Dynamical Systems Quiz-1

Instructions. Be sure to show your work so that it is clear how you got your answers.

- 1. Which of the following solves the differential equation $2t\frac{dx}{dt} + x = 0$?
 - (a) only $x(t) = t^{1/2}$
 - (b) only $x(t) = t^{-1/2}$
 - (c) None of the above
 - (d) Both of the above

Explain! The correct choice is: b.

Here is how to verify this: if $x(t) = t^{1/2}$ then $x' = \frac{1}{2}t^{-1/2}$ so the left-hand side of the equation is $2tx' + x = 2t\frac{1}{2}t^{-1/2} + t^{1/2} = t^{1/2} + t^{1/2} = 2t^{1/2} \neq 0$ if $x(t) = t^{-1/2}$ then $x' = -\frac{1}{2}t^{-3/2}$ so the left-hand side of the equation is $2tx' + x = 2t(-\frac{1}{2})t^{-3/2} + t^{-1/2} = -t^{-1/2} + t$

2. Solve the initial value problem $\frac{dx}{dt} = -2tx^2$, x(0) = 1. $\int \frac{-dx}{x^2} = 2 \int t dt$ so $\frac{1}{x} = t^2 + c$ and $x = \frac{1}{c+t^2}$. Since x(0) = 1, we get c = 1 so $x(t) = \frac{1}{1+t^2}$

Name

Printed: January 14, 2023

 $t^{-1/2} = 0$

Dynamical Systems Quiz-1

Instructions. Be sure to show your work so that it is clear how you got your answers.

- 1. Which of the following solves the differential equation $t\frac{dx}{dt} + 2x = 0$?
 - (a) only $x(t) = t^{1/2}$
 - (b) only $x(t) = t^{-1/2}$
 - (c) None of the above
 - (d) Both of the above

Explain! The correct choice is: c

2. Solve the initial value problem $\frac{dx}{dt} = -6t^2x^2$, x(0) = 1. $\int \frac{-dx}{x^2} = 6\int t^2 dt$ so $\frac{1}{x} = 2t^3 + c$ and $x = \frac{1}{c+2t^2}$. Since x(0) = 1, we get c = 1 so $x(t) = \frac{1}{1+2t^3}$

Name _

Printed: January 14, 2023

Dynamical Systems Quiz-1

Instructions. Be sure to show your work so that it is clear how you got your answers.

- 1. Which of the following solves the differential equation $2\frac{dx}{dt} x/t = 0$?
 - (a) only $x(t) = t^{1/2}$
 - (b) only $x(t) = t^{-1/2}$
 - (c) None of the above
 - (d) Both of the above

Explain! The correct choice is: a

2. Solve the initial value problem $\frac{dx}{dt} = -6tx^2$, x(0) = 1. $\int \frac{-dx}{x^2} = 6 \int t dt$ so $\frac{1}{x} = 3t^2 + c$ and $x = \frac{1}{c+3t^2}$. Since x(0) = 1, we get c = 1 so $x(t) = \frac{1}{1+3t^2}$

C Key

B Key