x < y < x+ 1
0 otherwise.

What is the conditional variance of Y given that X = x?

(A) 1/12
(B) 7/6
(C) x+ 1

2

(D) x2 − 1
6

(E) x2 + x+ 1
3

Problem 12 ‡
The distribution of Y, given X, is uniform on the interval [0, X]. The marginal
density of X is

fX(x) =

{
2x for 0 < x < 1
0 otherwise.

Determine the conditional density of X, given Y = y > 0.

(A) 1
(B) 2
(C) 2x
(D) 1/y
(E) 1/(1− y)

Problem 13 ‡
The number of workplace injuries, N, occurring in a factory on any given day
is Poisson distributed with mean λ. The parameter λ is a random variable
that is determined by the level of activity in the factory, and is uniformly
distributed on the interval [0, 3].
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Calculate Var(N).

(A) λ
(B) 2λ
(C) 0.75
(D) 1.50
(E) 2.25

Problem 14 ‡
New dental and medical plan options will be offered to state employees next
year. An actuary uses the following density function to model the joint
distribution of the proportion X of state employees who will choose Dental
Option 1 and the proportion Y who will choose Medical Option 1 under the
new plan options:

f(x, y) =


0.50 for 0 < x, y < 0.5
1.25 for 0 < x < 0.5, 0.5 < y < 1
1.50 for 0.5 < x < 1, 0 < y < 0.5
0.75 for 0.5 < x < 1, 0.5 < y < 1.

Calculate Var(Y |X = 0.75).

(A) 0.000
(B) 0.061
(C) 0.076
(D) 0.083
(E) 0.141

Problem 15 ‡
Automobile claim amounts are modeled by a uniform distribution on the in-
terval [0, 10, 000]. Actuary A reports X, the claim amount divided by 1000.
Actuary B reports Y, which is X rounded to the nearest integer from 0 to
10.
Calculate the absolute value of the difference between the 4th moment of X
and the 4th moment of Y.

(A) 0
(B) 33
(C) 296
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(D) 303
(E) 533

Problem 16 ‡
Two claimants place calls simultaneously to an insurer’s claims call center.
The times X and Y, in minutes, that elapse before the respective claimants
get to speak with call center representatives are independently and identically
distributed. The moment generating function of each random variable is

M(t) =

(
1

1− 1.5t

)2

, t <
2

3
.

Find the standard deviation of X + Y.

(A) 2.1
(B) 3.0
(C) 4.5
(D) 6.7
(E) 9.0

Problem 17 ‡
An insurance company’s annual profit is normally distributed with mean 100
and variance 400. Let Z be normally distributed with mean 0 and variance
1 and let Φ be the cumulative distribution function of Z.
Determine, in terms of Φ(x), the probability that the company’s profit in a
year is at most 60, given that the profit in the year is positive.

(A) 1− F (2)
(B) F (2)/F (5)
(C) [1− F (2)]/F (5)
(D) [F (0.25)− F (0.1)]/F (0.25)
(E) [F (5)− F (2)]/F (5)

Problem 18 ‡
A student takes an examination consisting of 20 true-false questions. The
student knows the answer to N of the questions, which are answered cor-
rectly, and guesses the answers to the rest. The conditional probability that
the student knows the answer to a question, given that the student answered
it correctly, is 0.824. Calculate N.
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(A) 8
(B) 10
(C) 14
(D) 16
(E) 18

Problem 19 ‡
An insurer’s medical reimbursements have density function

f(x) =

{
Kxe−x

2
0 < x < 1, K > 0

0 otherwise.

Find the mode of X.

(A) 0.00
(B) 0.50
(C) 0.71
(D) 0.84
(E) 1.00

Problem 20 ‡
The time until failure, T, of a product is modeled by a uniform distribution on
[0,10]. An extended warranty pays a benefit of 100 if failure occurs between
time t = 1.5 and t = 8.
The present value, W, of this benefit is

W =


0, 0 ≤ T < 1.5,

100e−0.04T , 1.5 ≤ T < 8,
0, 8 ≤ T ≤ 10.

Calculate P (W < 79).

(A) 0.21
(B) 0.41
(C) 0.44
(D) 0.56
(E) 0.59
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Problem 21 ‡
The distribution of the size of claims paid under an insurance policy has
probability density function

f(x) =

{
cxa, 0 < x < 5
0, otherwise,

where a > 0 and c > 0.
For a randomly selected claim, the probability that the size of the claim is
less than 3.75 is 0.4871. Calculate the probability that the size of a randomly
selected claim is greater than 4.

(A) 0.404
(B) 0.428
(C) 0.500
(D) 0.572
(E) 0.596

Problem 22 ‡
An insurance company will cover losses incurred from tornadoes in a single
calendar year. However, the insurer will only cover losses for a maximum of
three separate tornadoes during this time frame. Let X be the number of
tornadoes that result in at least 50 million in losses, and let Y be the total
number of tornadoes. The joint probability function for X and Y is

pXY (x, y) =

{
c(x+ 2y), x = 0, 1, 2, 3, y = 0, 1, 2, 3, x ≤ y

0, otherwise

where c is a constant. Calculate the expected number of tornadoes that re-
sult in fewer than 50 million in losses.

(A) 0.19
(B) 0.28
(C) 0.76
(D) 1.00
(E) 1.10

Problem 23 ‡
At the start of a week, a coal mine has a high-capacity storage bin that is
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half full. During the week, 20 loads of coal are added to the storage bin.
Each load of coal has a volume that is normally distributed with mean 1.50
cubic yards and standard deviation 0.25 cubic yards.
During the same week, coal is removed from the storage bin and loaded into
4 railroad cars. The amount of coal loaded into each railroad car is normally
distributed with mean 7.25 cubic yards and standard deviation 0.50 cubic
yards.
The amounts added to the storage bin or removed from the storage bin are
mutually independent. Calculate the probability that the storage bin con-
tains more coal at the end of the week than it had at the beginning of the
week.

(A) 0.56
(B) 0.63
(C) 0.67
(D) 0.75
(E) 0.98

Problem 24 ‡
An insurance policy pays 100 per day for up to 3 days of hospitalization and
50 per day for each day of hospitalization thereafter.
The number of days of hospitalization, X, is a discrete random variable with
probability function

p(k) =

{
6−k
15

k = 1, 2, 3, 4, 5
0 otherwise.

Determine the expected payment for hospitalization under this policy.

(A) 123
(B) 210
(C) 220
(D) 270
(E) 367

Problem 25 ‡
Four letters to different insureds are prepared along with accompanying en-
velopes. The letters are put into the envelopes randomly. Calculate the
probability that at least one letter ends up in its accompanying envelope.
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(A) 27/256
(B) 1/4
(C) 11/24
(D) 5/8
(E) 3/4

Problem 26 ‡
Four distinct integers are chosen randomly and without replacement from the
first twelve positive integers. Let X be the random variable representing the
second smallest of the four selected integers, and let p(x) be the probability
mass function of X. Determine p(x), for x = 2, 3, 4, · · ·

(A) (x−1)(11−x)(12−x)
495

(B) (x−1)(11−x)(12−x)
990

(C) (x−1)(x−2)(12−x)
990

(D) (x−1)(x−2)(12−x)
495

(E) (10−x)(11−x)(12−x)
495

Problem 27 ‡
A factory tests 100 light bulbs for defects. The probability that a bulb is de-
fective is 0.02. The occurrences of defects among the light bulbs are mutually
independent events. Calculate the probability that exactly two are defective
given that the number of defective bulbs is two or fewer.

(A) 0.133
(B) 0.271
(C) 0.273
(D) 0.404
(E) 0.677

Problem 28 ‡
A gun shop sells gunpowder. Monthly demand for gunpowder is normally
distributed, averages 20 pounds, and has a standard deviation of 2 pounds.
The shop manager wishes to stock gunpowder inventory at the beginning of
each month so that there is only a 2% chance that the shop will run out of
gunpowder (i.e., that demand will exceed inventory) in any given month.
Calculate the amount of gunpowder to stock in inventory, in pounds.
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(A) 16
(B) 23
(C) 24
(D) 32
(E) 43

Problem 29 ‡
Ten cards from a deck of playing cards are in a box: two diamonds, three
spades, and five hearts. Two cards are randomly selected without replace-
ment.
Calculate the variance of the number of diamonds selected, given that no
spade is selected.

(A) 0.24
(B) 0.28
(C) 0.32
(D) 0.34
(E) 0.41

Problem 30 ‡
A company provides a death benefit of 50,000 for each of its 1000 employees.
There is a 1.4% chance that any one employee will die next year, indepen-
dent of all other employees. The company establishes a fund such that the
probability is at least 0.99 that the fund will cover next year’s death benefits.
Calculate, using the Central Limit Theorem, the smallest amount of money,
rounded to the nearest 50 thousand, that the company must put into the
fund.

(A) 750,000
(B) 850,000
(C) 1,050,000
(D) 1,150,000
(E) 1,400,000

Problem 31 ‡
On Main Street, a driver’s speed just before an accident is uniformly dis-
tributed on [5, 20]. Given the speed, the resulting loss from the accident is
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exponentially distributed with mean equal to three times the speed.
Calculate the variance of a loss due to an accident on Main Street.

(A) 525
(B) 1463
(C) 1575
(D) 1632
(E) 1744

Problem 32 ‡
Points scored by a game participant can be modeled by Z = 3X+ 2Y −5. X
and Y are independent random variables with Var(X) = 3 and Var(Y ) = 4.
Calculate Var(Z).

(A) 12
(B) 17
(C) 38
(D) 43
(E) 68
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Answers
1. B
2. D
3. D
4. E
5. A
6. C
7. E
8. B
9. E
10. A
11. A
12. E
13. E
14. C
15. B
16. B
17. E
18. C
19. C
20. D
21. B
22. E
23. D
24. C
25. D
26. B
27. D
28. C
29. D
30. D
31. E
32. D



Sample Exam 10

Duration: 3 hours

Problem 1 ‡
An actuary studying the insurance preferences of automobile owners makes
the following conclusions:
(i) An automobile owner is twice as likely to purchase a collision coverage as
opposed to a disability coverage.
(ii) The event that an automobile owner purchases a collision coverage is
independent of the event that he or she purchases a disability coverage.
(iii) The probability that an automobile owner purchases both collision and
disability coverages is 0.15.
What is the probability that an automobile owner purchases neither collision
nor disability coverage?

(A) 0.18
(B) 0.33
(C) 0.48
(D) 0.67
(E) 0.82

Problem 2 ‡
Upon arrival at a hospital’s emergency room, patients are categorized ac-
cording to their condition as critical, serious, or stable. In the past year:

681
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(i) 10% of the emergency room patients were critical;
(ii) 30% of the emergency room patients were serious;
(iii) the rest of the emergency room patients were stable;
(iv) 40% of the critical patients died;
(v) 10% of the serious patients died; and
(vi) 1% of the stable patients died.

Given that a patient survived, what is the probability that the patient was
categorized as serious upon arrival?

(A) 0.06
(B) 0.29
(C) 0.30
(D) 0.39
(E) 0.64

Problem 3 ‡
A company establishes a fund of 120 from which it wants to pay an amount,
C, to any of its 20 employees who achieve a high performance level during
the coming year. Each employee has a 2% chance of achieving a high perfor-
mance level during the coming year, independent of any other employee.
Determine the maximum value of C for which the probability is less than 1%
that the fund will be inadequate to cover all payments for high performance.

(A) 24
(B) 30
(C) 40
(D) 60
(E) 120

Problem 4 ‡
For Company A there is a 60% chance that no claim is made during the com-
ing year. If one or more claims are made, the total claim amount is normally
distributed with mean 10,000 and standard deviation 2,000.
For Company B there is a 70% chance that no claim is made during the com-
ing year. If one or more claims are made, the total claim amount is normally
distributed with mean 9,000 and standard deviation 2,000.
The total claim amounts of the two companies are independent. Calculate
the probability that, in the coming year, Company B′s total claim amount
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will exceed Company A′s total claim amount.

(A) 0.180
(B) 0.185
(C) 0.217
(D) 0.223
(E) 0.240

Problem 5 ‡
An insurance policy reimburses a loss up to a benefit limit of 10 . The
policyholder’s loss, X, follows a distribution with density function:

f(x) =

{
2
x3

x > 1
0 otherwise.

What is the expected value of the benefit paid under the insurance policy?

(A) 1.0
(B) 1.3
(C) 1.8
(D) 1.9
(E) 2.0

Problem 6 ‡
A probability distribution of the claim sizes for an auto insurance policy is
given in the table below:

Claim size Probability
20 0.15
30 0.10
40 0.05
50 0.20
60 0.10
70 0.10
80 0.30

What percentage of the claims are within one standard deviation of the mean
claim size?
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(A) 45%
(B) 55%
(C) 68%
(D) 85%
(E) 100%

Problem 7 ‡
The monthly profit of Company I can be modeled by a continuous random
variable with density function f. Company II has a monthly profit that is
twice that of Company I.
Let g be the density function for the distribution of the monthly profit of
Company II.
Determine g(y) where it is not zero.

(A) 1
2
f
(
y
2

)
(B) f

(
y
2

)
(C) 2f

(
y
2

)
(D) 2f(y)
(E) 2f(2y)

Problem 8 ‡
A city has just added 100 new female recruits to its police force. The city will
provide a pension to each new hire who remains with the force until retire-
ment. In addition, if the new hire is married at the time of her retirement,
a second pension will be provided for her husband. A consulting actuary
makes the following assumptions:

(i) Each new recruit has a 0.4 probability of remaining with the police force
until retirement.
(ii) Given that a new recruit reaches retirement with the police force, the
probability that she is not married at the time of retirement is 0.25.
(iii) The number of pensions that the city will provide on behalf of each new
hire is independent of the number of pensions it will provide on behalf of any
other new hire.
Determine the probability that the city will provide at most 90 pensions to
the 100 new hires and their husbands.

(A) 0.60
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(B) 0.67
(C) 0.75
(D) 0.93
(E) 0.99

Problem 9 ‡
A tour operator has a bus that can accommodate 20 tourists. The operator
knows that tourists may not show up, so he sells 21 tickets. The probability
that an individual tourist will not show up is 0.02, independent of all other
tourists.
Each ticket costs 50, and is non-refundable if a tourist fails to show up. If
a tourist shows up and a seat is not available, the tour operator has to pay
100 (ticket cost + 50 penalty) to the tourist.
What is the expected revenue of the tour operator?

(A) 955
(B) 962
(C) 967
(D) 976
(E) 985

Problem 10 ‡
Let X and Y denote the values of two stocks at the end of a five-year pe-
riod. X is uniformly distributed on the interval (0, 12) . Given X = x, Y is
uniformly distributed on the interval (0, x).
Determine Cov(X, Y ) according to this model.

(A) 0
(B) 4
(C) 6
(D) 12
(E) 24

Problem 11 ‡
An actuary determines that the annual numbers of tornadoes in counties P
and Q are jointly distributed as follows:
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X\Y 0 1 2 PX(x)
0 0.12 0.13 0.05 0.30
1 0.06 0.15 0.15 0.36
2 0.05 0.12 0.10 0.27
3 0.02 0.03 0.02 0.07
pY (y) 0.25 0.43 0.32 1

where X is the number of tornadoes in county Q and Y that of county P.
Calculate the conditional variance of the annual number of tornadoes in
county Q, given that there are no tornadoes in county P.

(A) 0.51
(B) 0.84
(C) 0.88
(D) 0.99
(E) 1.76

Problem 12 ‡
Under an insurance policy, a maximum of five claims may be filed per year
by a policyholder. Let pn be the probability that a policyholder files n claims
during a given year, where n = 0, 1, 2, 3, 4, 5. An actuary makes the following
observations:
(i) pn ≥ pn+1 for 0 ≤ n ≤ 4.
(ii) The difference between pn and pn+1 is the same for 0 ≤ n ≤ 4.
(iii) Exactly 40% of policyholders file fewer than two claims during a given
year.
Calculate the probability that a random policyholder will file more than three
claims during a given year.

(A) 0.14
(B) 0.16
(C) 0.27
(D) 0.29
(E) 0.33

Problem 13 ‡
A fair die is rolled repeatedly. Let X be the number of rolls needed to obtain
a 5 and Y the number of rolls needed to obtain a 6. Calculate E(X|Y = 2).
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(A) 5.0
(B) 5.2
(C) 6.0
(D) 6.6
(E) 6.8

Problem 14 ‡
A survey of 100 TV watchers revealed that over the last year:
i) 34 watched CBS.
ii) 15 watched NBC.
iii) 10 watched ABC.
iv) 7 watched CBS and NBC.
v) 6 watched CBS and ABC.
vi) 5 watched NBC and ABC.
vii) 4 watched CBS, NBC, and ABC.
viii) 18 watched HGTV and of these, none watched CBS, NBC, or ABC.
Calculate how many of the 100 TV watchers did not watch any of the four
channels (CBS, NBC, ABC or HGTV).

(A) 1
(B) 37
(C) 45
(D) 55
(E) 82

Problem 15 ‡
The probability of x losses occurring in year 1 is (0.5)x+1, x = 0, 1, 2, · · · .
The probability of y losses in year 2 given x losses in year 1 is given by the
table:

X\Y 0 1 2 3 4+

0 0.60 0.25 0.05 0.05 0.05
1 0.45 0.30 0.10 0.10 0.05
2 0.25 0.30 0.20 0.20 0.05
3 0.15 0.20 0.20 0.30 0.15

4+ 0.05 0.15 0.25 0.35 0.20

Calculate the probability of exactly 2 losses in 2 years.
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(A) 0.025
(B) 0.031
(C) 0.075
(D) 0.100
(E) 0.131

Problem 16 ‡
An airport purchases an insurance policy to offset costs associated with ex-
cessive amounts of snowfall. For every full ten inches of snow in excess of
40 inches during the winter season, the insurer pays the airport 300 up to a
policy maximum of 700. The following table shows the probability function
for the random variable X of annual (winter season) snowfall, in inches, at
the airport.

