\qquad

Differential Equations MATH 2073 Final-2019 А кеу $^{\text {к }}$

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Solve the initial value problem $y^{\prime}=2 x+y ; y(0)=2$.

Solution

$\frac{d y}{d x}-y=2 x$, so integrating factor is $\mu(x)=e^{-x}$. The general solution is $y=C e^{x}+2 e^{x} \int_{0}^{x} u e^{-u} d u=C e^{x}-2 x-2$ and the initial value is satisfied by $y=4 e^{x}-2 x-2$.
2. Solve the initial value problem $y^{\prime}=6 y x ; y(0)=6$

Solution $\frac{d y}{y}=6 x d x$, so $\ln |y|=3 x^{2}+C$. The general solution is $y=C e^{3 x^{2}}$ and the initial value is satisfied by $y=6 e^{3 x^{2}}$.
3. Find the solution of the equation $y^{\prime \prime}-2 y^{\prime}=4$ with the initial value $y(0)=1, y^{\prime}(0)=1$.

Solution I The Laplace transform of y satisfies the equation $s^{2} Y-s-1-2 s Y+2=4 / s$ Therefore

$$
Y(s)=\frac{s^{2}-s+4}{s^{2}(s-2)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-2}
$$

This gives $A s^{2}-2 A s+s B-2 B+C s^{2}=s^{2}-s+4$. Therefore $A+C=1,-2 B=4, B-2 A=-1$. So

$$
Y(s)=-\frac{1}{2} \frac{1}{s}-2 \frac{1}{s^{2}}+\frac{3}{2} \frac{1}{s-2}
$$

The answer is $y(t)=-\frac{1}{2}-2 t+\frac{3}{2} e^{2 t}$.
Solution II The homogeneous equation has the characteristic equation $r^{2}-2 r=0$ so the solution is $y(t)=C_{1} e^{2 t}+$ $C_{2}+y_{*}(t)$. By undetermined coefficients method, the particular solution takes form $y_{*}=A t$. Putting this into the equation, $0-2 A=4$, so $A=-2$. Thus the general solution is $y(t)=C_{1} e^{2 t}+C_{2}-2 t$.
Now we use the initial values: $y(0)=C_{1}+C_{2}=1, y^{\prime}(0)=2 C_{1}-2=1$. So $C_{1}=3 / 2, C_{2}=-1 / 2$, and the solution is $y(t)=-\frac{1}{2}-2 t+\frac{3}{2} e^{2 t}$.
Solution III Substitute $u=y^{\prime}$. This reduces the order of the equation to $u^{\prime}-2 u=4$. This equation of order 1 can be solved either by integrating factor method, or by general theory of n-th order linear equations, or by separation of variables. Choosing the latter method, $u^{\prime}=2(u+2)$, so $\int \frac{d u}{u+2}=\int 2 d t$, and $\ln (u+2)=c+2 t$. This gives $u=C_{1} e^{2 t}-2$. Since $u=y^{\prime}$, this means that $y^{\prime}=C_{1} e^{2 t}-2$. Using the initial condition $y^{\prime}(0)=1$ we get $C_{1}=3$ and $y^{\prime}=3 e^{2 t}-2$. Integrating this, we get $y(t)=\frac{3}{2} e^{2 t}-2 t+C_{2}$. From $y(0)=1$ we determine $C_{2}=1-3 / 2=-1 / 2$. So the answer is $y=\frac{3}{2} e^{2 t}-2 t-\frac{1}{2}$.
4. Find the solution of the equation

$$
y^{\prime \prime \prime}+4 y^{\prime}=0 \text { with initial conditions } y(0)=1, y^{\prime}(0)=2, y^{\prime \prime}(0)=4
$$

Solution: Characteristic equation $r^{3}+4 r=0$ factors as $r(r-2 i)(r+2 i)=0$. The roots are $0,-2 i, 2 i$. So the general solution is $y=C_{1}+C_{2} \cos 2 x+C_{3} \sin 2 x$. The initial conditions determine the constants. Answer: $y=2-\cos (2 x)+\sin (2 x)$
5. Find the general solution of the equation $y^{(4)}-y=4 e^{t}$.

