Differential Equations MATH 2073 Final-2018.

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Find the solution of the initial value problem $y' + 6t^2y^2 = 0$, y(0) = 1.

2. Solve the initial value problem y' - 2y = 4t, y(0) = 0.

3. Find the general solution of the equation $y^{(4)} - y = 10e^t$.

4. Find the general solution of the equation $y^{'''} + 4y' = 10e^t$

5. Find the general solution of the nonhomogeneous equation $y'' - 4y' + 3y = 10 \cos t$.

6. Find the general solution of the homogeneous Euler equation $x^2y'' + xy' - y = 0$ for x > 0. Hint. Recall that we search for the solutions of the form $y = x^r$.

- 7. Find the power series solution $y = \sum_{n=0}^{\infty} a_n x^n$ of equation y'' xy' y = 0 with the initial value y(0) = 1, y'(0) = 0. Steps in the solution:
 - (a) Express xy' and y'' as the power series in powers of x^n .

(b) Determine the recurrence relation for coefficients a_n . Simplify your answer!

(c) Compute the first six terms of the power series $y = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + \dots$ and notice the pattern.

8. Solve the differential equation $y'' + y = -u_{\pi}(t)$, y(0) = 1, y'(0) = 0. (Here $u_{\pi}(t)$ is the unit step function.) Sketch the graph of the solution.

9. Solve the differential equation $y'' + y = \delta(t - \pi), y(0) = 0, y'(0) = 1$. (Here $\delta(t)$ is the unit impulse function.) Sketch the graph of the solution.

10. Consider the system of differential equations

$$u_1' = 2u_1 + u_2, u_2' = u_1 + 2u_2$$

with initial condition $u_1(0) = 2, u_2(0) = 4.$

Determine solution $u_1(t)$ of this system. Hint. Transform the system into a single equation of order 2. (Alternatively, you can use the Laplace transform.)

Table of Laplace transforms $\mathcal{L}(f) = \int_0^\infty e^{-ts} f(t) dt$

f(t)	$F(s) = \mathcal{L}(f)$	(domain of $F(s)$)
1	$\frac{1}{s}$	(s > 0)
t^n	$\frac{n!}{s^{n+1}}$	(s > 0)
e^{at}	$\frac{1}{s-a}$	(s > a)
$\cos at$	$\frac{s}{s^2+a^2}$	(s > 0)
$\sin at$	$\frac{a}{s^2+a^2}$	(s > 0)
$u_c(t)$	$\frac{e^{-cs}}{s}$	(s > 0)
$\delta(t-a)$	e^{-as}	(s > 0)
	1	

Laplace transform formulas

$$\begin{aligned} \mathcal{L}(f_1(t) + cf_2(t)) &= \mathcal{L}(f_1(t)) + c\mathcal{L}(f_2(t)) \\ \mathcal{L}\left(f^{(n)}(t)\right) &= s^n F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0) \\ \mathcal{L}\left(e^{at} f(t)\right) &= F(s-a) \\ \mathcal{L}(t^k f(t)) &= (-1)^k \frac{d^k}{ds^k} F(s) \\ \mathcal{L}\left(u_c(t) f(t-c)\right) &= e^{-cs} F(s) \\ \mathcal{L}\left(\int_o^t f(\tau) g(t-\tau) d\tau\right) &= F(s) \cdot G(s) \\ \mathcal{L}\left(f(at)\right) &= \frac{1}{a} F\left(\frac{s}{a}\right) \end{aligned}$$

(blank page for scrap)