Inches [0,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,∞)

Probability 0.06 0.18 0.26 0.22 0.14 0.06 0.04 0.04 0.00

Calculate the standard deviation of the amount paid under the policy.

(A) 134
(B) 235
(C) 271
(D) 313
(E) 352

Problem 17 ‡
In a group of health insurance policyholders, 20% have high blood pressure
and 30% have high cholesterol. Of the policyholders with high blood pres-
sure, 25% have high cholesterol. A policyholder is randomly selected from
the group. Calculate the probability that a policyholder has high blood pres-
sure, given that the policyholder has high cholesterol.

(A) 1/6
(B) 1/5
(C) 1/4
(D) 2/3
(E) 5/6
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Problem 18 ‡
The minimum force required to break a particular type of cable is normally
distributed with mean 12,432 and standard deviation 25. A random sample
of 400 cables of this type is selected.
Calculate the probability that at least 349 of the selected cables will not
break under a force of 12,400.

(A) 0.62
(B) 0.67
(C) 0.92
(D) 0.97
(E) 1.00

Problem 19 ‡
A company has five employees on its health insurance plan. Each year, each
employee independently has an 80% probability of no hospital admissions.
If an employee requires one or more hospital admissions, the number of ad-
missions is modeled by a geometric distribution with a mean of 1.50. The
numbers of hospital admissions of different employees are mutually indepen-
dent. Each hospital admission costs 20,000.
Calculate the probability that the company’s total hospital costs in a year
are less than 50,000.

(A) 0.41
(B) 0.46
(C) 0.58
(D) 0.69
(E) 0.78

Problem 20 ‡
An insurance company issues policies covering damage to automobiles. The
amount of damage is modeled by a uniform distribution on [0, b]. The policy
payout is subject to a deductible of 0.1b. A policyholder experiences auto-
mobile damage.
Calculate the ratio of the standard deviation of the policy payout to the
standard deviation of the amount of the damage.

(A) 0.8100
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(B) 0.9000
(C) 0.9477
(D) 0.9487
(E) 0.9735

Problem 21 ‡
Company XY Z provides a warranty on a product that it produces. Each
year, the number of warranty claims follows a Poisson distribution with mean
c. The probability that no warranty claims are received in any given year is
0.60.
Company XY Z purchases an insurance policy that will reduce its overall
warranty claim payment costs. The insurance policy will pay nothing for the
first warranty claim received and 5000 for each claim thereafter until the end
of the year.
Calculate the expected amount of annual insurance policy payments to Com-
pany XY Z.

(A) 554
(B) 872
(C) 1022
(D) 1354
(E) 1612

Problem 22 ‡
At a polling booth, ballots are cast by ten voters, of whom three are Re-
publicans, two are Democrats, and five are Independents. A local journalist
interviews two of these voters, chosen randomly.
Calculate the expectation of the absolute value of the difference between
the number of Republicans interviewed and the number of Democrats inter-
viewed.

(A) 1/5
(B) 7/15
(C) 3/5
(D) 11/15
(E) 1

Problem 23 ‡
An insurance company insures a good driver and a bad driver on the same
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policy. The table below gives the probability of a given number of claims
occurring for each of these drivers in the next ten years.

Number Probability for Probability for
of claims the good driver for the bad driver

0 0.5 0.2
1 0.3 0.3
2 0.2 0.4
3 0.0 0.1

The number of claims occurring for the two drivers are independent. Calcu-
late the mode of the distribution of the total number of claims occurring on
this policy in the next ten years.

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Problem 24 ‡
An actuary compiles the following information from a portfolio of 1000 home-
owners insurance policies:
i) 130 policies insure three-bedroom homes.
ii) 280 policies insure one-story homes.
iii) 150 policies insure two-bath homes.
iv) 30 policies insure three-bedroom, two-bath homes.
v) 50 policies insure one-story, two-bath homes.
vi) 40 policies insure three-bedroom, one-story homes.
vii) 10 policies insure three-bedroom, one-story, two-bath homes.
Calculate the number of homeowners policies in the portfolio that insure nei-
ther one-story nor two-bath nor three-bedroom homes.

(A) 310
(B) 450
(C) 530
(D) 550
(E) 570
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Problem 25 ‡
A health insurance policy covers visits to a doctors office. Each visit costs
100. The annual deductible on the policy is 350. For a policy, the number of
visits per year has the following probability distribution:

Number of Visits 0 1 2 3 4 5 6
Probability 0.6 0.15 0.10 0.08 0.04 0.02 0.01

A policy is selected at random from those where costs exceed the deductible.
Calculate the probability that this policyholder had exactly five office visits.

(A) 0.050
(B) 0.133
(C) 0.286
(D) 0.333
(E) 0.429

Problem 26 ‡
Losses due to burglary are exponentially distributed with mean 100. The
probability that a loss is between 40 and 50 equals the probability that a loss
is between 60 and r, with r > 60. Calculate r.

(A) 68.26
(B) 70.00
(C) 70.51
(D) 72.36
(E) 75.00

Problem 27 ‡
A certain town experiences an average of 5 tornadoes in any four year period.
The number of years from now until the town experiences its next tornado
as well as the number of years between tornadoes have identical exponen-
tial distributions and all such times are mutually independent Calculate the
median number of years from now until the town experiences its next tornado.

(A) 0.55
(B) 0.73
(C) 0.80
(D) 0.87
(E) 1.25
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Problem 28 ‡
A large university will begin a 13-day period during which students may regis-
ter for that semester’s courses. Of those 13 days, the number of elapsed days
before a randomly selected student registers has a continuous distribution
with density function f(t) that is symmetric about t = 6.5 and proportional
to 1

t+1
between days 0 and 6.5.

A student registers at the 60th percentile of this distribution. Calculate the
number of elapsed days in the registration period for this student.

(A) 4.01
(B) 7.80
(C) 8.99
(D) 10.22
(E) 10.51

Problem 29 ‡
A homeowners insurance policy covers losses due to theft, with a deductible
of 3. Theft losses are uniformly distributed on [0, 10]. Determine the moment
generating function, M(t), for t 6= 0, of the claim payment on a theft.

(A) 3
10

+ e7t−1
10t

(B) e10t−1
10t
− 3

(C) e7t−e−3t

10t

(D) min{0, e10t−1
10t
− 3}

(E) max{0, e10t−1
10t
− 3}

Problem 30 ‡
An investor invests 100 dollars in a stock. Each month, the investment has
probability 0.5 of increasing by 1.10 dollars and probability 0.5 of decreasing
by 0.90 dollars. The changes in price in different months are mutually inde-
pendent. Calculate the probability that the investment has a value greater
than 91 dollars at the end of month 100.

(A) 0.63
(B) 0.75
(C) 0.82
(D) 0.94
(E) 0.97
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Problem 31 ‡
Let X be the annual number of hurricanes hitting Florida, and let Y be the
annual number of hurricanes hitting Texas. X and Y are independent Pois-
son variables with respective means 1.70 and 2.30.
Calculate Var(X − Y |X + Y = 3).

(A) 1.71
(B) 1.77
(C) 2.93
(D) 3.14
(E) 4.00

Problem 32 ‡
An actuary is studying hurricane models. A year is classified as a high,
medium, or low hurricane year with probabilities 0.1, 0.3, and 0.6, respec-
tively. The numbers of hurricanes in high, medium, and low years follow
Poisson distributions with means 20, 15, and 10, respectively. Calculate the
variance of the number of hurricanes in a randomly selected year.

(A) 11.25
(B) 12.50
(C) 12.94
(D) 13.42
(E) 23.75

Problem 33 ‡
A dental insurance company pays 100% of the cost of fillings and 70% of
the cost of root canals. Fillings and root canals cost 50 and 500 each, re-
spectively. The tables below show the probability distributions of the annual
number of fillings and annual number of root canals for each of the company’s
policyholders.

# of fillings 0 1 2 3
Probability 0.60 0.20 0.15 0.05

# of root canals 0 1
Probability 0.80 0.20

Calculate the expected annual payment per policyholder for fillings and root
canals.

(A) 90.00
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(B) 102.50
(C) 132.50
(D) 250.00
(E) 400.00
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Answers
1. B
2. B
3. D
4. D
5. D
6. A
7. A
8. E
9. E
10. C
11. D
12. C
13. D
14. B
15. E
16. B
17. A
18. D
19. E
20. E
21. A
22. D
23. C
24. D
25. C
26. D
27. A
28. C
29. A
30. E
31. C
32. E
33. B



Answer Keys

Section 1.1

1.1.1 A = {2, 3, 5}
1.1.2 (a)S = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}
(b)E = {TTT, TTH,HTT, THT}
(c)F = {x|x is an element of S with more than one head}
1.1.3 F ⊂ E
1.1.4 E = ∅
1.1.5 (a) Since every element of A is in A, A ⊆ A.
(b) Since every element in A is in B and every element in B is in A, A = B.
(c) If x is in A then x is in B since A ⊆ B. But B ⊆ C and this implies that
x is in C. Hence, every element of A is also in C. This shows that A ⊆ C
1.1.6 The result is true for n = 1 since 1 = 1(1+1)

2
. Assume that the equality

is true for 1, 2, · · · , n. Then

1 + 2 + · · ·+ n+ 1 =(1 + 2 + · · ·+ n) + n+ 1

=
n(n+ 1)

2
+ n+ 1 = (n+ 1)[

n

2
+ 1]

=
(n+ 1)(n+ 2)

2

1.1.7 Let Sn = 12 + 22 + 32 + · · · + n2. For n = 1, we have S1 = 1 =
1(1+1)(2+1)

6
. Suppose that Sn = n(n+1)(2n+1)

6
.We next want to show that Sn+1 =

(n+1)(n+2)(2n+3)
6

. Indeed, Sn+1 = 12+22+32+· · ·+n2+(n+1)2 = n(n+1)(2n+1)
6

+

(n+ 1)2 = (n+ 1)
[
n(2n+1)

6
+ n+ 1

]
= (n+1)(n+2)(2n+3)

6

697
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1.1.8 The result is true for n = 1. Suppose true up to n. Then

(1 + x)n+1 =(1 + x)(1 + x)n

≥(1 + x)(1 + nx), since 1 + x > 0

=1 + nx+ x+ nx2

=1 + nx2 + (n+ 1)x ≥ 1 + (n+ 1)x

1.1.9 The identity is valid for n = 1. Assume true for 1, 2, · · · , n. Then

1 + a+ a2 + · · ·+ an+1 =[1 + a+ a2 + · · ·+ an] + an+1

=
1− an+1

1− a
+ an+1 =

1− an+2

1− a

1.1.10 (a) 55 sandwiches with tomatoes or onions.
(b) There are 40 sandwiches with onions.
(c) There are 10 sandwiches with onions but not tomatoes

1.1.11 (a) 20 (b) 5 (c) 11 (d) 42 (e) 46 (f) 46
1.1.12 Since We have

S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T,H), (T, T )}

and #(S) = 8.
1.1.13 Suppose that f(a) = f(b). Then 3a + 5 = 3b + 5 =⇒ 3a + 5 − 5 =
3b+ 5− 5 =⇒ 3a = 3b =⇒ 3a

3
= 3b

3
=⇒ a = b. That is, f is one-to-one.

Let y ∈ R. From the equation y = 3x + 5 we find x = y−5
3
∈ R and

f(x) = f
(
y−5

3

)
= y. That is, f is onto.

1.1.14 5
1.1.15 (a) The condition f(n) = f(m) with n even and m odd leads to
n+m = 1 with n,m ∈ N which cannot happen.
(b) Suppose that f(n) = f(m). If n and m are even, we have n

2
= m

2
=⇒ n =

m. If n and m are odd then −n−1
2

= −m−1
2

=⇒ n = m. Thus, f is one-to-one.
Now, if m = 0 then n = 1 and f(n) = m. If m ∈ N = Z+ then n = 2m and
f(n) = m. If n ∈ Z− then n = 2|m| + 1 and f(n) = m. Thus, f is onto. If
follows that Z is countable.
1.1.16 Suppose the contrary. That is, there is a b ∈ A such that f(b) = B.
Since B ⊆ A, either b ∈ B or b 6∈ B. If b ∈ B then b 6∈ f(b). But B = f(b) so
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b ∈ B implies b ∈ f(b), a contradiction. If b 6∈ B then b ∈ f(b) = B which is
again a contradiction. Hence, we conclude that there is no onto map from A
to its power set.
1.1.17 By the previous problem there is no onto map from N to P(N) so
that P(N) is uncountable.
1.1.18 The function f : R 7−→ (0,∞) defined by f(x) = ex is one-to-one
(increasing function) and onto (for every x ∈ (0,∞), y = lnx, f(y) = x)
1.1.19 Suppose that f(n,m) = f(k, `). Then 2n3m = 2k3`. If n < k then
3m = 2k−n3`. The left-hand side is odd whereas the right-hand side is even.
Hence, n ≥ k. If n > k then 3` = 2n−k3m. Again, the left-hand side is odd
and the right-hand side is even. It follows that k = n and this implies that
3m = 3`. Hence, m = ` and (n,m) = (k, `).
1.1.20 50%.

Section 1.2

1.2.1

1.2.2 Since A ⊆ B, we have A ∪ B = B. Now the result follows from the
previous problem.
1.2.3 Let

G = event that a viewer watched gymnastics
B = event that a viewer watched baseball
S = event that a viewer watched soccer

Then the event “the group that watched none of the three sports during the
last year” is the set (G ∪B ∪ S)c

1.2.4 The events R1 ∩ R2 and B1 ∩ B2 represent the events that both ball
are the same color and therefore as sets they are disjoint
1.2.5 880
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1.2.6 50%
1.2.7 5%
1.2.8 60
1.2.9 53%
1.2.10 Using Theorem 1.2.4, we find

#(A ∪B ∪ C) =#(A ∪ (B ∪ C))

=#(A) + #(B ∪ C)−#(A ∩ (B ∪ C))

=#(A) + (#(B) + #(C)−#(B ∩ C))

−#((A ∩B) ∪ (A ∩ C))

=#(A) + (#(B) + #(C)−#(B ∩ C))

−(#(A ∩B) + #(A ∩ C)−#(A ∩B ∩ C))

=#(A) + #(B) + #(C)−#(A ∩B)−#(A ∩ C)

−#(B ∩ C) + #(A ∩B ∩ C)

1.2.11 50
1.2.12 10
1.2.13 (a) 3 (b) 6
1.2.14 20%
1.2.15 (a) Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. Thus, x ∈ A
and (x ∈ B or x ∈ C). This implies that (x ∈ A and x ∈ B) or (x ∈ A and
x ∈ C). Hence, x ∈ A ∩ B or x ∈ A ∩ C, i.e. x ∈ (A ∩ B) ∪ (A ∩ C). The
converse is similar.
(b) Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ B ∩ C. Thus, x ∈ A or (x ∈ B
and x ∈ C). This implies that (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C).
Hence, x ∈ A ∪ B and x ∈ A ∪ C, i.e. x ∈ (A ∪ B) ∩ (A ∪ C). The converse
is similar.
1.2.16 (a) B ⊆ A
(b) A ∩B = ∅ or A ⊆ Bc.
(c) A ∪B − A ∩B
(d) (A ∪B)c

1.2.17 37
1.2.18 Suppose that f(s1, s2, · · · , sn) = f(t1, t2, · · · , tn). Then ((s1, s2, · · · , sn−1), sn) =
((t1, t2, · · · , tn−1), tn). By Example 1.2.11, we have si = ti for i = 1, 2, · · · , n.
Hence, (s1, s2, · · · , sn) = (t1, t2, · · · , tn) and f is one-to-one. Now, for any
((s1, s2, · · · , sn−1), sn) ∈ (S1×S2×· · ·×Sn−1)×Sn, we have (s1, s2, · · · , sn) ∈
S1 × S2 × · · · × Sn and f(s1, s2, · · · , sn) = ((s1, s2, · · · , sn−1), sn). That is, f
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is onto.
1.2.19 365n

1.2.20 10%
1.2.21 407
1.2.22 500
1.2.23 550

Section 2.1

2.1.1 (a) 100 (b) 900 (c) 5,040 (d) 90,000
2.1.2 (a) 336 (b) 6
2.1.3 6
2.1.4 90
2.1.5

2.1.6 48 ways
2.1.7 380
2.1.8 255,024
2.1.9 5,040
2.1.10 384
2.1.11 96
2.1.12 There are n successive steps to create a subset of A. For the first step
one can pick or not pick a1, for the second step one can pick or not pick
a2, · · · , and so on. One each step there are two options, to pick or not to
pick. By the Fundamental Principle of Counting, the number of subsets that
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can be selected is
2 · 2 · · · 2︸ ︷︷ ︸
n factors

= 2n

2.1.13 For each of the n values in A, the function can take on m possible
values. Hence, by the Fundamental Principle of Counting, the number of
functions is

m ·m · · ·m︸ ︷︷ ︸
n factors

= mn

2.1.14 The first element of A can be assigned to any of the m elements
of B. The second element of A can be assigned to any of the remaining
m− 1 elements of B, · · · , the nth element of A can be assigned to any of the
remaining m−n+ 1 of B. Thus, by the Fundamental Principle of Counting,
the number of one-to-one functions is

m · (m− 1) · · · (m− n+ 1)

2.1.15 Yes
2.1.16 4,500
2.1.17 676
2.1.18 32
2.1.19 98,176
2.1.20 250

Section 2.2

2.2.1 m = 9 and n = 3
2.2.2 (a) 456,976 (b) 358,800
2.2.3 (a) 15,600,000 (b) 11,232,000
2.2.4 (a) 64,000 (b) 59,280
2.2.5 (a) 479,001,600 (b) 604,800
2.2.6 (a) 5 (b) 20 (c) 60 (d) 120
2.2.7 60
2.2.8 15,600
2.2.9 (a) 17,576 (b) 15,600 (c) 1,976.
2.2.10 n = 3.
2.2.11 36.
2.2.12 20.
2.2.13 nr
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2.2.14 n = 5
2.2.15

n−1Pr + r ·n−1 Pr−1 =
(n− 1)!