The characteristic equation $r^{4}-1=0$ factors as $r^{4}-1=\left(r^{2}-1\right)\left(r^{2}+1\right)=(r-1)(r+1)(r-i)(r+i)=0$ with roots $\pm 1, \pm i$. The general solution is $y=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \sin t+C_{4} \cos t$.
Seek particular solution $y_{p}=A t e^{t}$. This gives $y_{p}=t e^{t}$ Answer: $y=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \sin t+C_{4} \cos t+t e^{t}$
6. Find the general solution of the homogeneous Euler equation $x^{2} y^{\prime \prime}-6 y=0$ for $x>0$. Hint. Recall that we search for the solutions of the form $y=x^{r}$.
The characteristic equation is $r(r-1)-6=0$. This factors as $(r-3)(r+2)=0$ The general solution of the homogeneous equation is $y=C_{1} \frac{1}{x^{2}}+C_{2} x^{3}$
7. Find the power series solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ of equation $y^{\prime \prime}-x y^{\prime}-y=0$ with the initial value $y(0)=1, y^{\prime}(0)=0$. Steps in the solution:
(a) Express $x y^{\prime}$ and $y^{\prime \prime}$ as the power series in powers of x^{n}.
$x y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n}$
$y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}$
(b) Determine the recurrence relation for coefficients a_{n}. Simplify your answer!

$$
(n+2)(n+1) a_{n+2}-n a_{n}-a_{n}=0
$$

This simplifies to

$$
a_{n+2}=\frac{a_{n}}{n+2}
$$

(c) Compute the first six terms of the power series $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\ldots$ and notice the pattern.
Since $a_{0}=1, a_{1}=0$, the recursion gives

$$
a_{2}=\frac{a_{o}}{2}=\frac{1}{2}, a_{3}=\frac{0}{3}, a_{4}=\frac{a_{2}}{4}=\frac{1}{2 \cdot 4}, a_{5}=\frac{a_{3}}{5}=\frac{0}{3 \cdot 5}, a_{6}=\frac{a_{4}}{6}=\frac{1}{2 \cdot 4 \cdot 6}
$$

The first six terms are $y=1+\frac{x^{2}}{2}+\frac{x^{4}}{2 \cdot 4}+\frac{x^{6}}{2 \cdot 4 \cdot 6}+\ldots=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+\ldots$.
The pattern is

$$
\begin{gathered}
a_{2 k}=\frac{1}{2 \times 4 \times \cdots \times(2 k)}=\frac{1}{2^{k} k!} \\
a_{2 k+1}=0
\end{gathered}
$$

The answer is

$$
y=\sum_{k=0}^{\infty} \frac{x^{2 k}}{2^{k} k!}=\sum_{k=0}^{\infty} \frac{\left(\frac{x^{2}}{2}\right)^{k}}{k!}=e^{x^{2} / 2}
$$

8. Solve the differential equation $y^{\prime \prime}+4 y=4 u_{\pi}(t), y(0)=1, y^{\prime}(0)=0$. (Here $u_{\pi}(t)$ is the unit step function.) Sketch the graph of the solution.

Solution: The Laplace transform is $Y(s)=\frac{s}{s^{2}+4}+\frac{4 e^{-\pi s}}{s\left(s^{2}+4\right)}=\frac{s}{s^{2}+4}+e^{-\pi s}\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right)$. Therefore the solution is $y(t)=\cos 2 t+u_{\pi}(t)(1-\cos 2(t-\pi))=\cos t+u_{\pi}(t)(1-\cos t)$. Thus

$$
y(t)= \begin{cases}\cos 2 t & t<\pi \\ 1 & t>\pi\end{cases}
$$

9. Solve the differential equation $y^{\prime \prime}+y=\delta(t-\pi), y(0)=0, y^{\prime}(0)=1$. (Here $\delta(t)$ is the unit impulse function.) Sketch the graph of the solution.

