Dynamical Systems Quiz-8 Key

 \mathbf{A}

Instructions. Be sure to indicate how you got your answers.

1. Analyze equation $x' = (x^2 - 1)(x + 2)$

Hint:
$$(x^2 - 1)(x + 2) = (x - 1)(x + 1)(x + 2) = x^3 + 2x^2 - x - 2$$

(a) Determine all equilibria and their linearized stability.

This is autonomous equation y' = f(x) with equilibria at the roots of f(x) = 0. So the equilibria are a = -2, -1, 1.

a	f'(a)	type
-2	3 > 0	unstable
-1	-2 < 0	stable
1	6 > 0	unstable

(b) Sketch some time-dependent solutions based on the one-dimensional phase line.



(c) Use your stability analysis to determine $\lim_{t\to\infty} x(t)$ for the solution with the initial value x(0)=1/2.

This solution converges to the closest stable equilibrium $\lim_{t\to\infty} x(t) = -1$

Dynamical Systems Quiz-8 Key

 \mathbf{B}

Instructions. Be sure to indicate how you got your answers.

1. Analyze equation $x' = (x^2 - 4)(x + 1)$

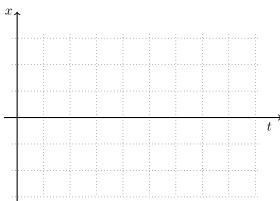
Hint:
$$(x^2 - 4)(x + 1) = (x - 2)(x + 2)(x + 1) = x^3 + x^2 - 4x - 4$$

(a) Determine all equilibria and their linearized stability.

This is autonomous equation y' = f(x) with equilibria at the roots of f(x) = 0. So the equilibria are a = -2, -1, 1.

a	f'(a)	type
-2	4 > 0	unstable
-1	-3 < 0	stable
2	12 > 0	unstable

(b) Sketch some time-dependent solutions based on the one-dimensional phase line.



(c) Use your stability analysis to determine $\lim_{t\to\infty} x(t)$ for the solution with initial value x(0)=3/2.

This solution converges to the closest stable equilibrium $\lim_{t\to\infty} x(t) = -1$

Instructions. Be sure to indicate how you got your answers.

1. Analyze equation $x' = (4 - x^2)(x - 1)$

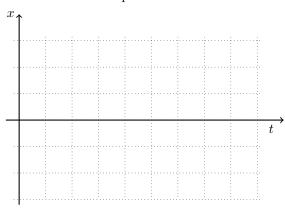
Hint:
$$(x^2 - 1)(x + 2) = (x - 1)(x + 2)(2 - x) = -x^3 + x^2 + 4x - 4$$

(a) Determine all equilibria and their linearized stability.

This is autonomous equation y' = f(x) with equilibria at the roots of f(x) = 0. So the equilibria are a = -2, -1, 1.

a	f'(z)	type
-2	-12	stable
1	3 > 0	unstable
2	-4 < 0	stable

(b) Sketch some time-dependent solutions based on the one-dimensional phase line.



(c) Use your stability analysis to determine $\lim_{t\to\infty} x(t)$ for the solution with initial value x(0)=1/2.