(n− r − 1)!
+ r · (n− 1)!

(n− r)!

=
(n− 1)!(n− r) + r(n− 1)!

(n− r)!

=
n!

(n− r)!
=n Pr.

2.2.16

nPr

nPr−1

=

n!
(n−r)!
n!

(n−r+1)!

=
n!

(n− r)!
(n− r + 1)!

n!
= n− r + 1.

2.2.17 105

2.2.18 720
2.2.19 10,080
2.2.20 36

Section 2.3

2.3.1 11,480
2.3.2 300
2.3.3 10
2.3.4 28
2.3.5 4,060
2.3.6 Recall that mPn = m!

(m−n)!
= n!mCn. Since n! ≥ 1, we can multiply both

sides by mCn to obtain mPn = n!mCn ≥m Cn.
2.3.7 (a) Combination (b) Permutation
2.3.8 (a+ b)7 = a7 + 7a6b+ 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7

2.3.9 22, 680a3b4

2.3.10 1,200
2.3.11 4
2.3.12 27,720
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2.3.13 m = 1365, n = 1364.
2.3.14 3,116,960
2.3.15 2,463,300
2.3.16 196
2.3.17 140
2.3.18 43,890
2.3.19 196
2.3.20 (iC1)(27−iC3)

Section 3.1

3.1.1 As n increases without bound, the ratio α(E)
n

approaches the num-
ber P (E)
3.1.2 V (s) has a jump discontinuity at s = 1

2

3.1.3 The function F (x) has jump discontinuities at x = 1, 2, 3, 4.
3.1.4 The graph of the floor function is

3.1.5 The graph of the floor function is
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The function has jump discontinuities at x = 1
2

Section 3.2

3.2.1 −1 < x < 1
3.2.2 8

99

3.2.3 42 feet
3.2.4 Divergent
3.2.5 Convergent
3.2.6 Since the geometric series 1 + x+ x2 + x3 + · · · converges for |x| < 1,
the given series is absolutely convergent

Section 3.3

3.3.1 We have

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h
1
3

h
= lim

h→0

1

h
2
3

=∞.

Thus, f(x) has a vertical tangent at x = 0 and f ′(0) does not exist
3.3.2 Finding the left hand derivative we obtain

lim
h→0−

f(2 + h)− f(2)

h
= lim

h→0−

5− (2 + h)2 − (5− 4)

h

= lim
h→0−

(−h− 4) = −4.
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Similarly, the right hand derivative is

lim
h→0+

f(2 + h)− f(2)

h
= lim

h→0+

(2 + h)− 2− 1

h

= lim
h→0+

h− 1

h
= −∞.

It follows that f ′(2) does not exist

3.3.3 (a) 4
3
x

1
3 (b) −1

3
x−

4
3 (c) πxπ−1

3.3.4 7
√

3x6 − x4

3.3.5 −10
9
x−

5
3 − 200x−6 + 3

8
x−

5
2

3.3.6 x3 cosx+ 3x2 sinx
3.3.7 (a) secx tanx (b) − cscx cotx (c) sec2 x (d) csc2 x
3.3.8 56x(4x2 + 1)6

3.3.9 (a) 6 cos (3x) (b) −2x sin (x2)
3.3.10 (a) 2

5
(b) y = 2

5
x − 2

5
(c) no points on the graph where the tangent

line is horizontal

Section 3.4

3.4.1 1
π

arctanx− 1
π

arctan a
3.4.2 1− 1

(1+x)a−1

3.4.3 1− e−kxα

3.4.4 −1
8

3.4.5 −xe−x − e−x + C
3.4.6 0.369
3.4.7 1.867
3.4.8 2.4
3.4.9 3

[
− 1

2(x+1)2
+ 1

3(x+1)3

]
+ C

Section 3.5

3.5.1 Divergent
3.5.2 Divergent
3.5.3 Divergent
3.5.4 6
3.5.5 π

2

3.5.6 π
4
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3.5.7 1
3.5.8 Divergent
3.5.9 Divergent
3.5.10 Divergent
3.5.11 2π
3.5.12 1
3.5.13 2

3

3.5.14 Divergent
3.5.15 Divergent
3.5.16 Divergent
3.5.17 convergent

Section 3.6

3.6.1

3.6.2



708 ANSWER KEYS

3.6.3

3.6.4

3.6.5
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3.6.6

3.6.7

3.6.8

3.6.9



710 ANSWER KEYS

3.6.10

3.6.11

3.6.12

3.6.13
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3.6.14

3.6.15

3.6.16

3.6.17
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3.6.18

Section 3.7

3.7.1
∫ 1

0

∫ x+1

x
f(x, y)dydx

3.7.2 ∫ 1

0

∫ x
2

0
f(x, y)dydx or

∫ 1
2

0

∫ 1

2y
f(x, y)dxdy

3.7.3
∫ 1

1
2

∫ 1
1
2
f(x, y)dydx

3.7.4
∫ 1

2

0

∫ 1
1
2
f(x, y)dydx+

∫ 1
1
2

∫ 1

0
f(x, y)dydx

3.7.5
∫ 30

20

∫ 50−x
20

f(x, y)dydx

3.7.6
∫ 1

0

∫ x+1

0
f(x, y)dydx+

∫∞
1

∫ x+1

x−1
f(x, y)dydx

3.7.7 1− 2e−1

3.7.8 1
6

3.7.9 L4

3

3.7.10 7
8

3.7.11 3
8

3.7.12 0.0427
3.7.13 (2 + α− α2)−1

3,7.14 0.375
3.7.15 0.708
3.7.16 0.488
3.7.17 0.008
3.7.18 0.35
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3.7.19 0.375
3.7.20 0.6035
3.7.21 0.5
3.7.22 0.3301
3.7.23 0.0625
3.7.24 0.875
3.7.25 0.7619
3.7.26 0.340
3.7.27 0.6667
3.7.28 0.4

Section 4.1

4.1.1 (a) S = {1, 2, 3, 4, 5, 6} (b) {2, 4, 6}
4.1.2 S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T,H), (T, T )}
4.1.3 In the affirmative, we have

P (S) =
∞∑
i=1

P ({Oi}) =
1

2

∞∑
i=0

(
1

2

)i
=

1

2
· 1

1− 1
2

= 1

where the infinite sum is the infinite geometric series

1 + a+ a2 + · · ·+ an + · · · = 1

1− a
, |a| < 1

with a = 1
2
. Thus, (P2) is satisfied.

Let E = {On1 , On2 , · · · , · · · } be an arbitrary event. Then P (E) =
∑∞

i=1 Oni ≤∑∞
i=1Oi = P (S) = 1. Thus, P satisfies (P1). Finally, if E1, E2, · · · is a se-

quence of mutually exclusive events with

En = {On1, On2, · · · }.

Then
∞⋃
n=1

En =
∞⋃
n=1

∞⋃
j=1

{Onj}.

Thus,

P

(
∞⋃
n=1

En

)
=
∞∑
n=1

∞∑
j=1

P ({Onj}) =
∞∑
n=1

P (En).
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Hence, P defines a non-classical probability measure
4.1.4 50%
4.1.5 (a) (i, j), i, j = 1, · · · , 6 (b) Ec = {(5, 6), (6, 5), (6, 6)} (c) 11

12
(d) 5

6
(e)

7
9

4.1.6 (a) 0.5 (b) 0 (c) 1 (d) 0.4 (e) 0.3
4.1.7 (a) 0.75 (b) 0.25 (c) 0.5 (d) 0 (e) 0.375 (f) 0.125
4.1.8 25%
4.1.9 3

64

4.1.10 0.9849
4.1.11 (a) 10 (b) 40%
4.1.12 (a) S = {D1D2, D1N1, D1N2, D1N3, D2N1, D2N2, D2N3, N1N2, N1N3, N2N3} (b)
10%
4.1.13 36C12 = 1, 251, 677, 700
4.1.14 0.102
4.1.15 0.27
4.1.16 36

65

4.1.17 625
937

4.1.18 0.40
4.1.19 (a) 0.19 (b) 0.60 (c) 0.31
4.1.20 0.60
4.1.21 0.533
4.1.22 0.32
4.1.23 0.35

Section 4.2

4.2.1 0.32
4.2.2 0.308
4.2.3 (a) 0.181 (b) 0.818 (c) 0.545
4.2.4 0.889
4.2.5 No
4.2.6 0.52
4.2.7 0.05
4.2.8 0.6
4.2.9 0.48
4.2.10 0.04
4.2.11 0.5
4.2.12 10%
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4.2.13 80%
4.2.14 0.89
4.2.15 0.06
4.2.16 2 events (iii and iv)
4.2.17 A,B,E

Section 4.3

4.3.1

4.3.2

4.3.3 P (A) = 0.6, P (B) = 0.3, P (C) = 0.1
4.3.4 0.1875
4.3.5 The probability is 3

5
· 2

4
+ 2

5
· 3

4
= 3

5
= 0.6
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4.3.6 The probability is 3
5
· 2

5
+ 2

5
· 3

5
= 12

25
= 0.48

4.3.7 36
65

4.3.8 0.102
4.3.9 0.27
4.3.10 (a) The probability tree diagram is shown below.

(b) 7
10
· 3

5
= 21

50
.

4.3.11 0.691
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4.3.12 (a) 1
21

(b) 0.380
4.3.13 0.584
4.3.14 0.311
4.3.15 1

720

4.3.16 7.06× 10−4

4.3.17 0.4060
4.3.18 0.097
4.3.19 0.245
4.3.20 8

35

Section 5.1

5.1.1 0.173
5.1.2 0.205
5.1.3 0.467
5.1.4 0.5
5.1.5 (a) 0.19 (b) 0.60 (c) 0.31 (d) 0.317 (e) 0.613
5.1.6 0.978
5.1.7 7

1912

5.1.8 (a) 1
221

(b) 1
169

5.1.9 1
114

5.1.10 80.2%
5.1.11 (a) 0.021 (b) 0.2381, 0.2857, 0.476
5.1.12 (a) 0.57 (b) 0.211 (c) 0.651
5.1.13 (a) Since S = B ∪Bc, we have

A = A ∩ S = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc).

Also, (A ∩B) ∩ (A ∩Bc) = A ∩ (B ∩Bc) = A ∩ ∅ = ∅.
(b) We have

P (A) =P [(A ∩B) ∪ (A ∩Bc)]

=P (A ∩B) + P (A ∩Bc)

=P (A|B)P (B) + P (A|Bc)P (Bc).
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5.1.14 Using the previous problem, We have

P (B|A) =
P (A|B)P (B)

P (A)

=
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
.

5.1.15 We have

P (A|B) > P (A)⇔P (A ∩B)

P (B)
> P (A)

⇔P (A ∩B) > P (A)P (B)

⇔P (B)− P (A ∩B) < P (B)− P (A)P (B)

⇔P (Ac ∩B) < P (B)(1− P (A))

⇔P (Ac ∩B) < P (B)P (Ac)

⇔P (Ac ∩B)

P (B)
< P (Ac)

⇔P (Ac|B) < P (Ac).

5.1.16 (a) A and B are independent if and only if P (A|B) = P (A). But

P (A|B) = P (A∩B)
P (B)

. Thus, A and B are independent if and only if P (A∩B)
P (B)

=

P (A). This is equivalent to P (A ∩B) = P (A)P (B).
(b) First note that A can be written as the union of two mutually exclusive
events: A = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc). Thus, P (A) = P (A ∩B) +
P (A ∩Bc). It follows that

P (A ∩Bc) =P (A)− P (A ∩B)

=P (A)− P (A)P (B)

=P (A)(1− P (B)) = P (A)P (Bc).

5.1.17 Using De Morgan’s formula we have

P (Ac ∩Bc) =1− P (A ∪B) = 1− [P (A) + P (B)− P (A ∩B)]

=[1− P (A)]− P (B) + P (A)P (B)

=P (Ac)− P (B)[1− P (A)] = P (Ac)− P (B)P (Ac)

=P (Ac)[1− P (B)] = P (Ac)P (Bc).



719

5.1.18 0.625

Section 5.2

5.2.1 0.1584
5.2.2 0.0141
5.2.3 0.29
5.2.4 0.42
5.2.5 0.22
5.2.6 0.657
5.2.7 0.4
5.2.8 0.45
5.2.9 0.36
5.2.10 0.93
5.2.11 0.362
5.2.12 7

24

5.2.13 1
6

5.2.14 0.491
5.2.15 14
5.2.16 0.6
5.2.17 0.4356
5.2.18 0.02
5.2.19 24

35

5.2.20 0.75
5.2.21 70

143

Section 5.3

5.3.1 (a) 21.3% (b) 21.7%
5.3.2 4
5.3.3 0.328
5.3.4 0.4
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5.3.5 We have

P (A ∩B) =P ({1}) =
1

4
=

1

2
× 1

2
= P (A)P (B)

P (A ∩ C) =P ({1}) =
1

4
=

1

2
× 1

2
= P (A)P (C)

P (B ∩ C) =P ({1}) =
1

4
=

1

2
× 1

2
= P (B)P (C)

It follows that the events A,B, and C are pairwise independent. However,

P (A ∩B ∩ C) = P ({1}) =
1

4
6= 1

8
= P (A)P (B)P (C).

Thus, the events A,B, and C are not independent
5.3.6 0.43
5.3.7 (a) We have

S ={HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}
A ={HHH,HHT,HTH, THH, TTH}
B ={HHH,THH,HTH, TTH}
C ={HHH,HTH, THT, TTT}

(b) P (A) = 5
8
, P (B) = 0.5, P (C) = 1

2
(c) 4

5
(d) We have B ∩ C =

{HHH,HTH}, so P (B ∩ C) = 1
4
. That is equal to P (B)P (C), so B and C

are independent
5.3.8 0.65
5.3.9 (a) 0.70 (b) 0.06 (c) 0.24 (d) 0.72 (e) 0.4615
5.3.10 0.892
5.3.11 Dependent
5.3.12 We have P (A) = P (A ∩ S) = P (A)P (S) since P (S) = 1.
5.3.13 Thus,

P (A ∩B) =
1

36
=

6

36
· 6

36
= P (A)P (B)

P (A ∩ C) =
1

36
=

6

36
· 6

36
= P (A)P (C)

P (B ∩ C) =
1

36
=

6

36
· 6

36
= P (B)P (C)

P (A ∩B ∩ C) =
1

36
6= 6

36
· 6

36
· 6

36
= P (A)P (B)P (C).
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5.3.14

A ∩B ={(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}
A ∩ C ={(3, 6)}
B ∩ C ={(3, 6), (4, 5), (5, 4)}

A ∩B ∩ C ={(3, 6)}

P (A ∩B) =
1

6
6= 1

4
= P (A)P (B)

P (A ∩ C) =
1

36
6= 1

18
= P (A)P (C)

P (B ∩ C) =
1

12
6= 1

18
= P (B)P (C)

P (A ∩B ∩ C) =
1

36
= P (A)P (B)P (C).

5.3.15 5
5.3.16 A
5.3.17 0.51
5.3.18 0.55
5.3.19 0.398
5.3.20 0.119

Section 5.4

5.4.1 15:1
5.4.2 62.5%
5.4.3 1:1
5.4.4 4:6
5.4.5 4%
5.4.6 (a) 1:5 (b) 1:1 (c) 1:0 (d) 0:1
5.4.7 1:3
5.4.8 (a) 43% (b) 0.3
5.4.9 10:3
5.4.10 No

Section 6.1

6.1.1 (a) Continuous (b) Discrete (c) Discrete (d) Continuous (e) mixed.
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6.1.2 0.85
6.1.3 1

2

6.1.4 0.4
6.1.5 0.9722
6.1.6 0.139
6.1.7 1

1+e

6.1.8 0.267
6.1.9

x 0 1 2 3 4
P (X = x) 5

210
50
210

100
210

50
210

5
210

6.1.10

P (X = x) =

{
2x−1

36
if x = 1, 2, 3, 4, 5, 6

0 otherwise.

6.1.11 F (n) = 1−
(

2
3

)n+1
.

6.1.12

x 2 3 4 5 6 7 8 9 10 11 12
P (X = x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

6.1.13

X Event P (X = x)
1 R 1

6

2 (NR,R) 5
6
· 1

5
= 1

6

3 (NR,NR,R) 5
6
· 4

5
· 1

4
= 1

6

4 (NR,NR,NR,R) 5
6
· 4

5
· 3

4
· 1

3
= 1

6

5 (NR,NR,NR,NR,R) 5
6
· 4

5
· 3

4
· 2

3
· 1

2
= 1

6

6 (NR,NR,NR,NR,NR,R) 5
6
· 4

5
· 3

4
· 2

3
· 1

2
= 1

6

6.1.14

X(s) =


0 if s ∈ {(1, 1), (1, 3), (3, 1), (1, 5), (5, 1), (3, 3), (3, 5), (5, 3), (5, 5)}

1 if s ∈


(2, 1) (2, 3) (2, 5) (1, 2) (3, 2) (5, 2)
(4, 1) (4, 3) (4, 5) (1, 4) (3, 4) (5, 4)
(6, 1) (6, 3) (6, 5) (1, 6) (3, 6) (5, 6)


2 if s ∈ {(2, 2), (2, 4), (4, 2), (2, 6), (6, 2), (4, 4), (4, 6), (6, 4), (6, 6)}

6.1.15

x 0 1 2
P (X = x) 1/4 1/2 1/4
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6.1.16 P (X = 2) = 3
7

and P (X = −1) = 4
7
.

