Dynamical Systems Quiz-4

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem $x'' - 4x = 6e^t$, x(0) = 7, x'(0) = 0.

The homogeneous equation x'' - 4x = 0 has characteristic equation $r^2 - 4 = 0$ with roots $r = \pm 2$ that give $x_1 = e^{2t}, x_2 = e^{-2t}$.

Using the method of undetermined coefficients, we seek a particular solution $x_p = Ae^t$. We compute A = -2. So the formula $x = C_1x_1 + C_2x_2 + x_p$ for the general solution gives $x(t) = C_1e^{2t} + C_2e^{-2t} - 2e^t$. Using the initial condition we now compute

$$x(0) = C_1 + C_2 - 2 = 7$$

$$x'(0) = 2C_1 - 2C_2 - 2 = 0$$

We get $C_1 = 5, C_2 = 4$. The answer is $x(t) = 5e^{2t} + 4e^{-2t} - 2e^t$

Turn the page for question 2

2. Find the general solution of the nonhomogeneous equation x'' - 4x' + 4x = 6t.

We first solve the homogeneous equation x'' - 4x' + 4x = 0. The characteristic equation is $r^2 - 4r + 4 = (r-2)^2 = 0$, with double root. The general solution of the homogeneous equation is $x = C_1 e^{2t} + C_2 t e^{2t}$. By the method of undetermined coefficients, we seek particular solution of the form $x_p = A + Bt$. We get $B = \frac{3}{2}$, $A = B = \frac{3}{2}$ so $x_p = \frac{3}{2}(1+t)$.

Combining the two parts together, we get the answer: $x = C_1 e^{2t} + C_2 t e^{2t} + \frac{3}{2}(1+t)$

Dynamical Systems Quiz-4

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem $x'' - 4x = 18e^t$, x(0) = 5, x'(0) = 0.

The homogeneous equation x'' - 4x = 0 has characteristic equation $r^2 - 4 = 0$ with roots $r = \pm 2$ that give $x_1 = e^{2t}, x_2 = e^{-2t}$.

Using the method of undetermined coefficients, we seek a particular solution $x_p = Ae^t$. We compute A = -6. So the formula $x = C_1x_1 + C_2x_2 + x_p$ for the general solution gives $x(t) = C_1e^{2t} + C_2e^{-2t} - 6e^t$. Using the initial condition we now compute

$$x(0) = C_1 + C_2 - 6 = 5$$

$$x'(0) = 2C_1 - 2C_2 - 6 = 0$$

We get $C_1 = 7, C_2 = 4$. The answer is $x(t) = 7e^{2t} + 4e^{-2t} - 6e^t$

Turn the page for question 2

2. Find the general solution of the nonhomogeneous equation x'' - 4x' + 4x = 10t.

We first solve the homogeneous equation x'' - 4x' + 4x = 0. The characteristic equation is $r^2 - 4r + 4 = (r-2)^2 = 0$, with double root. The general solution of the homogeneous equation is $x = C_1 e^{2t} + C_2 t e^{2t}$. By the method of undetermined coefficients, we seek particular solution of the form $x_p = A + Bt$. We get $B = \frac{5}{2}$, $A = B = \frac{5}{2}$ so $x_p = \frac{5}{2}(1+t)$.

Combining the two parts together, we get the answer: $\left[x = C_1 e^{2t} + C_2 t e^{2t} + \frac{5}{2}(1+t)\right]$

Dynamical Systems Quiz-4

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem $x'' - 4x = 12e^t$, x(0) = 2, x'(0) = 0.

The homogeneous equation x'' - 4x = 0 has characteristic equation $r^2 - 4 = 0$ with roots $r = \pm 2$ that give $x_1 = e^{2t}, x_2 = e^{-2t}$.

Using the method of undetermined coefficients, we seek a particular solution $x_p = Ae^t$. We compute A = -4. So the formula $x = C_1x_1 + C_2x_2 + x_p$ for the general solution gives $x(t) = C_1e^{2t} + C_2e^{-2t} - 4e^t$. Using the initial condition we now compute

$$x(0) = C_1 + C_2 - 4 = 2$$

$$x'(0) = 2C_1 - 2C_2 - 4 = 0$$

We get $C_1 = 4, C_2 = 2$. The answer is $x(t) = 4e^{2t} + 2e^{-2t} - 4e^t$

Turn the page for question 2

2. Find the general solution of the nonhomogeneous equation x'' - 4x' + 4x = 8t.

We first solve the homogeneous equation x'' - 4x' + 4x = 0. The characteristic equation is $r^2 - 4r + 4 = (r-2)^2 = 0$, with double root. The general solution of the homogeneous equation is $x = C_1 e^{2t} + C_2 t e^{2t}$. By the method of undetermined coefficients, we seek particular solution of the form $x_p = A + Bt$. We get B = 2, A = B = 2 so $x_p = 2(1 + t)$.

Combining the two parts together, we get the answer: $\left[x = C_1 e^{2t} + C_2 t e^{2t} + 2(1+t)\right]$

C Key

Dynamical Systems Quiz-4

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem $x'' - 4x = 12e^t$, x(0) = 4, x'(0) = 0.

The homogeneous equation x'' - 4x = 0 has characteristic equation $r^2 - 4 = 0$ with roots $r = \pm 2$ that give $x_1 = e^{2t}, x_2 = e^{-2t}$.

Using the method of undetermined coefficients, we seek a particular solution $x_p = Ae^t$. We compute A = -4. So the formula $x = C_1x_1 + C_2x_2 + x_p$ for the general solution gives $x(t) = C_1e^{2t} + C_2e^{-2t} - 4e^t$. Using the initial condition we now compute

$$x(0) = C_1 + C_2 - 4 = 4$$

$$x'(0) = 2C_1 - 2C_2 - 4 = 0$$

We get $C_1 = 5, C_2 = 3$. The answer is $x(t) = 5e^{2t} + 3e^{-2t} - 4e^t$

Turn the page for question 2

2. Find the general solution of the nonhomogeneous equation x'' - 4x' + 4x = 5t.

We first solve the homogeneous equation x'' - 4x' + 4x = 0. The characteristic equation is $r^2 - 4r + 4 = (r-2)^2 = 0$, with double root. The general solution of the homogeneous equation is $x = C_1 e^{2t} + C_2 t e^{2t}$. By the method of undetermined coefficients, we seek particular solution of the form $x_p = A + Bt$. We get $B = \frac{5}{4}$, $A = B = \frac{5}{4}$ so $x_p = \frac{5}{4}(1+t)$.

Combining the two parts together, we get the answer: $x = C_1 e^{2t} + C_2 t e^{2t} + \frac{5}{4}(1+t)$

D Key