Solution: The Laplace transform is $Y(s)=\frac{1}{s^{2}+1}+\frac{e^{-\pi s}}{s^{2}+1}$. Therefore the solution is $y(t)=\sin t+u_{\pi}(t) \sin (t-\pi)=$ $\left(1-u_{\pi}(t)\right) \sin t$. Thus

$$
y(t)=\left\{\begin{array}{cl}
\sin t & \text { if } t \leq \pi \\
0 & \text { if } t>\pi
\end{array}\right.
$$

10. Consider the system of differential equations

$$
\begin{aligned}
u_{1}^{\prime} & =2 u_{1}+u_{2} \\
u_{2}^{\prime} & =u_{1}+2 u_{2}
\end{aligned}
$$

with initial condition $u_{1}(0)=4, u_{2}(0)=2$.
Determine solution $u_{1}(t)$ of this system. Hint. Transform the system into a single equation of order 2. (Alternatively, you can use the Laplace transform.)
Standard solution from the book: From first equation, $u_{2}=u_{1}^{\prime}-2 u_{1}$, so the second equation becomes $u_{1}^{\prime \prime}-2 u_{1}^{\prime}=$ $u_{1}+2\left(u_{1}^{\prime}-2 u_{1}\right)$. This simplifies to

$$
u_{1}^{\prime \prime}-4 u_{1}^{\prime}+3 u_{1}=0
$$

The initial conditions are $u_{1}(0)=4$ and $u_{1}^{\prime}(0)=2 u_{1}(0)+u_{2}(0)=10$.
The characteristic equation is $r^{2}-4 r+3=(r-1)(r-3)=0$ so the general solution is $u_{1}=C_{1} e^{t}+C_{2} e^{3 t}$. Using the initial condition

$$
C_{1}+C_{2}=4, C_{1}+3 C_{2}=10
$$

We determine that $C_{1}=3$ and $C_{1}=1$.
Answer: $u_{1}(t)=3 e^{3 t}+e^{t}$ and $u_{2}(t)=3 e^{3 t}-e^{t}$

Non-standard solution:

Adding the equations we get $u_{1}^{\prime}+u_{2}^{\prime}=3 u_{1}+3 u_{2}$. So we have an equation $y^{\prime}=3 y$ with initial condition $y(0)=6$ for $y=u_{1}+u_{2}$. The solution of this equation is $y=C e^{3 t}$ with $C=6$.
Subtracting the equations we get $u_{1}^{\prime}-u_{2}^{\prime}=u_{1}-u_{2}$. So we have an equation $y^{\prime}=y$ with $y(0)=2$ for $y=u_{1}-u_{2}$. The solution of this equation is $y=C e^{t}$ with $C=2$.
So $u_{1}+u_{2}=6 e^{3 t}$ and $u_{1}-u_{2}=2 e^{t}$.
Adding the equations we get $2 u_{1}=6 e^{3 t}+2 e^{t}$
Answer: $u_{1}(t)=3 e^{3 t}+e^{t}$
Laplace transform solution: Taking the Laplace transforms of both sides of the equations we get

$$
s U_{1}(s)-4=2 U_{1}+U_{2} \text { and } s U_{2}-2=U_{1}+2 U_{2}
$$

where $U_{1}(s)=\mathcal{L}\left(u_{1}\right)$. Solving the system of equations

$$
\begin{aligned}
(s-2) U_{1}-U_{2} & =4 \\
-U_{1}+(s-2) U_{2} & =2
\end{aligned}
$$

we get

$$
U_{1}=\frac{\left|\begin{array}{cc}
4 & -1 \\
2 & s-2
\end{array}\right|}{\left|\begin{array}{cc}
s-2 & -1 \\
-1 & s-2
\end{array}\right|}=\frac{4 s-6}{(s-2)^{2}-1^{2}}=\frac{4 s-6}{((s-2)-1)((s-2)+1)}=\frac{4 s-6}{(s-3)(s-1)}=\frac{3}{s-3}+\frac{1}{s-1}
$$

From the table of Laplace transforms we read out the answer $u_{1}=3 e^{3 t}+e^{t}$