6.1.17 2
3

6.1.18 11
60

6.1.19 5
8

Section 6.2

6.2.1 (a)

x 0 1 2 3
p(x) 1

8
3
8

3
8

1
8

and 0 otherwise.
(b)

6.2.2

F (x) =


0, x < 0
1
8
, 0 ≤ x < 1

1
2
, 1 ≤ x < 2

7
8
, 2 ≤ x < 3

1, 3 ≤ x
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6.2.3

F (n) =P (X ≤ n) =
n∑
k=0

P (X = k)

=
n∑
k=0

1

3

(
2

3

)k
=

1

3

1−
(

2
3

)n+1

1− 2
3

=1−
(

2

3

)n+1

6.2.4 (a) For n = 2, 3, · · · , 96 we have

P (X = n) =
95

100
· 94

99
· · · 95− n+ 2

100− n+ 2

5

100− n+ 1

P (X = 1) = 5
100

and 0 otherwise.
(b)

P (Y = n) =

(
5
n

)(
95

10− n

)
(

100
10

) , n = 0, 1, 2, 3, 4, 5
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and 0 otherwise.
6.2.5

p(x) =


3
10

x = −4
4
10

x = 1
3
10

x = 4

and 0 otherwise.
6.2.6

P (X = 2) =P (RR) + P (BB) =
3C2

7C2

+
4C2

7C2

=
3

21
+

6

21
=

9

21
=

3

7

and

P (X = −1) = 1− P (X = 2) = 1− 3

7
=

4

7
and 0 otherwise.
6.2.7 (a)

p(0) =

(
2

3

)3

p(1) =3

(
1

3

)(
2

3

)2

p(2) =3

(
1

3

)2(
2

3

)
p(3) =

(
1

3

)3

and 0 otherwise.
(b)
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6.2.8

p(0) =
220

455

p(1) =
198

455

p(2) =
36

455

p(3) =
1

455

and 0 otherwise.
6.2.9 p(2) = 1

36
, p(3) = 2

36
, p(4) = 3

36
, p(5) = 4

36
, p(6) = 5

36
, p(7) = 6

36
, p(8) =

5
36
, p(9) = 4

36
, p(10) = 3

36
, p(11) = 2

36
, and p(12) = 1

36
and 0 otherwise

6.2.10 (a) 0.267 (b) 0.449 (c) p(x) =

 8
x

 22
4− x


 30

4

 and 0 otherwise.

6.2.11 (a) 0.3 (b) 0.7 (c) p(0) = 0.3, p(1) = 0, p(P (X ≤ 0) = 0
(d)

p(x) =



0.2 x = −2
0.3 x = 0
0.1 x = 2.2
0.3 x = 3
0.1 x = 4
0 otherwise.

6.2.12 (a)

p(1) =P (X = 1) =
3C3 · 7C1

210
=

7

210

p(2) =P (X = 2) =
3C2 · 7C2

210
=

63

210

p(3) =P (X = 3) =
3C1 · 7C3

210
=

105

210

p(4) =P (X = 4) =
3C0 · 7C4

210
=

35

210
.
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and 0 otherwise.
(b)

F (x) =


0 x < 1
7

210
1 ≤ x < 2

70
210

2 ≤ x < 3
175
210

3 ≤ x < 4
1 x ≥ 4

6.2.13 1
30
.

6.2.14 (a) 1
9

(b) p(−1) = 2
9
, p(1) = 3

9
, and p(2) = 4

9
.

6.2.15 (a) k = 1
21

(b) 4
7

6.2.16 (a) K = 60
137

(b) p(n) = 3
137n

, n = 1, · · · , 5 and 0 otherwise.

6.2.17 (x−1)(x−2)(12−x)
990

6.2.18 0.286

Section 6.3

6.3.1 7
6.3.2 $ 760
6.3.3 E(X) = 10× 1

6
−2× 5

6
= 0 Therefore, you should come out about even

if you play for a long time
6.3.4 −1
6.3.5 $26
6.3.6 E(X) = −$0.125 So the owner will make on average 12.5 cents per
spin
6.3.7 $110
6.3.8 −0.545
6.3.9 897
6.3.10 (a) 0.267 (b) 0.449 (c) 1.067
6.3.11 (a) 0.3 (b) 0.7 (c) p(0) = 0.3, p(1) = 0, p(P (X ≤ 0)) = 0 (d)

P (x) =



0.2 x = −2
0.3 x = 0
0.1 x = 2.2
0.3 x = 3
0.1 x = 4
0 otherwise
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(e) 1.12
6.3.12 (a) 390 (b) Since E(V ) < 400 the answer is no.
6.3.13 (a)

p(1) =P (X = 1) =
3C3 · 7C1

210
=

7

210

p(2) =P (X = 2) =
3C2 · 7C2

210
=

63

210

p(3) =P (X = 3) =
3C1 · 7C3

210
=

105

210

p(4) =P (X = 4) =
3C0 · 7C4

210
=

35

210

and 0 otherwise.
(b)

F (x) =


0 x < 1
7

210
1 ≤ x < 2

70
210

2 ≤ x < 3
175
210

3 ≤ x < 4
1 x ≥ 4

(c) 2.8
6.3.14 $50,400
6.3.15 c = 1

30
(b) E(X) = 3.333.

6.3.16 (a) c = 1
9

(b) p(−1) = 2
9
, p(1) = 3

9
, and p(2) = 4

9
(c) E(X) = 1.

6.3.17 (a) k = 1
21

(b) 4
7

(c) 4.333.
6.3.18 (a) p(2) = 3

7
, p(−1) = 4

7
and 0 otherwise (b) 2

7
.

6.3.19 55
6.3.20 11

15

6.3.21 2.18

Section 6.4

6.4.1 (a) c = 1
30

(b) 3.333 (c) 8.467
6.4.2 (a) c = 1

9
(b) p(−1) = 2

9
, p(1) = 3

9
, p(2) = 4

9
(c) E(X) = 1 and

E(X2) = 7
3
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6.4.3 Let D denote the range of X. Then

E(aX2 + bX + c) =
∑
x∈D

(ax2 + bx+ c)p(x)

=
∑
x∈D

ax2p(x) +
∑
x∈D

bxp(x) +
∑
x∈D

cp(x)

=a
∑
x∈D

x2p(x) + b
∑
x∈D

xp(x) + c
∑
x∈D

p(x)

=aE(X2) + bE(X) + c

6.4.4 0.62
6.4.5 $220
6.4.6 0.0314
6.4.7 0.24
6.4.8 (a)

P (X = 2) =P (RR) + P (BB) =
3C2

7C2

+
4C2

7C2

=
3

21
+

6

21
=

9

21
=

3

7

P (X = −1) = 1− P (X = 2) = 1− 3

7
=

4

7

and 0 otherwise.
(b) E(2X) = 2
6.4.9 (a) P = 3C + 8A+ 5S − 300 (b) $1,101
6.4.10 475
6.4.11 (a) c = 1

55
(b) 1.064

6.4.12 (a) The range of X consists of the numbers 1,2,3, and 4. Thus,

p(1) =
3C3 · 7C1

10C4

=
1

30

p(2) =
3C2 · 7C2

10C4

=
3

10

p(3) =
3C1 · 7C3

10C4

=
1

2

p(4) =
3C0 · 7C4

10C4

=
1

6
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and 0 otherwise.
(b) 0.56.
6.4.13 (a) c = 1

30
(b) E(X) = 3.33 and E(X(X − 1)) = 8.467 (c) 0.689.

6.4.14 144.
6.4.15 (a) P (X = 2) = 3

7
P (X = −1) = 4

7
and 0 otherwise (b) 108

49
.

6.4.16 9.84
6.4.17 p(1− p).
6.4.18 E(X) = np, E(X(X − 1)) = n(n− 1)p2, E(X2) = n(n− 1)p2 + np.
6.4.19 166.67

Section 6.5

6.5.1 0.45
6.5.2 374
6.5.3 (a)

p(1) =
3C3 · 7C1

10C4

=
1

30

p(2) =
3C2 · 7C2

10C4

=
3

10

p(3) =
3C1 · 7C3

10C4

=
1

2

p(4) =
3C0 · 7C4

10C4

=
1

6

and 0 otherwise.
(b) E(X) = 2.8 Var(X) = 0.56
6.5.4 (a) c = 1

30
(b) E(X) = 3.33 and E(X(X−1)) = 8.467 (c) E(X2) = 11.8

and Var(X) = 0.6889
6.5.5 (a)

P (X = 2) =P (RR) + P (BB) =
3C2

7C2

+
4C2

7C2

=
3

21
+

6

21
=

9

21
=

3

7

and

P (X = −1) = 1− P (X = 2) = 1− 3

7
=

4

7
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and 0 otherwise.
(b) E(X) = 2

7
and E(X2) = 16

7
(c) Var(X) = 108

49

6.5.6 E(X) = 4
10

; Var(X) = 9.84; σX = 3.137
6.5.7 E(X) = p Var(X) == p(1− p)
6.5.8 np(1− p).
6.5.9 (a) E(X) = λ, E(X(X − 1)) = λ2 and E(X2) = λ2 + λ (b) λ.
6.5.10 (a) f ′(1− p) = p−2 and f ′′(1− p) = 2p−3 (b) E(X) = 1

p
, E(X(X −

1)) = 2p−2(1− p) and E(X2) = (2− p)p−2 (c) 1−p
p2
.

6.5.11 (a) (a) The probability mass function is given by

p(x) =


0.3 x = −4
0.4 x = 1
0.3 x = 4
0 otherwise

(b) Var(X) = 9.84 and σX = 3.137.
6.5.12 2.36
6.5.13 9.44
6.5.14 E(X) = n+1

2
and Var(X) = n2−1

12
.

6.5.15 E(X) = 3.5 and Var(X) = 2.92.

6.5.16 E(X) = a+b
2
, E(X2) = ab+ (b−a)(2b−2a+1)

6
and Var(X) = (b−a+1)2−1

12
.

6.5.17 We have

Var(ag(X) + b) =E[(ag(X) + b)2]− [E(ag(X) + b)]2

=E(a2g(X)2 + 2bag(X) + b2)− [aE(g(X)) + b]2

=a2E(g(X)2) + 2abE(g(X)) + b2 − a2[E(g(X))]2 − 2abE(g(X))− b2

=a2[E(g(X)2)− [E(g(X))]2]

=a2Var(g(X)).

6.5.18 E(Z) = 0 and Var(Z) = 1.
6.5.19 235.465
6.5.20 253.53

Section 7.1

7.1.1 No.
7.1.2 Yes.
7.1.3 The graph is shown below.
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7.1.4 E(X) = 6.5, Var(X) = 5.25.
7.1.5

F (x) =


0 x < a

bxc−a+1
b−a+1

a ≤ x < b

1 x ≥ b

7.1.6 E(X) = n+1
2

and Var(X) = n2−1
12

.
7.1.7 E(X) = 11, Var(X) = 40.
7.1.8 1

12
.

7.1.9 3
7
.

7.1.10 We have

MX(t) =E(etX) =
b−a∑
x=0

et(x+a)p(x+ a)

=
1

b− a+ 1

b−a∑
x=0

et(x+a)

=
eta

b− a+ 1

b−a∑
x=0

etx

=
eta

b− a+ 1

(
1− et(b−a+1)

1− et

)
=

eta − e(b+1)t

(b− a+ 1)(1− et)
.
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7.1.11 E(X) = 4.5 and Var(X) = 8.25.
7.1.12 a = 3, b = 10
7.1.13 We have p(x) = 1

9
for x = −4,−3, · · · , 3, 4 and 0 otherwise. The

cumulative distribution function is given by

F (x) =


0 x < −4

1
9
(bxc+ 5) −4 ≤ x < 4

1 x ≥ 4

7.1.14

pY (0) =
1

5

pY (1) =
2

5

pY (2) =
2

5

and 0 otherwise.
7.1.15

F (x) =


0 x < 1
bxc
n

1 ≤ x < n
1 x ≥ n

7.1.16 E(Y ) = 30.5 and Var(Y ) = 206.25
7.1.17 P (Z = 2) 6= P (Z = 3)
7.1.18 5
7.1.19 120
7.1.20 0.3097

Section 7.2

7.2.1 0.3826
7.2.2 0.211
7.2.3

p(x) =


1
8
, if x = 0, 3

3
8
, if x = 1, 2

0, otherwise.

7.2.4 0.095
7.2.5 $60
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7.2.6 0.925
7.2.7 0.144
7.2.8 (a) 0.1875 (b) 0.5
7.2.9 0.1198
7.2.10 0.6242
7.2.11 0.784
7.2.12 (a) 0.2321 (b) 0.2649 (c) 0.1237
7.2.13 0.2639
7.2.14 0.104
7.2.15 E(X) = np and E(X(X − 1)) = n(n− 1)p2.
7.2.16 np(1− p).
7.2.17 2.
7.2.18 (a) 0.6242 (b) 2
7.2.19 We have

p(k)

p(k − 1)
=

nCkp
k(1− p)n−k

nCk−1pk−1(1− p)n−k+1

=

n!
k!(n−k)!

pk(1− p)n−k
n!

(k−1)!(n−k+1)!
pk−1(1− p)n−k+1

=
(n− k + 1)p

k(1− p)
=

p

1− p
n− k + 1

k

7.2.20 0.417
7.2.21 0.404

Section 7.3

7.3.1 154
7.3.2 $985
7.3.3

n E(Y ) E(Y 2) E(S)
1 0.20 0.20 100+10-2 = 108
2 0.40 0.48 100+20-4.8 = 115.2
3 0.60 0.84 100+30-8.4 = 121.6

7.3.4 E(X) = 400 and σX = 15.492
7.3.5 (a) p(x) = 5Cx(0.4)x(0.6)5−x, x = 0, 1, 2, 3, 4, 5.
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(b)

p(0) =5C0(0.4)0(0.6)5−0 = 0.078

p(1) =5C1(0.4)1(0.6)5−1 = 0.259

p(2) =5C2(0.4)2(0.6)5−2 = 0.346

p(3) =5C3(0.4)3(0.6)5−3 = 0.230

p(4) =5C4(0.4)4(0.6)5−4 = 0.077

p(5) =5C5(0.4)5(0.6)5−5 = 0.01.

(c)

(d) E(X) = 2 and σX = 1.095.

7.3.6 (a) p(x) = 2Cx
(

1
3

)x (2
3

)2−x
.

(b)

p(0) =2C0

(
1

3

)0(
2

3

)2−0

= 0.44

p(1) =2C1

(
1

3

)1(
2

3

)2−1

= 0.44

p(2) =2C2

(
1

3

)2(
2

3

)2−2

= 0.11.
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(c)

(d) E(X) = 0.667 and σX = 0.667.
7.3.7 E(N) = 0.75 and Var(N) = 0.5625.
7.3.8 E(C) = 20 and Var(C) = 10.
7.3.9 (a) E(F ) = 0.15 and Var(F ) = 0.1425 (b) 0.00725.
7.3.10 (a) E(X) = 13.5 and Var(X) = 1.35 (b) E(Y ) = 6 and Var(Y ) = 3.6
7.3.11 We have

E(etX) =
n∑
x=0

etxp(x) =
n∑
x=0

etx
n!

x!(n− x)!
pxqn−x

=
n∑
x=0

(pet)x
n!

x!(n− x)!
qn−x

=(q + pet)n.

7.3.12 M ′
X(t) = npet(q + pet)n−1 and M ′

X(0) = np = E(X).
7.3.13 Taking the second derivative with respect to t and using the chain
rule, we find

M ′′
X(t) = npet(q + pet)n−2(q + npet).

Letting t = 0 in the above formula, we find

M ′′
X(0) = np(q + np) = np(1− p) + n2p2 = n(n− 1)p2 + np = E(X2).

7.3.14 0.6664.
7.3.15 (a) E(X) = 11.25 and Var(X) = 2.8125.
7.3.16 2
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7.3.17 1
7.3.18 8
7.3.19 2
7.3.20 40

Section 7.4

7.4.1 0.0183 and 0.0027
7.4.2 0.1251
7.4.3 3.06× 10−7

7.4.4 (a) 0.577 (b) 0.05
7.4.5 (a) 0.947 (b) 0.762 (c) 0.161
7.4.6 0.761897
7.4.7 (a) 0.5654 (b) 0.4963
7.4.8 2
7.4.9 $7231.30
7.4.10 699
7.4.11 0.1550
7.4.12 0.7586
7.4.13 4
7.4.14 (a) 0.2873 (b) mean = 20 and standard deviation = 4.47
7.4.15 35.
7.4.16 235.264
7.4.17 No.
7.4.18 MX(t) = eλω(et−1)

7.4.19 0.0894
7.4.20 554
7.4.21 0.287
7.4.22 104
7.4.23 192
7.4.24 p(0) = 1.1e−0.1 and p(y) = e−0.1 (0.1)y+1

(y+1)!
for y > 0

Section 7.5

7.5.1 n ≥ 20 and p ≤ 0.05. P (X ≥ 2) ≈ 0.9084
7.5.2 0.3293
7.5.3 0.0144
7.5.4 0.3679
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7.5.5 (a) 0.177 (b) 0.876
7.5.6 0.368
7.5.7 0.6063.
7.5.8 0.9596.
7.5.9 0.18

Section 7.6

7.6.1 (a) 0.1 (b) 0.09 (c)
(

9
10

)n−1 ( 1
10

)
7.6.2 0.387
7.6.3 0.916
7.6.4 (a) 0.001999 (b) 1000
7.6.5 (a) 0.1406 (b) 0.3164
7.6.6 (a) 0.1481 and 7.842× 10−10 (b) 3
7.6.7 (a) 0.1198 (b) 0.3999
7.6.8 We have

P (X > i+ j|X > i) =
P (X > i+ j,X > i)

P (X > i)

=
P (X > i+ j)

P (X > i)
=

(1− p)i+j

(1− p)i

=(1− p)j = P (X > j)

7.6.9 0.053
7.6.10 (a) 10 (b) 0.81
7.6.11 (a) X is a geometric distribution with pmf p(x) = 0.4(0.6)x−1, x =
1, 2, · · · (b)X is a binomial random variable with pmf p(x) = 20Cx(0.60)x(0.40)20−x

where x = 0, 1, · · · , 20
7.6.12 0.07776
7.6.13 5
7.6.14 0.984375
7.6.15 MX(t) = pet

1−et(1−p) , t < − ln (1− p)
7.6.16 E(Y ) = 1

p
− 1 and Var(Y ) = 1−p

p2

7.6.17 E(X) = 25 and σX ≈ 24.4949.
7.6.18 2694
7.6.19 0.78279
7.6.20 [1− 3p2(1− p)− p3]n−1[3p2(1− p) + p3]
7.6.21 0.42
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7.6.22 r
8
3

Section 7.7

7.7.1 (a) 0.0103 (b) E(X) = 80; σX = 26.833
7.7.2 0.0307
7.7.3 (a) X is negative binomial distribution with r = 3 and p = 4

52
= 1

13
.

So p(n) = k−1C2

(
1
13

)3 (12
13

)n−3
(b) 0.01793

7.7.4 E(X) = 24 and Var(X) = 120
7.7.5 0.109375
7.7.6 0.1875
7.7.7 0.2898
7.7.8 0.022
7.7.9 (a) 0.1198 (b) 0.0254

7.7.10 E(X) = r
p

= 20 and σX =
√

r(1−p
p2

= 13.416

7.7.11 0.0645
7.7.12 n−1C2

(
1
6

)3 (5
6

)n−3

7.7.13 3
7.7.14 0.0344
7.7.15 E(Y ) = 6.6667, Var(Y ) = 11.1111
7.7.16 0.049
7.7.17 E(X) = 15, Var(X) = 60

7.7.18 (pet)r

[1−(1−p)et]r

7.7.19 We have E(X) = E(XetX)
∣∣
t=0

= M ′
X(0). But

M ′
X(t) = r(pet)r[1− (1− p)et]−r + r(pet)r[1− (1− p)et]−r−1(1− p)et.

Thus,

E(X) = M ′
X(0) = rprp−r + rprp−r−1(1− p) =

r

p

7.7.20 We have Var(X) = M ′′
X(0)−[M ′

X(0)]2. The second derivative of MX(t)
is

M ′′
X(t) =r2(pet)r[1− (1− p)et]−r + r2(pet)r[1− (1− p)et]−r−1(1− p)et

+r2(pet)r[1− (1− p)et]−r−1(1− p)et + r(pet)r[1− (1− p)et]−r−1(1− p)et

+r(r + 1)(pet)r[1− (1− p)et]−r−2(1− p)2e2t.
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Hence,

M ′′
X(0) =r2prp−r + 2r2prp−r−1(1− p) + rprp−r−1(1− p)

+r(r + 1)prp−r−2(1− p)2

=r2 +
2r2(1− p)

p
+
r(1− p)

p
+ r(r + 1)

(1− p)2

p2

=rp−2(r + 1− p).

Hence,

Var(X) = rp−2(r + 1− p)− r2p−2 =
r(1− p)
p2

.

7.7.21 0.1477

Section 7.8

7.8.1 0.32513
7.8.2 0.1988
7.8.3 We have

k 0 1 2 3 4 5 6
P (X = k) 0.468 0.401 0.117 0.014 7.06× 10−4 1.22× 10−5 4.36× 10−8

7.8.4 0.247678
7.8.5 0.073
7.8.6 (a) 0.214 (b) E(X) = 3 and Var(X) = 0.429
7.8.7 0.793
7.8.8 2477C3·121373C97

123850C100

7.8.9 0.033
7.8.10 0.2880
7.8.11 0.375
7.8.12 0.956
7.8.13 0.028
7.8.14 p(k) = P (X = k) = (5Ck)(45C4−k)

50C4
, k = 0, 1, 2, 3, 4 and 0 otherwise

7.8.15 (a) 7.574× 10−5 (b) 0.9999
7.8.16 0.63
7.8.17 E(X) = 2, σX = 1
7.8.18 0.45596
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7.8.19 0.3333
7.8.20 0.2545
7.8.21 0.39

Section 8.1

8.1.1 (a)

p(2) =
C(2, 2)

C(5, 2)
= 0.1

p(6) =
C(2, 1)C(2, 1)

C(5, 2)
= 0.4

p(10) =
C(2, 2)

C(5, 2)
= 0.1

p(11) =
C(1, 1)C(2, 1)

C(5, 2)
= 0.2

p(15) =
C(1, 1)C(2, 1)

C(5, 2)
= 0.2

(b)

F (x) =



0 x < 2
0.1 2 ≤ x < 6
0.5 6 ≤ x < 10
0.6 10 ≤ x < 11
0.8 11 ≤ x < 15
1 x ≥ 15.

(c) 8.8
8.1.2

x (−∞, 0) [0, 1) [1, 2) [2, 3) [3,∞)
P (X ≤ x) 0 57

115
209
230

229
230

1
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8.1.3 (a)

P (X = 1) =P (X ≤ 1)− P (X < 1) = F (1)− F (1−)

=
1

2
− 1

4
=

1

4
P (X = 2) =P (X ≤ 2)− P (X < 2) = F (2)− F (2−)

=
11

12
−
(

1

2
+

2− 1

4

)
=

1

6

P (X = 3) =P (X ≤ 3)− P (X < 3) = F (3)− F (3−)

=1− 11

12
=

1

12

(b) 0.5
8.1.4

P (X = 0) =F (0)− F (0−) =
1

2

P (X = 1) =F (1)− F (1−) =
3

5
− 1

2
=

1

10

P (X = 2) =F (2)− F (2−) =
4

5
− 3

5
=

1

5

P (X = 3) =F (3)− F (3−) =
9

10
− 4

5
=

1

10

P (X = 3.5) =F (3.5)− F (3.5−) = 1− 9

10
=

1

10

and 0 otherwise.
8.1.5 (a)

P (x) =


0.1 x = −2
0.2 x = 1.1
0.3 x = 2
0.4 x = 3
0 otherwise.

(b) 0 (c) 0.4 (d) 0.444
8.1.6 (a) 0.1
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(b)

F (x) =



0 x < −1.9
0.1 −1.9 ≤ x < −0.1
0.2 −0.1 ≤ x < 2
0.5 2 ≤ x < 3
0.6 3 ≤ x < 4
1 x ≥ 4.

The graph of F (x) is shown below.

(c) F (0) = 0.2;F (2) = 0.5;F (F (3.1)) = 0.2. (d) 1
8

(e) 0.64
8.1.7 (a)

P (x) =


0.3 x = −4
0.4 x = 1
0.3 x = 4
0 otherwise.

(b)E(X) = 0.4, Var(X) = 9.84, and σX = 3.137
8.1.8 (a)

P (x) =


1
12

x = 1, 3, 5, 8, 10, 12
2
12

x = 2, 4, 6
0 otherwise.
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(b)

F (x) =



0 x < 1
1
12

1 ≤ x < 2
3
12

2 ≤ x < 3
4
12

3 ≤ x < 4
6
12

4 ≤ x < 5
7
12

5 ≤ x < 6
9
12

6 ≤ x < 8
10
12

8 ≤ x < 10
11
12

10 ≤ x < 12
1 x ≥ 12.

(c) P (X < 4) = 0.333. This is not the same as F (4) which is the probability
that X ≤ 4. The difference between them is the probability that X is EQUAL
to 4.
8.1.9 (a) We have

P (X = 0) =F (0−) = 0

P (X = 1) =F (1)− F (1−) =
1

2
− 1

4
=

1

4

P (X = 2) =F (2)− F (2−) = 1− 3

4
=

1

4

(b) 7
16

(c) 3
16

(d) 3
8

8.1.10 (a) 0.125 (b) 0.584 (c) 0.5 (d) 0.25
(e)

8.1.11 (a) 1/4 (b) 5/8 (c) 1/2
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8.1.12 1.9282
8.1.13 No. F (x) is not right-continuous at 0
8.1.14 F (

√
a)− F ((

√
a)−)

8.1.15

p(0) = F (0)− F (0−) = 0.1

p(1) = F (1)− F (1−) = 0.2

p(2) = F (2)− F (2−) = 0.2

p(4) = F (4)− F (4−) = 0.3

p(5) = F (5)− F (5−) = 0.2

and 0 otherwise
8.1.16 348
8.1.17 0.10

Section 8.2

8.2.1 (a) We have

F (x) =


0, x < 0

1− 1
10

(100− x)
1
2 , 0 ≤ x < 100

1, x ≥ 100.

(b) 0.092
8.2.2 (a) 0.3 (b) 0.3
8.2.3 Using the fundamental theorem of calculus, we have

S ′(x) =

(∫ ∞
x

f(t)dt

)′
=

(
−
∫ x

∞
f(t)dt

)′
= −f(x)

8.2.4

f(x) =

{
0, x < 0

λe−λx, x ≥ 0.

8.2.5

S(x) =


1, x ≤ 0

1− x, 0 < x < 1
0, x ≥ 1
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8.2.6 a = − 1
ω2 , b = 1

8.2.7 (a) S satisfies the properties of a survival function (b)

F (x) =


0, x < 0

1− 1
10

(100− x)
1
2 , 0 ≤ x ≤ 100

1 x > 100.

(c) 0.092
8.2.8 0.9618
8.2.9 0.033
8.2.10 We have
• S(−∞) = 1.
• S ′(x) = −0.34e−0.34x < 0 for x ≥ 0.
• limx→∞ S(x) = 0.
Hence, S(x) can be a candidate for a survival model
8.2.11 0.149
8.2.12

F (x) = 1− S(x) =


0, x < 0
x2

100
, 0 ≤ x ≤ 10.

0, x > 10.

8.2.13 (I) Yes (II) No (III) NO
8.2.14

S(x) =


1, x < 0

1− x
108
, 0 < x < 108

0, x ≥ 108.

8.2.15

S(x) =

{
1, x < 0

(x+ 1)e−x, x ≥ 0

8.2.16 We have

F (x) =

{
0, x < 0

1− e−0.34x, x ≥ 0.

and
f(x) = 0.34e−0.34x, x ≥ 0

Section 9.1

9.1.1 2
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9.1.2 (a) 0.135 (b) 0.233
(c)

F (x) =

{
1− e−x5 x ≥ 0

0 x < 0

9.1.3 k = 0.003, 0.027
9.1.4 0.938
9.1.5 (b)

f(x) = F ′(x) =


0 x < 0

1/2 0 < x < 1
1/6 1 < x < 4
0 x > 4

9.1.6 (a) 1 (b) 0.736
9.1.7(a)

f(x) = F ′(x) =

{ 1
2

x = 0
ex

(ex+1)2
x > 0.

(b) 0.231
9.1.8 About 4 gallons
9.1.9 1

9

9.1.10 0.469
9.1.11 0.132
9.1.12 0.578
9.1.13 0.3
9.1.14 2
9.1.15 1.867
9.1.16

fY (y) = F ′Y (y) =

{
2.5
y2

10
12
≤ y ≤ 10

8

0 otherwise

9.1.17 0.5
9.1.18

∫∞
−∞ xf(x)dx = 2.4 and

∫∞
−∞ x

2f(x)dx ≈ 7.4667

9.1.19 g(y) = 4
y2

for y > 4 and 0 otherwise

9.1.20 g(y) = 1
2
f
(
y
2

)
9.1.21 0.2572
9.1.22 0.42757
9.1.23 e−λk(eλ − 1) where k is apositive integer
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Section 9.2

9.2.1 (a) 1.2
(b) The cdf is given by

F (x) =


0 x ≤ −1

0.2 + 0.2x −1 < x ≤ 0
0.2 + 0.2x+ 0.6x2 0 < x ≤ 1

1 x > 1

(c) 0.25 (d) 0.4
9.2.2 (a) a = 3

5
and b = 6

5
.

(b)

F (x) =

∫ x

−∞
f(u)du =


∫ x
−∞ 0du = 0 x < 0∫ x

−∞
1
5
(3 + 5u2)du = 3

5
x+ 2

5
x3 0 ≤ x ≤ 1∫ 1

0
1
5
(3 + 6u2)du = 1 x > 1

9.2.3 (a) 4 (b) 0 (c) ∞
9.2.4 E(X) = 2

3

9.2.5 (a) E(X) = 1
3

(b) 0.938
9.2.6 0.5
9.2.7 E(Y ) = 7

3
9.2.8 1.867

9.2.9 0.5
9.2.10 2 + 3e−

2
3

9.2.11 2
3

9.2.12 1.9
9.2.13 0.9343
9.2.14 5644
9.2.15 500
9.2.16 3
9.2.17 1.25

Section 9.3

9.3.1 2
9

9.3.2
√

2
3

9.3.3 0.06
9.3.4 34

45
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9.3.5 5
36

9.3.6 6
9.3.7 5000
9.3.8 374.40
9.3.9 6

Section 9.4

9.4.1 Median = 1; 70thpercentile =2
9.4.2 0.693
9.4.3 a+ 2

√
ln 2

9.4.4 3 ln 2
9.4.5 0.8409
9.4.6 2
9.4.7 − ln (1− p)
9.4.8 M = ln (2p) for 0 < p ≤ 0.5 and M = − ln [2(1− p)] for 0.5 < p < 1
9.4.9 2
9.4.10 0.4472
9.4.11 6299.61
9.4.12 2.3811
9.4.13 2.71
9.4.14 998.72
9.4.15 1.7726
9.4.16 250
9.4.17 0.42
9.4.18 173
9.4.19 3
9.4.20 4
9.4.21 1.26
9.4.22 0.71
9.4.23 2
9.4.24 8.99

Section 9.5
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9.5.1 (a) The pdf is given by

f(x) =

{
1
4

3 ≤ x ≤ 7
0 otherwise

(b) 0 (c) 0.5
9.5.2 (a) The pdf is given by

f(x) =

{
1
10

5 ≤ x ≤ 15
0 otherwise

(b) 0.3 (c) E(X) = 10 and Var(X) = 8.33
9.5.3 (a)

F (x) =


0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

(b) P (a ≤ X ≤ a+ b) = F (a+ b)− F (a) = a+ b− a = b
9.5.4 1

n+1

9.5.5 0.693
9.5.6 0.667
9.5.7 500
9.5.8 1.707
9.5.9 403.44
9.5.10 (a) e2−1

2e
(b) 1

2
− 1

2e2

9.5.11 3
9.5.12 7

10

9.5.13 25(ln (0.0001v)− 0.04)
9.5.14 5

2r2

9.5.15

F (x) =


0 x < 0

0.2x 0 ≤ x < 4
1 x ≥ 4

9.5.16 0.18
9.5.17 0.9734
9.5.18

f(x) =

{
0.04 0 ≤ x ≤ 25

0 otherwise.
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E(X) = 12.5, Var(X) = 52.08.

F (x) =


0 x < 0
x
25

0 ≤ x ≤ 25
1 x > 25

9.5.19 etb−eta
t(b−a)

9.5.20 16.4
9.5.21 33.3
9.5.22 450
9.5.23 60
9.5.24 5

16

9.5.25 123,125
3

9.5.26 56
225

9.5.27 0.561

Section 9.6

9.6.1 (a) 0.2389 (b) 0.1423 (c) 0.6188 (d) 88
9.6.2 (a) 0.7517 (b) 0.8926 (c) 0.0238
9.6.3 (a) 0.5 (b) 0.9876
9.6.4 (a) 0.4772 (b) 0.004
9.6.5 0.0228
9.6.6 (a) 0.9452 (b) 0.8185

9.6.7 Φ(5)−Φ(2)
Φ(5)

9.6.8 75
9.6.9 0.4721 (b) 0.1389 (c) 0.6664 (d) 0.58
9.6.10 0.86
9.6.11 (a) 0.1056 (b) 362.84
9.6.12 1:18pm
9.6.13 0.9
9.6.14 90th percentile
9.6.15 7.68
9.6.16 23.6
9.6.17 0.98
9.6.18 2040
9.6.19 0.5478
9.6.20 24.108
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9.6.21 37,000,000
9.6.22 27,700
9.6.23 872

Section 9.7

9.7.1 (a) 0.2578 (b) 0.832
9.7.2 0.1788
9.7.3 (a) 0.8281 (b) 0.0021
9.7.4 0.0158
9.7.5 0.9854
9.7.6 0.96
9.7.7 23

Section 9.8

9.8.1 0.593
9.8.2

9.8.3 0.393
9.8.4 0.1175
9.8.5 0.549
9.8.6 (a) 0.189 (b) 0.250
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9.8.7 (a) 0.1353 (b) 0.167 (c) 0.05
9.8.8 0.134
9.8.9 0.186
9.8.10 0.435
9.8.11 10256
9.8.12 3.540
9.8.13 5644.23
9.8.14 173.29
9.8.15 0.420
9.8.16 4

(ln 2)2

9.8.17 0.727
9.8.18 f(x) = −0.25 ln (0.30)(0.3)

x
4 for x > 0 and 0 otherwise

9.8.19 0.205
9.8.20 2.16
9.8.21 72.36
9.8.22 0.1352
9.8.23 1.77
9.8.24 90.1
9.8.25 100[2e−0.1d − e−0.2d]

9.8.26 2e−
1
2 − 2e−3

9.8.27 0.731
9.8.28 0.55
9.8.29 1%
9.8.30 3659
9.8.31 25
9.8.32 0.35

Section 9.9

9.9.1 We have

FY (y) =P (Y ≤ y) = P
(
X ≤ y

c

)
=

λα

Γ(α)

∫ y
c

0

tα−1e−λtdt

=
(λ/c)α

Γ(α)

∫ y

0

zα−1e−λ
z
c dz.
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9.9.2 E(X) = 1.5 and Var(X) = 0.75
9.9.3 0.0948
9.9.4 0.014
9.9.5 480
9.9.6 For t ≥ 0 we have

FX2(t) = P (X2 ≤ t) = P (−
√
t < X <

√
t) = Φ(

√
t)− Φ(−

√
t)

Now, taking the derivative (and using the chain rule) we find

fX2(t) =
1

2
√
t
Φ′(
√
t) +

1

2
√
t
Φ′(−

√
t)

=
1√
t
Φ′(
√
t) =

1√
2π
t−

1
2 e−

t
2

which is the density function of gamma distribution with α = λ = 1
2

9.9.7 E(etX) =
(

λ
λ−t

)α
, t < λ

9.9.8 We have

f ′(x) = −λ
2e−λx(λx)α−2

Γ(α)
(λx− α + 1).

Thus, the only critical point of f(x) is x = 1
λ
(α − 1). One can easily show

that f ′′
(

1
λ
(α− 1)

)
< 0

9.9.9 (a) The density function is

f(x) =

{
x2

432
e−

x
6 x ≥ 0

0 elsewhere

E(X) = α
λ

= 18, σX =
√

α
λ2
≈ 10.39

(b) E(3X2 +X + 1) = 3E(X2) + E(X)− 1 = 1313
9.9.10 5,000
9.9.11 2.12
9.9.12 α = 4 and λ = 0.5.
9.9.13 The density function is

f(x) =

{
2−

n
2 x

n
2−1e−

x
2

Γ(n2 )
x ≥ 0

0 elsewhere

The expected value is E(X) = n and the variance is Var(X) = 2n.
9.9.14 α = 6, λ = 1

2
, n = 12.
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9.9.15 4464
λ6

9.9.16 The cumulative distribution function of X is FX(x) = 1− e−x(1 + x)
for x > 0 and 0 otherwise. Thus,

FY (y) = P (Y ≤ y) = P (X ≤ ln y) = 1− e− ln y(1 + ln y) = 1− 1 + ln y

y

for y > 1 and 0 otherwise. The pdf of Y is fY (y) = F ′Y (y) = ln y
y2

for y > 1
and 0 otherwise

Section 9.10

9.10.1 fY (y) = 1
|a|
√

2π
e−

(
y−b
a −µ)

2

2 , a 6= 0

9.10.2 fY (y) = 2(y+1)
9

for −1 ≤ y ≤ 2 and fY (y) = 0 otherwise

9.10.3 For 0 ≤ y ≤ 8 we have fY (y) = y−
1
3

6
and 0 otherwise

9.10.4 For y ≥ 1 we have fY (y) = λy−λ−1 and 0 otherwise

9.10.5 For y > 0 we have fY (y) = c
m

√
2y
m
e−

2βy
m and 0 otherwise

9.10.6 For y > 0 we have fY (y) = e−y and 0 otherwise
9.10.7 For −1 < y < 1 we have fY (y) = 1

π
1√

1−y2
and 0 otherwise

9.10.8 (a) For 0 < y < 1 we have fY (y) = 1
α
y

1−α
α and 0 otherwise, E(Y ) =

1
α+1

(b) For y < 0 we have fY (y) = ey and 0 otherwise, E(Y ) = −1
(c) For 1 < y < e we have fY (y) = 1

y
and 0 otherwise, E(Y ) =

∫ e
1
dy = e− 1.

(d) For 0 < y < 1 we have fY (y) = 2

π
√

1−y2
, and 0 otherwise, E(Y ) = 2

π

9.10.9 For y > 4 fY (y) = 4y−2 and 0 otherwise

9.10.10 For 10, 000e0.04 < v < 10, 000e0.08 FV (v) = FR(g−1(v)) = 25
(

ln
(

v
10,000

)
− 0.04

)
and FV (v) = 0 for v ≤ 10, 000e0.04 and FV (v) = 1 for v ≥ 10, 000e0.08

9.10.11 For y > 0 we have fY (y) = 1
8

(
y
10

) 1
4 e−( y

10)
5
4

and 0 otherwise
9.10.12 fR(r) = 5

2r2
for 5

6
< r < 5

4
and 0 otherwise

9.10.13 fY (y) = 1
2
fX
(
y
2

)
where X and Y are the monthly profits of Com-

pany A and Company B, respectively.
9.10.14 (a) 0.341 (b) fY (y) = 1

2y
√

2π
exp

(
− 1

2·22 (ln y − 1)2
)

for y > 0 and 0

otherwise.
9.10.15 fY (y) = 1

2
√
y

for 0 < y < 1 and 0 otherwise

9.10.16 (a) fY (y) = 1
18
y2 for −3 < y < 3 and 0 otherwise (b) fY (y) =
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3
2
(3− y)2 for 2 < y < 4 and 0 otherwise

9.10.17 fY (y) = 1√
y
− 1, 0 < y ≤ 1

9.10.18 fY (y) = e2y− 1
2
e2y

9.10.19 (a) fY (y) = 8−y
50

for −2 ≤ y ≤ 8 and 0 elsewhere.
(b) We have E(Y ) = 4

3
(c) 9

25

9.10.20 fY (y) =
fX(
√
y)

2
√
y

+
fX(−√y)

2
√
y

9.10.21 e−2
√
t+2e−4

√
t

2
√
t

Section 10.1

10.1.1 (a) From the table we see that the sum of all the entries is 1.
(b) 0.25 (c) 0.55 (d) pX(0) = 0.3, pX(1) = 0.5, pX(2) = 0.125, pX(3) = 0.075
and 0 otherwise
10.1.2 0.25
10.1.3 (a) 0.08 (b) 0.36 (c) 0.86 (d) 0.35 (e) 0.6 (f) 0.65 (g) 0.4
10.1.4 (a) 0.4 (b) 0.8
10.1.5 0.576
10.1.6 (a) We have

X\ Y 1 2 pX(x)
1 0.2 0.5 0.7
2 0.2 0.1 0.3
pY (y) 0.4 0.6 1

(b) We have

FXY (x, y) =


0 x < 1 or y < 1

0.2 1 ≤ x < 2 and 1 ≤ y < 2
0.7 1 ≤ x < 2 and y ≥ 2
0.4 x ≥ 2 and 1 ≤ y < 2
1 x ≥ 2 and y ≥ 2

10.1.7 0.049
10.1.8 23

49

10.1.9 2/5
10.1.10 0.099
10.1.11 0.0004
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Section 10.2

10.2.1 0.043
10.2.2 (a) The cdf od X and Y is

FXY (x, y) =

∫ x

−∞

∫ y

−∞
fXY (u, v)dudv

=

(∫ x

0

ue−
u2

2 du

)(∫ y

0

ve−
v2

2 du

)
=(1− e−

x2

2 )(1− e−
y2

2 ), x > 0, y > 0

and 0 otherwise.
(b) The marginal pdf for X is

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
0

xye−
x2+y2

2 dy = xe−
x2

2 , x > 0

and 0 otherwise. The marginal pdf for Y is

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

∫ ∞
0

xye−
x2+y2

2 dx = ye−
y2

2

for y > 0 and 0 otherwise
10.2.3 We have∫ ∞

−∞

∫ ∞
−∞

fXY (x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

xay1−adxdy =

∫ 1

0

∫ 1

0

xay1−adxdy

=(2 + a− a2)−1 6= 1

so fXY (x, y) is not a density function. However one can easily turn it into a
density function by multiplying f(x, y) by (2 + a− a2) to obtain the density
function

fXY (x, y) =

{
(2 + a− a2)xay1−a 0 ≤ x, y ≤ 1

0 otherwise

10.2.4 0.625
10.2.5 0.708
10.2.6 0.488
10.2.7 fY (y) =

∫ √y
y

15ydx = 15y
3
2 (1− y 1

2 ), 0 < y < 1 and 0 otherwise
10.2.8 5.778
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10.2.9 0.83
10.2.10 0.008
10.2.11 7

20

10.2.12 1− 2e−1

10.2.13 12
25

10.2.14 3
8

10.2.15
∫ 1

2

0

∫ 1
1
2
f(s, t)dsdt+

∫ 1

0

∫ 1
2

0
f(s, t)dsdt

10.2.16 1
800

∫ 60

0

∫ 60−x
0

e−
x
40
− y

20dydx
10.2.17 5

12

10.2.18 764.2811
10.2.19 2
10.2.20 2.41

Section 10.3

10.3.1 (a) Yes (b) 0.5 (c) 1− e−a
10.3.2 (a) The joint density over the region R must integrate to 1, so we
have

1 =

∫ ∫
(x,y)∈R

cdxdy = cA(R).

(b) Note that A(R) = 4 so that fXY (x, y) = 1
4

= 1
2

1
2
. Hence, by Theorem

40.2, X and Y are independent with each distributed uniformly over (−1, 1).
(c) P (X2 + Y 2 ≤ 1) =

∫ ∫
x2+y2≤1

1
4
dxdy = π

4

10.3.3 (a) 0.484375 (b) We have

fX(x) =

∫ 1

x

6(1− y)dy = 6y − 3y2
∣∣1
x

= 3x2 − 6x+ 3, 0 ≤ x ≤ 1

and 0 otherwise. Similarly,

fY (y) =

∫ y

0

6(1− y)dy = 6

[
y − y2

2

]y
0

= 6y(1− y), 0 ≤ y ≤ 1

and 0 otherwise.
(c) X and Y are dependent
10.3.4 (a) k = 4 (b) We have

fX(x) =

∫ 1

0

4xydy = 2x, 0 ≤ x ≤ 1
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and 0 otherwise. Similarly,

fY (y) =

∫ 1

0

4xydx = 2y, 0 ≤ y ≤ 1

and 0 otherwise.
(c) Since fXY (x, y) = fX(x)fY (y), X and Y are independent.
10.3.5 (a) k = 6 (b) We have

fX(x) =

∫ 1

0

6xy2dy = 2x, 0 ≤ x ≤ 1, 0 otherwise

and

fY (y) =

∫ 1

0

6xy2dy = 3y2, 0 ≤ y ≤ 1, 0 otherwise

(c) 0.15 (d) 0.875 (e) X and Y are independent
10.3.6 (a) k = 8

7
(b) Yes (c) 16

21

10.3.7 (a) We have

fX(x) =

∫ 2

0

3x2 + 2y

24
dy =

6x2 + 4

24
, 0 ≤ x ≤ 2, 0 otherwise

and

fY (y) =

∫ 2

0

3x2 + 2y

24
dx =

8 + 4y

24
, 0 ≤ y ≤ 2, 0 otherwise

(b) X and Y are dependent. (c) 0.340
10.3.8 (a) We have

fX(x) =

∫ 3−x

x

4

9
dy =

4

3
− 8

9
x, 0 ≤ x ≤ 3

2
, 0 otherwise

and

fY (y) =


4
9
y 0 ≤ y ≤ 3

2
4
9
(3− y) 3

2
≤ y ≤ 3

0 otherwise

(b) 2
3

(c) X and Y are dependent
10.3.9 0.469
10.3.10 0.191
10.3.11 0.4
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10.3.12 0.19
10.3.13 0.295
10.3.14 f(z) = e−

1
2
z − e−z, z > 0, 0 otherwise

10.3.15 f(x) = 2
(2x+1)2

, x > 0, 0 otherwise

10.3.16 3
5

10.3.17 θ1 = 1
4

and θ2 = 0
10.3.18 0.2857
10.3.19 0.0495
10.3.20 90

Section 10.4

10.4.1 0.414
10.4.2 511

512

10.4.3 0.5
10.4.4 2025

Section 10.5

10.5.1 We have

P (Z = 0) =P (X = 0)P (Y = 0) = (0.1)(0.25) = 0.025 (57.3.1)

P (Z = 1) =P (X = 1)P (Y = 0) + P (X = 0)P (Y = 1)

=(0.2)(0.25) + (0.4)(0.1) = 0.09

P (Z = 2) =P (X = 1)P (Y = 1) + P (X = 2)P (Y = 0) + P (X = 0)P (Y = 2)

=(0.2)(0.4) + (0.3)(0.25) + (0.35)(0.1) = 0.19

P (Z = 3) =P (X = 2)P (Y = 1) + P (X = 1)P (Y = 2) + P (X = 3)P (Y = 0)

=(0.3)(0.4) + (0.35)(0.2) + (0.4)(0.25) = 0.29

P (Z = 4) =P (X = 2)P (Y = 2) + P (X = 3)P (Y = 1)

=(0.3)(0.35) + (0.4)(0.4) = 0.265

P (Z = 5) =P (X = 3)P (Y = 2) = (0.4)(0.35) = 0.14

and 0 otherwise

10.5.2 pX+Y (k) =

(
30
k

)
0.2k0.830−k for 0 ≤ k ≤ 30 and 0 otherwise.

10.5.3 pX+Y (n) = (n−1)p2(1−p)n−2, n = 2, · · · and pX+Y (n) = 0 otherwise.
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10.5.4

pX+Y (3) =pX(0)pY (3) =
1

3
· 1

4
=

1

12

pX+Y (4) =pX(0)pY (4) + pX(1)pY (3) =
4

12

pX+Y (5) =pX(1)pY (4) + pX(2)pY (3) =
4

12

pX+Y (6) =pX(2)pY (4) =
3

12

and 0 otherwise.
10.5.5 1

64

10.5.6 0.03368
10.5.7 P (X + Y = 2) = e−λp(1− p) + e−λλp (b) P (Y > X) = e−λp

10.5.8

pX+Y (0) =pX(0)pY (0) =
1

2
· 1

2
=

1

4

pX+Y (1) =pX(0)pY (1) + pX(1)pY (0) =
1

2
· 1

4
+

1

4
· 1

2
=

1

4

pX+Y (2) =pX(0)pY (2) + pX(2)pY (0) + pX(1)pY (1) =
5

16

pX+Y (3) =pX(1)pY (2) + pX(2)pY (1) =
1

8

pX+Y (4) =pX(2)pY (2) =
1

16

and 0 otherwise.
10.5.9

pX+Y (1) =pX(0)pY (1) + pX(1)pY (0) =
1

6

pX+Y (2) =pX(0)pY (2) + pX(2)pY (0) + pX(1)pY (1) =
5

18

pX+Y (3) =pX(0)pY (3) + pX(1)pY (2) + pX(2)pY (1) + pX(3)pY (0) =
6

18

pX+Y (4) =pX(0)pY (4) + pX(1)pY (3) + pX(2)pY (2) + pX(3)pY (1) + pX(4)pY (0) =
3

18
pX+Y (5) =pX(0)pY (5) + pX(1)pY (4) + pX(2)pY (3) + pX(3)pY (2)

+pX(4)pY (1) + pX(4)pY (1) =
1

18
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and 0 otherwise.
10.5.10 We have

pX+Y (n) =
n−1∑
k=1

p(1−p)kp(1−p)n−k = (n−1)p2(1−p)n−2 = n−1C1p
2(1−p)n−2

Thus, X + Y is a negative binomial with parameters (2, p)
10.5.11 9e−8

10.5.12 e−10λ (10λ)10

10!

10.5.13 0.185
10.5.14 0.1512
10.5.15 0.577
10.5.16

P (X + Y = k) =

{
k+1

(n+1)2
0 ≤ k ≤ n

2n−k+1
(n+1)2

n+ 1 ≤ k ≤ 2n

10.5.17 X +Y is a negative binomial distribution with parameters r+ s− 1
and p
10.5.18 1

z−1

10.5.19 (a) We have

E(XY ) =
∑
x∈SX

∑
y∈SY

xypXY (x, y)

=
∑
x∈SX

∑
y∈SY

xypX(x)pY (y)

=

(∑
x∈SX

xpX(x)

)(∑
y∈SY

ypY (y)

)
=E(X)E(Y ).
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(b) We have

E(X + Y ) =
∑
x

∑
y

(x+ y)pXY (x, y)

=
∑
x

∑
y

xpXY (x, y) +
∑
x

∑
y

ypXY (x, y)

=
∑
x

x
∑
y

pXY (x, y) +
∑
y

y
∑
x

pXY (x, y)

=
∑
x

xpX(x) +
∑
y

ypY (y)

=E(X) + E(Y ).

(c) We have

Var(X + Y ) =E[(X + Y )2]− [E(X + Y )]2

=E(X2 + 2XY + Y 2)− [E(X) + E(Y )]2

=E(X2) + 2E(XY ) + E(Y 2)− [(E(X))2 + 2E(X)E(Y ) + (E(Y ))2]

=E(X2) + 2E(X)E(Y ) + E(Y 2)− [(E(X))2 + 2E(X)E(Y ) + (E(Y ))2]

=[E(X2)− (E(X))2] + [E(Y 2)− (E(Y ))2]

=Var(X) + Var(Y )

10.5.20 We have

E[et(X+Y )] =
∑
x∈SX

∑
y∈SY

et(x+y)pXY (x, y)

=
∑
x∈SX

∑
y∈SY

etxetypX(x)pY (y)

=

(∑
x∈SX

etxpX(x)

)(∑
y∈SY

etypY (y)

)
=E(etX)E(etY )

Section 10.6

10.6.1

fX+Y (a) =

{
2λe−λa(1− e−λa) 0 ≤ a

0 otherwise
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10.6.2

fX+Y (a) =


1− e−λa 0 ≤ a ≤ 1

e−λa(eλ − 1) a > 1
0 otherwise

10.6.3 fX+2Y (a) =
∫∞
−∞ fX(a− 2y)fY (y)dy

10.6.4 If 0 ≤ a ≤ 1 then fX+Y (a) = 2a − 3
2
a2 + a3

6
. If 1 ≤ a ≤ 2 then

fX+Y (a) = 7
6
− a

2
. If 2 ≤ a ≤ 3 then fX+Y (a) = 9

2
− 9

2
a+ 3

2
a2 − 1

6
a3. If a > 3

then fX+Y (a) = 0.
10.6.5 If 0 ≤ a ≤ 1 then fX+Y (a) = 2

3
a3. If 1 < a < 2 then fX+Y (a) =

−2
3
a3 + 4a− 8

3
. If a ≥ 2 then fX+Y (a) = 0

10.6.6 fX+Y (a) = αβ
α−β

(
e−βa − e−αa

)
for a > 0 and 0 otherwise.

10.6.7 fW (a) = e−
a
2 − e−a, a > 0 and 0 otherwise.

10.6.8 If 2 ≤ a ≤ 4 then fX+Y (a) = a
4
− 1

2
. If 4 ≤ a ≤ 6, then fX+Y (a) = 3

2
− a

4

and fX+Y (a) = 0 otherwise.
10.6.9 If 0 < a ≤ 2 then fX+Y (a) = a2

8
. If 2 < a < 4 then fX+Y (a) = −a2

8
+ a

2

and 0 otherwise.
10.6.10 1

8

10.6.11 fZ(z) =
∫ z

0
e−zds = ze−z for z > 0 and 0 otherwise.

10.6.12 1− 2e−1

10.6.13 We have

E(et(X+Y )) =

∫ ∞
−∞

∫ ∞
−∞

et(x+y)fXY (x, y)dxdy

=

(∫ ∞
−∞

etxfX(x)dx

)(∫ ∞
−∞

etyfY (y)dy

)
=E(etX)E(etY )

10.6.14 10,560
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10.6.15 (a) We have

E(X + Y ) =

∫ ∞
−∞

∫ ∞
−∞

(x+ y)fXY (x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xfXY (x, y)dxdy +

∫ ∞
−∞

∫ ∞
−∞

yfXY (x, y)dxdy

=

∫ ∞
−∞

x

(∫ ∞
−∞

fXY (x, y)dy

)
dx+

∫ ∞
−∞

y

(∫ ∞
−∞

fXY (x, y)dx

)
dy

=

∫ ∞
−∞

xfX(x)dx+

∫ ∞
−∞

yfY (y)dy

=E(X) + E(Y ).

(b) We have

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xyfXY (x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

xyfX(x)fY (y)dxdy

=

∫ ∞
−∞

x

(∫ ∞
−∞

yfY (y)dy

)
fX(x)dx

=

(∫ ∞
−∞

xfX(x)dx

)(∫ ∞
−∞

yfY (y)dy

)
=E(X)E(Y ).

(c) We have

Var(X + Y ) =E[(X + Y )2]− [E(X + Y )]2

=E(X2 + 2XY + Y 2)− [E(X) + E(Y )]2

=E(X2) + 2E(XY ) + E(Y 2)− E(X)2 − E(Y )2 − 2E(X)E(Y )

=E(X2)− E(X)2 + E(Y 2)− E(Y )2 + 2E(X)E(Y )− 2E(X)E(Y )

=Var(X) + Var(Y )

10.6.16 200
10.6.17 te−t
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10.6.17

Γ(x)Γ(y) =

(∫ ∞
0

e−uux−1du

)(∫ ∞
0

e−vvy−1dv

)
=

∫ ∞
0

∫ ∞
0

e−u−vux−1vy−1dudv

=

∫ ∞
0

∫ 1

0

e−z(zt)x−1[z(1− t)]y−1

∣∣∣∣∂(u, v)

∂(z, t)

∣∣∣∣ dtdz
=

∫ ∞
0

∫ 1

0

e−z(zt)x−1[z(1− t)]y−1zdtdz

=

(∫ ∞
0

e−zzx+y−1dz

)(∫ 1

0

tx−1(1− t)y−1dt

)
=Γ(x+ y)B(x, y)

where we used the substitution u = zt and v = z(1− t)
10.6.18 0.892

Section 10.7

10.7.1 pX|Y (0|1) = 0.25 and pX|Y (1|1) = 0.75 and 0 otherwise.
10.7.2 (a) For 1 ≤ x ≤ 5 and y = 1, · · · , x we have pXY (x, y) =

(
1
5

) (
1
x

)
and

0 otherwise.
(b) pX|Y (x|y) =

1
5x∑5

k=y( 1
5k)

and 0 otherwise.

(c) X and Y are dependent
10.7.3

P (X = 3|Y = 4) =
P (X = 3, Y = 4)

P (Y = 4)
=

0.10

0.35
=

2

7

P (X = 4|Y = 4) =
P (X = 4, Y = 4)

P (Y = 4)
=

0.15

0.35
=

3

7

P (X = 5|Y = 4) =
P (X = 5, Y = 4)

P (Y = 4)
=

0.10

0.35
=

2

7
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10.7.4

P (X = 0|Y = 1) =
P (X = 0, Y = 1)

P (Y = 1)
=

1/16

6/16
=

1

6

P (X = 1|Y = 1) =
P (X = 1, Y = 1)

P (Y = 1)
=

3/16

6/16
=

1

2

P (X = 2|Y = 1) =
P (X = 2, Y = 1)

P (Y = 1)
=

2/16

6/16
=

1

3

P (X = 3|Y = 1) =
P (X = 3, Y = 1)

P (Y = 1)
=

0/16

6/16
= 0

and 0 otherwise.
10.7.5

x 1 2 3 4 5 6
pY |X(1|x)) 1 2

3
2
5

2
7

2
9

2
11

pY |X(2|x) 0 1
3

2
5

2
7

2
9

2
11

pY |X(3|x) 0 0 1
5

2
7

2
9

2
11

pY |X(4|x) 0 0 0 1
7

2
9

2
11

pY |X(5|x) 0 0 0 0 1
9

2
11

pY |X(6|x) 0 0 0 0 0 1
11

and 0 otherwise. X and Y are dependent since pY |X(1|1) = 1 6= 11
36

= pY (1).
10.7.6 (a) pY (y) = nCyp

y(1− p)n−y and 0 otherwise. Thus, Y is a binomial
distribution with parameters n and p.
(b) For 0 ≤ y ≤ n, we have

pX|Y (x|y) =
pXY (x, y)

pY (y)

=

n!yx(pe−1)y(1−p)n−y
y!(n−y)!x!

nCypy(1− p)n−y

=
yxe−y

x!

for x = 0, 1, 2, · · · and 0 otherwise. Thus, X|Y = y is a Poisson distribution
with parameter y.
X and Y are dependent.



768 ANSWER KEYS

10.7.7

pX|Y (x|0) =
pXY (x, 0)

pY (0)
=


1/11 x = 0
4/11 x = 1
6/11 x = 2

0 otherwise

pX|Y (x|1) =
pXY (x, 1)

pY (1)
=


3/7 x = 0
3/7 x = 1
1/7 x = 2
0 otherwise

The conditional probability distribution for Y given X = x is

pY |X(y|0) =
pXY (0, y)

pX(0)
=


1/4 y = 0
3/4 y = 1
0 otherwise

pY |X(y|1) =
pXY (1, y)

pX(1)
=


4/7 y = 0
3/7 y = 1
0 otherwise

pY |X(y|2) =
pXY (2, y)

pX(2)
=


6/7 y = 0
1/7 y = 1
0 otherwise

10.7.8 (a) 1
2N−1

(b) pX(x) = 2x

2N−1
for x = 0, 1, · · · , N−1 and 0 otherwise. (c)

pY |X(y|x) = 2−x(1 − 2−x)y for x = 0, 1, · · · , N − 1, y = 0, 1, 2, · · · and 0
otherwise
10.7.9 P (X = k|X + Y = n) = C(n, k)

(
1
2

)n
for k = 0, 1, · · · , n and 0

otherwise.
10.7.10 (a)

P (X = 0, Y = 0) =
48

52

47

51
=

188

221

P (X = 1, Y = 0) =
48

52

4

51
=

16

221

P (X = 1, Y = 1) =
4

52

48

51
=

16

221

P (X = 2, Y = 1) =
4

52

3

51
=

1

221
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and 0 otherwise.
(b) P (Y = 0) = P (X = 0, Y = 0) + P (X = 1, Y = 0) = 204

221
= 12

13
and

P (Y = 1) = P (X = 1, Y = 1) + P (X = 2, Y = 2) = 1
13

(c) pX|Y (1|1) = 13× 16
221

= 16
17

and pX|Y (2|1) = 13× 1
221

= 1
17

10.7.11 e2

10.7.12 Suppose that X and Y are independent. Then P (X = 0|Y =
1) = P (X = 0) = 0.6 and P (X = 1|Y = 0) = P (X = 1) = 0.7. Since
P (X = 0) + P (X = 1) = 0.6 + 0.7 6= 1, it follows that X and Y can not be
independent.
10.7.13 PY |X(0|1) ≈ 0.286 and PY |X(1|1) ≈ 0.714
10.7.14

P (N + S = 2) =P (N = 0, S = 2) + P (N = 1, S = 1) + P (N = 2, S = 0)

=0.10 + 0.18 + 0.12 = 0.40

P (N = 0|N + S = 2) =
P (N = 0, S = 2)

P (N + S = 2)
=

0.10

0.40
= 0.25

P (N = 1|N + S = 2) =
P (N = 1, S = 1)

P (N + S = 2)
=

0.18

0.40
= 0.45

P (N = 2|N + S = 2) =
P (N = 2, S = 0)

P (N + S = 2)
=

0.12

0.40
= 0.30

10.7.15

P (X + Y = 3) =P (0, 3) + P (1, 2) + P (2, 1) + P (3, 0)

=e−1.7e−2.3

[
2.33

3!
+ (1.7)

2.32

2!
+

1.702

2!

2.30

1!
+

1.703

3!

]
≈0.1954

P (X − Y = −3|X + Y = 3) =
P (X = 0, Y = 3)

P (X + Y = 3)
≈ 0.1901

P (X − Y = −1|X + Y = 3) =
P (X = 1, Y = 2)

P (X + Y = 3)
≈ 0.4215

P (X − Y = 1|X + Y = 3) =
P (X = 2, Y = 1)

P (X + Y = 3)
≈ 0.3116

P (X − Y = 3|X + Y = 3) =
P (X = 0, Y = 3)

P (X + Y = 3)
≈ 0.0768

10.7.16 0.0625
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10.7.17 0.5581
10.7.18 0.3
10.7.19 1
10.7.20 Recall that

pX+Y (n) = (n− 1)p2(1− p)n−2, n ≥ 2

and 0 otherwise. Thus,

pX|X+Y (x|n) =
pX,X+Y (x, n)

pX+Y (n)
=
P (X = x, Y = n− x)

pX+Y (n)

=
P (X = x)P (Y = n− x)

pX+Y (n)
=
p(1− p)x−1p(1− p)n−x−1

(n− 1)p2(1− p)n−2

=
1

n− 1
, 1 ≤ x ≤ n− 1

10.7.21 0.13125
10.7.22 1

54
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Section 10.8

10.8.1 For y ≤ |x| ≤ 1, 0 ≤ y ≤ 1 we have

fX|Y (x|y) =
3

2

[
x2

1− y3

]
and 0 otherwise. If y = 0.5 then

fX|Y (x|0.5) =
12

7
x2, 0.5 ≤ |x| ≤ 1

and 0 otherwise. The graph of fX|Y (x|0.5) is given below

10.8.2 fX|Y (x|y) = 2x
y2
, 0 ≤ x < y ≤ 1 and 0 otherwise

10.8.3 fY |X(y|x) = 3y2

x3
, 0 ≤ y < x ≤ 1 and 0 otherwise

10.8.4 fX|Y (x|y) = (y + 1)2xe−x(y+1), x ≥ 0 and 0 otherwise. fY |X(y|x) =
xe−xy, y ≥ 0 and 0 otherwise
10.8.5 (a) For 0 < y < x we have fXY (x, y) = y2

2
e−x and 0 otherwise

(b) fX|Y (x|y) = e−(x−y), 0 < y < x and 0 otherwise
10.8.6 (a) fX|Y (x|y) = 6x(1− x), 0 < x < 1 and 0 otherwsie. X and Y are
independent (b) 0.25

10.8.7 fX|Y (x|y) =
1
3
x−y+1
3
2
−y for 1 ≤ x ≤ 2, 0 ≤ y ≤ 1 and 0 otherwise. (b) 11

24

10.8.8 0.25
10.8.9 8

9

10.8.10 0.4167
10.8.11 7

8

10.8.12 0.1222
10.8.13 fX(x) =

∫ 1

x2
1√
y
dy = 2(1− x), 0 < x < 1 and 0 otherwise

10.8.14 1
1−y for 0 < y < x < 1 and 0 otherwise

10.8.15 mean=1
3

and Var(Y ) = 1
18

10.8.16 0.172
10.8.17 fY |X(y|2) = 1

6
e−

(y−2)
6 for y > 2 and 0 otherwise
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10.8.18 fY |X
(
y|1

3

)
= 9

2
(1− y) for 1

3
< y < 1 and 0 otherwise

10.8.19 fY |X(y|x) = 1
1−x for 0 < x < 1 and 0 otherwise. Likewise, fX|Y (x|y) =

1
y

for 0 < y < 1 and 0 otherwise
10.8.20 From

fXY (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x)

we have

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
.

But

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
−∞

fX|Y (x|y)fY (y)dy.

Hence,

fY |X(y|x) =
fX|Y (x|y)fY (y)∫∞

−∞ fX|Y (x|y)fY (y)dy

10.8.21 0.0046

Section 10.9

10.9.1 fZW (z, w) =
fXY ( zd−bw

ad−bc ,
aw−cz
ad−bc )

|ad−bc| for all (z, w) ∈ Im(T ) where T (x, y) =

(z, w) = (ax+ by, cx+ dy)
10.9.2 fY1Y2(y1, y2) = λ2

y2
e−λy1 , y2 > 1, y1 ≥ ln y2 and 0 otherwise

10.9.3 fRΦ(r, φ) = rfXY (r cosφ, r sinφ), r > 0, − π < φ ≤ π and 0 other-
wise
10.9.4

fZW (z, w) =
z

1 + w2
[fXY (z(

√
1 + w2)−1, wz(

√
1 + w2)−1)

+fXY (−z(
√

1 + w2)−1,−wz(
√

1 + w2)−1)]

for (z, w) ∈ Im(T ) where T (x, y) = (z, w) =
(√

x2 + y2, y
x

)
and 0 otherwise

10.9.5 fUV (u, v) = λe−λu(λu)α+β−1vα−1(1−v)β−1

Γ(α)Γ(β)
for (u, v) ∈ Im(T ) where T (x, y) =(

x+ y, x
x+y

)
and 0 otherwise

10.9.6 We have

fY1Y2(y1, y2) =

{
e−y1y1, y1 ≥ 0, 0 < y2 < 1

0 otherwise
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10.9.7 fY1Y2(y1, y2) = 1√
2π
e−( 3

7
y1+ 1

7
y2)2/2 1√

8π
e−( 1

7
y1− 2

7
y2)2/8 · 1

7
for (y1, y2) ∈

Im(T ) where T (x1, x2) = (2x1 + x2, x1 − 3x2) and 0 otherwise

10.9.8 fUV (u, v) = 1
2π
e−

u2+v2

2 for (u, v) ∈ Im(T ) where T (x, y) =
(√

2y cosx,
√

2y sinx
)

and 0 otherwise. This is the joint density of two independent standard nor-
mal random variables.
10.9.9 fX+Y (a) =

∫∞
−∞ fXY (a − y, y)dy If X and Y are independent then

fX+Y (a) =
∫∞
−∞ fX(a−y)fY (y)dy which is just the convolution of the marginal

pdfs
10.9.10 fY−X(a) =

∫∞
−∞ fXY (y − a, y)dy. If X and Y are independent then

fY−X(a) =
∫∞
−∞ fX(y − a)fY (y)dy =

∫∞
−∞ fX(y)fY (a+ y)dy

10.9.11 fU(u) =
∫∞
−∞

1
|v|fXY (v, u

v
)dv. If X and Y are independent then

fU(u) =
∫∞
−∞

1
|v|fX(v)fY (u

v
)dv

10.9.12 fU(u) = 1
(u+1)2

for u > 0 and 0 elsewhere.

10.9.13 g(x) = e−
x
2 − e−x, x > 0 and 0 otherwise

10.9.14 f(x) = 2
(2x+1)2

Section 11.1

11.1.1 (m+1)(m−1)
3m

11.1.2 E(XY ) = 7
12

11.1.3 E(|X − Y |) = 1
3

11.1.4 E(X2Y ) = 7
36

and E(X2 + Y 2) = 5
6
.

11.1.5 0
11.1.6 33
11.1.7 L

3

11.1.8 30
19

11.1.9 (a) 0.9 (b) 4.9 (c) 4.2
11.1.10 (a) 14 (b) 45
11.1.11 5.725
11.1.12 2

3
L2

11.1.13 27
11.1.14 5
11.1.15 1.25
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11.1.16 Since X and Y are independent, E(XY ) = E(X)E(Y ). We have

Var(αX + βY + γ) =E[(αX + βY + γ)2]− (E[(αX + βY + γ)])2

=E(α2X2 + β2Y 2 + γ2 + 2αβXY + 2αγX + 2βγY )− [αE(X) + βE(Y ) + γ)2

=α2E(X2) + β2E(Y 2) + γ2 + 2αβE(XY ) + 2αγE(X) + 2βγE(Y )

−α2(E(X))2 − β2(E(Y ))2 − γ2 − 2αβE(X)E(Y )− 2αγE(X)− 2βγE(Y )

=α2[E(X2)− (E(X))2] + β2[E(Y 2)− (E(Y ))2]

=α2Var(X) + β2Var(Y )

11.1.17 11
11.1.18 E(XY ) = E(X)E(Y )
11.1.19 E(XY ) 6= E(X)E(Y )
11.1.20 3
11.1.21 1

6

11.1.22 0.125
11.1.23 102.50
11.1.24 44.64
11.1.25 1.1

Section 11.2

11.2.1 2σ2

11.2.2 − n
36

11.2.3 24
11.2.4 We have

Var(X + Y ) =E[(X + Y )2]− (E(X + Y ))2 = E(X2 + 2XY + Y 2)− (E(X) + E(Y ))2

=E(X2 + 2XY + Y 2)− E(X)2 − 2E(X)E(Y )− E(Y )2

=[E(X2)− E(X)2] + [E(Y 2)− E(Y )2] + 2[E(XY )− E(X)E(Y )]

=Var(X) + Var(Y ) + 2Cov(X, Y )

11.2.5 19,300
11.2.6 1

12

11.2.7 (a) fXY (x, y) = 5, −1 < x < 1, x2 < y < x2+0.1 and 0 otherwise (b)
0
11.2.8 We have

E(X) =
1

2π

∫ 2π

0

cos θdθ = 0
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E(Y ) =
1

2π

∫ 2π

0

sin θdθ = 0

E(XY ) =
1

2π

∫ 2π

0

cos θ sin θdθ = 0

Thus, Cov(X, Y ) = 0. However, X and Y are clearly dependent since X2 +
Y 2 = 1
11.2.9 3

160

11.2.10 19,300
11.2.11 0
11.2.12 0.04
11.2.13 6
11.2.14 8.8
11.2.15 (a) We have

X \ Y 0 1 2 pX(x)
0 0.25 0.08 0.05 0.38
1 0.12 0.20 0.10 0.42
2 0.03 0.07 0.10 0.2
PY (y) 0.4 0.35 0.25 1

(b) E(X) = 0.82 and E(Y ) = 0.85. (c) Cov(X, Y ) = 0.243. (d) E(C) =
E(100X + 75Y ) = $145.75
11.2.16 E(W ) = 4 and Var(W ) = 67
11.2.17 5

12

11.2.18 −0.15
11.2.19 −0.123
11.2.20 10

72

11.2.21 43
11.2.22 2.5
11.2.23 (C)
11.2.24 −25

9

11.2.25 27.8

Section 11.3

11.3.1 −0.33
11.3.2 (a) fXY (x, y) = 5, − 1 < x < 1, x2 < y < x2 + 0.1 and 0 otherwise
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(b) 0
11.3.3 (a) We have

ρ(X1 +X2, X2 +X3) =
Cov(X1 +X2, X2 +X3)√

Var(X1 +X2)
√

Var(X2 +X3)
=

Var(X2)√
2
√

2
=

1

2
.

(b)Replacing the term X2 + X3 in the above expression with X3 + X4, we
can see that the numerator becomes 0 (because the variables are all pairwise
uncorrelated); hence the correlation between X1 +X2 and X3 +X4 is 0
11.3.4 ρ(X, Y ) = Cov(X, Y ) = 0
11.3.5 Cov(X, Y ) = 3

160
and ρ(X, Y ) ≈ 0.397

11.3.6 0
11.3.7 −0.2
11.3.8 2
11.3.9 n−2

n+2

11.3.10 0.71
11.3.11 0.5
11.3.12 −0.61823
11.3.13 4036

Section 11.4

11.4.1 E(X|Y = y) = 2
3
y and E(Y |X = x) = 2

3

(
1−x3
1−x2

)
11.4.2 3

4
x

11.4.3 2.3
11.4.4 2

3

(
1−x6
1−x4

)
11.4.5 We have

E(X|Y = 1) =
∑
x

pXY (x, 1)

pY (1)
=

9

5
[
1

×
1

9
+ 2× 1

3
+ 3× 1

9
] = 2

E(X|Y = 2) =
∑
x

pXY (x, 2)

pY (2)
= 6[1× 1

9
+ 2× 0 + 3× 1

18
] =

5

3

E(X|Y = 3) =
∑
x

pXY (x, 1)

pY (3)
=

18

5
[1× 0 + 2× 1

6
+ 3× 1

9
] =

12

5
.

Since E(X|Y = y) changes with Y, X and Y are dependent
11.4.6 0.714
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11.4.7 x+ 1
2

11.4.8 0.88
11.4.9 1+x

2

11.4.10 0.4167
11.4.11 3.89764
11.4.12 4

7

11.4.13 E(X|Z = z) = z
2

11.4.14 (a) c = 8 (b) Dependent (c) E(Y |X = x) = 2
3
x for 0 ≤ x ≤ 1

11.4.15 0.25
11.4.16 y

2

11.4.17 1−3e−2

1−e−2

11.4.18 (a) 1 (b) dependent (c) fX(x) =
∫∞
x
e−ydy = e−x for x ≥ 0,

and 0 otherwise fY (y) =
∫ y

0
e−ydx = ye−y for y ≥ 0, and 0 otherwise (d)

E(Y |X = x) = x+ 1 for x ≥ 0 (e) E(X|Y = y) =
∫ y

0
xex−ydx = y − 1 + e−y

for y ≥ 0
11.4.19 (a) 1

5
(b) fX(x) =

∫ x+1

x
x+y

5
dy = 4x+1

10
for 0 < x < 2 and 0 otherwise.

Also, fY |X(y|x) = fXY (x,y)
fX(x)

= 2(x+y)
4x+1

for 0 < x < 2, x < y < x + 1 and 0

otherwise (c) E(Y |X = x) = 12x2+9x+2
12x+3

11.4.20 6.6
11.4.21 0.534
11.4.22 2.392
11.4.23 3.435
11.4.24 1.1
11.4.25 −25

9

Section 11.5

11.5.1 We prove the result in the continuous case. We have

E(a(X) + b(X)Y |X = x) =

∫ ∞
−∞

(a(x) + b(x)y)fY |X(y|x)dy

=a(x)

∫ ∞
−∞

fY |X(y|x)dy + b(x)

∫ ∞
−∞

yfY |X(y|x)dy

=a(x) + b(x)E(Y |X = x)
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11.5.2 We prove the result for continuous random variables, the proof for
discrete random variables is almost identical. First, we define

h(x) = E[g(X, Y )|X = x] =

∫ ∞
−∞

g(x, y)fY |X(y|x)dy.

We have

E[E(g(X, Y )|X)] =E(h(X)) =

∫ ∞
−∞

h(x)fX(x)dx

=

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX(x)fY |X(y|x)dydx

=

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dydx = E[g(X, Y )]

11.5.3 15
11.5.4 1

n+1

11.5.5 7
9

11.5.6 E(X) = 15 and E(Y ) = 5
11.5.7 −1.4
11.5.8 15
11.5.9 E(Y |X = 1) = 0.714 and E(Y 2|X = 1) = 0.714
11.5.10 E(Y |X) = x+ 1

2
and E(Y 2|X) = x2 + x+ 1

3

11.5.11 E(X|Y = 0) = 0.88 and E(X2|Y = 0) = 1.76
11.5.12 E(Y |X = x) = 1+x

2
and E(Y 2|X = x) = 1+x+x2

3

11.5.13 αλ
11.5.14 2

9
[1 + (0.5)3]

11.5.15 13.5
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11.5.16 We have

E(
N∑
i=1

Xi) =E[E[
N∑
i=1

Xi|N ]] =
∞∑
n=1

E[
N∑
i=1

Xi|N = n]]P (N = n)

=
∞∑
n=1

E[
n∑
i=1

Xi|N = n]]P (N = n)

=
∞∑
n=1

n∑
i=1

E(Xi|N = n)P (N = n)

=
∞∑
n=1

n∑
i=1

E(Xi)P (N = n)

=E(X1)
∞∑
n=1

nP (N = n) = E(N)E(X1)

11.5.17 400
11.5.18 35
11.5.19 λ

λ+µ

11.5.20 First, note that

FU(a− x) =

{
1− e−λ(a−x) 0 ≤ x ≤ a

0 otherwise.

Thus,

FX+Y (a) =P (X + Y < a) =

∫ a

0

FY (a− x)fX(x)dx =

∫ a

0

(1− e−λ(a−x))λe−λxdx

=1− λe−λa − λae−λa.

Hence,

fX+Y (a) =
d

da
(1− λe−λa − λae−λa) = λ2ae−λa.

That is, X + Y is a Gamma random variable with parameters (2, λ)
11.5.21 0.547
11.5.22 882
11.5.23 21.19
11.5.24 23.75
11.5.25 0.328
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Section 11.6

11.6.1 0.20
11.6.2 1

12

11.6.3 0.9856
11.6.4 13
11.6.5 (1−x)2

12

11.6.6 β2(λ+ λ2) + α2λ
11.6.7 2.25
11.6.8 0.076
11.6.9 0.0756
11.6.10 8 millions
11.6.11 3.75
11.6.12 1743.75
11.6.13 1
11.6.14 13x2+8x+1

18(3x+1)2

11.6.15 1−x2
12

11.6.16 1
11.6.17 0.25
11.6.18 24
11.6.19 36
11.6.20 0.9953
11.6.21 1/3
11.6.22 2.933
11.6.23 2.6608

Section 12.1

12.1.1 E(X) = n+1
2

and Var(X) = n2−1
12

12.1.2 E(X) = 1
p

and Var(X) = 1−p
p2

12.1.3 The moment generating function is

MX(t) =
∞∑
n=1

etn
6

π2n2
.
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By the ratio test we have

lim
n→∞

et(n+1) 6
π2(n+1)2

etn 6
π2n2

= lim
n→∞

et
n2

(n+ 1)2
= et > 1

and so the summation diverges whenever t > 0. Hence there does not exist
a neighborhood about 0 in which the mgf is finite
12.1.4 E(X) = α

λ
and Var(X) = α

λ2

12.1.5 MX(t) =

{
1 t = 0
∞ otherwise

12.1.6 M(t) = E(ety) = 19
27

+ 8
27
et

12.1.7 2
12.1.8 MX(t) = et(6−6t+3t2)−6

t3

12.1.9 −38

12.1.10 e
t2

2

12.1.11 e
k2

2

12.1.12 4
12.1.13 41.9
12.1.14 MX(t) = λ2

λ2−t2 , |t| < λ

12.1.15 MX(t) = 12
(t−4)(t−3)

, t < 3
12.1.16 We have

MaX+b(t) =E[et(aX+b)] = E[ebte(at)X ]

=ebtE[e(at)X ] = ebtMX(at)

12.1.17 First we find the moment of a standard normal random variable
with parameters 0 and 1. We can write

MZ(t) =E(etZ) =
1√
2π

∫ ∞
−∞

etze−
z2

2 dz =
1√
2π

∫ ∞
−∞

exp

{
−(z2 − 2tz)

2

}
dz

=
1√
2π

∫ ∞
−∞

exp

{
−(z − t)2

2
+
t2

2

}
dz = e

t2

2
1√
2π

∫ ∞
−∞

e−
(z−t)2

2 dz = e
t2

2 .

Now, since X = µ+ σZ, we have

MX(t) =E(etX) = E(etµ+tσZ) = E(etµetσZ) = etµE(etσZ)

=etµMZ(tσ) = etµe
σ2t2

2 = exp

{
σ2t2

2
+ µt

}
.
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By differentiation, we obtain

M ′
X(t) = (µ+ tσ2)exp

{
σ2t2

2
+ µt

}
and

M ′′
X(t) = (µ+ tσ2)2exp

{
σ2t2

2
+ µt

}
+ σ2exp

{
σ2t2

2
+ µt

}
and thus

E(X) = M ′
X(0) = µ and E(X2) = M ′′

X(0) = µ2 + σ2

The variance of X is

V ar(X) = E(X2)− (E(X))2 = σ2

12.1.18 5000
12.1.19 0.87
12.1.20 3

10
+ e7t−1

10t

Section 12.2

12.2.1 e−2t λ
λ−3t

, t < λ
3

12.2.2 Y has the same distribution as 3X − 2 where X is a binomial distri-
bution with n = 15 and p = 3

4

12.2.3 15
12.2.4 fX+Y (c) = 1√

2π(a2σ2
1+b2σ2

2)
e−(c−(aµ1+bµ2))2/[2(a2σ2

1+b2σ2
2)]

12.2.5 0.84
12.2.6 Let Y = X1 +X2 + · · ·+Xn where each Xi is an exponential random
variable with parameter λ. Then

MY (t) =
n∏
k=1

MXk(t) =
n∏
k=1

(
λ

λ− t

)
=

(
λ

λ− t

)n
, t < λ.

Since this is the mgf of a gamma random variable with parameters n and λ
we can conclude that Y, is a gamma random variable with parameters n and
λ
12.2.7 et

2
1+t22

12.2.8 10560
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12.2.9 (a) MX(t) = pet

1−(1−p)et , t < − ln (1− p) (b)
(

pet

1−(1−p)et

)n
, t <

− ln (1− p) (c) MY (t) =
(

pet

1−(1−p)et

)n
12.2.10 M(t1, t2) == (et1−1)(et2−1)

t1t2

12.2.11 2
9

12.2.12 MX+2Y (t) = e13t2+4t

12.2.13 0.4
12.2.14 −15

16

12.2.15 (0.7 + 0.3et)9

12.2.16 0.70
12.2.17 0.6293
12.2.18

[
MX1

(
t
n

)]n
12.2.19 Y is a gamma distribution with α = 21 and λ = 5
12.2.20 X is gamma distribution with α = 21 and λ = 15
12.2.21 0.223
12.2.22 0.557
12.2.23 0.1003
12.2.24 (i) and (iii)
12.2.25 0.23
12.2.26 (0.0003es + 0.0297et + 0.97)30

Section 12.3

12.3.1 0.2119
12.3.2 0.9876
12.3.3 0.0094
12.3.4 0.692
12.3.5 0.1367
12.3.6 0.383
12.3.7 0.0088
12.3.8 0
12.3.9 23
12.3.10 6,342,637.5
12.3.11 0.8185
12.3.12 16
12.3.13 0.8413
12.3.14 0.1587
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12.3.15 0.9887
12.3.16 (a) X is approximated by a normal distribution with mean 100 and
variance 400

100
= 4. (b) 0.9544.

12.3.17 0.77
12.3.18 0.2743
12.3.19 0.8202
12.3.20 0.5335
12.3.21 0.7486
12.3.22 1,150,000
12.3.23 0.9713
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nth moment about the origin, 210
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nth raw moment, 210
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Absolute complement, 16
Absolute convergence, 70
Alternating series, 69

Bayes formula, 156
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Beta function, 444
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Binomial experiment, 232
Binomial random variable, 232
Binomial Theorem, 47
Birthday problem, 125
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Cardinality, 7
Cartesian product, 22
Chi-squared distribution, 388
Classical probability, 123
Coefficient of Correlation, 492
Coefficient of Variation, 490
Combination, 45

Complementary event, 124
Conditional cumulative distribution,

447
Conditional cumulative distribution func-

tion, 457
Conditional density function, 456
Conditional expectation, 499
Conditional probability, 148
Conditional probability mass function,

446
Conditionally convergent, 71
Continuity at an interval, 59
Continuity correction, 367
Continuous, 56
Continuous random variable, 182, 310
Convergence of series, 66
Convergent improper integral, 95
Convolution, 429, 437
Corner points, 107
Countable additivity, 123
Countable sets, 8
Covariance, 484
Cumulative distribution function, 191,

234, 288, 311

Decreasing sequence of sets, 288
Definite integral, 83
Degrees of freedom, 388
Dependent events, 168
Derivative, 73
Differentiable function, 73
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Differentiation, 73
Discontinuous, 57
Discrete random variable, 182
Disjoint sets, 17
Distribution function, 191, 311
Divergent improper integral, 95
Divergent series, 66

Empirical, 122
Empty set, 6
Equal sets, 7
Equally likely, 123
Euler integral, 444
Event, 122
Expected value of a continuous RV,

324
Expected value of a discrete random

variable, 199
Experimental probability, 122
Exponential distribution, 371

Factorial, 39
Feasible region, 107
Finite sets, 7
First order statistics, 425
First quartile, 340
Floor function, 234

Gamma distribution, 383
Gamma function, 382
Geometric random variable, 222, 263
Geometric series, 67

Horizontal asymptote, 62
Hyper-geometric random variable, 278

Identically distributed, 425
Impossible event, 122
Improper integrals, 95

Inclusion-Exclusion Principle, 21
Increasing sequence of sets, 288
Independent events, 166
Independent random variables, 415
Indicator function, 190
Infinite discontinuity, 58
Infinite limits, 60
Infinite limits at infinity, 63
Infinite sets, 7
Instantaneous rate of change, 73
Integrable, 83
Integrand, 84
Integration, 84
Intermediate value theorem, 60
Interquartile range, 341
Intersection of events, 132
Intersection of two sets, 17
Iterated integrals, 112

Joint cumulative distribution function,
398

Joint probability mass function, 400
Jump discontinuity, 58

Kolomogorov’s axioms, 123

Law of large numbers, 123
Law of Total Probability, 157
Left continuity, 59
Left-continuity, 57
Left-hand limit, 55
Limit of a function, 55
Limits at infinity, 62
Linear inequality, 106
Long run behavior, 62
Lower limit, 83

Marginal distribution, 398
mathematical induction, 10
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Mean, 200
Median, 339
Memoryless property, 373
Mixed random variable, 182
Mode, 340
Moment generating function, 528
Moments, 527
Multiplication rule of counting, 33
Mutually exclusive, 123, 132
Mutually independent, 168

Negative binomial distribution, 271
Negatively corrolated, 493
Non-equal sets, 7
Normal distribution, 355

Odds against, 176
Odds in favor, 176
One-to-one, 7
Onto function, 7
Ordered pair, 22
Outcomes, 122

Pairwise disjoint, 21
Pairwise independent events, 170
Partial sums, 66
Pascal’s identity, 46
Pascal’s triangle, 48
Percentile, 340
Permutation, 39
Poisson random variable, 221, 251
Positively corrolated, 493
Posterior probability, 151
Power set, 10
Prime number, 12
Prior probability, 151
Probability density function, 310
Probability histogram, 189
Probability mass function, 189

Probability measure, 123
Probability trees, 141
Proper subset, 9

Quantile, 340

Random experiment, 122
Random variable, 182
Rate parameter, 371
Relative complement, 16
Reliability function, 303
Removable discontinuity, 57
Riemann sum, 83
Right continuity, 59
Right-continuity, 57
Right-hand limit, 54

Same Cardinality, 8
Sample space, 122
Scale parameter, 383
Second Fundamental Theorem of Cal-

culus, 86
Series, 66
Set, 6
Set-builder, 6
Shape parameter, 383
Short run behavior, 60
Single event, 122
Standard Deviation, 217
Standard deviation, 335
Standard normal distribution, 356
Standard uniform distribution, 347
Subset, 9
Superset, 9
Survival function, 303

Tabular form, 6
Telescoping sums, 67
test point, 106
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Tree diagram, 32
Trinomial Distribution, 405

Uncorrelated, 493
Uncountable sets, 8
Uniform discrete R.V., 226
Uniform distribution, 347
Union of events, 132
Union of sets, 16
Universal set, 9
Upper limit, 84

Variance, 217, 333
Vendermonde’s identity, 279
Venn Diagram, 9
Vertical asymptote, 61
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