\qquad

Differential Equations MATH 2073 Final-2018.

Instructions. Simplify your answers when appropriate. Be sure to show your work so that it is clear how you got your answers.

1. Find the solution of the initial value problem $y^{\prime}+6 t^{2} y^{2}=0, y(0)=1$.
2. Solve the initial value problem $y^{\prime}-2 y=4 t, y(0)=0$.
3. Find the general solution of the equation $y^{(4)}-y=10 e^{t}$.
4. Find the general solution of the equation $y^{\prime \prime \prime}+4 y^{\prime}=10 e^{t}$
5. Find the general solution of the nonhomogeneous equation $y^{\prime \prime}-4 y^{\prime}+3 y=10 \cos t$.
6. Find the general solution of the homogeneous Euler equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ for $x>0$. Hint. Recall that we search for the solutions of the form $y=x^{r}$.
7. Find the power series solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ of equation $y^{\prime \prime}-x y^{\prime}-y=0$ with the initial value $y(0)=1, y^{\prime}(0)=0$. Steps in the solution:
(a) Express $x y^{\prime}$ and $y^{\prime \prime}$ as the power series in powers of x^{n}.
(b) Determine the recurrence relation for coefficients a_{n}. Simplify your answer!
(c) Compute the first six terms of the power series $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\ldots$ and notice the pattern.
8. Solve the differential equation $y^{\prime \prime}+y=-u_{\pi}(t), y(0)=1, y^{\prime}(0)=0$. (Here $u_{\pi}(t)$ is the unit step function.) Sketch the graph of the solution.

9. Solve the differential equation $y^{\prime \prime}+y=\delta(t-\pi), y(0)=0, y^{\prime}(0)=1$. (Here $\delta(t)$ is the unit impulse function.) Sketch the graph of the solution.

10. Consider the system of differential equations

$$
\begin{aligned}
u_{1}^{\prime} & =2 u_{1}+u_{2} \\
u_{2}^{\prime} & =u_{1}+2 u_{2}
\end{aligned}
$$

with initial condition $u_{1}(0)=2, u_{2}(0)=4$.
Determine solution $u_{1}(t)$ of this system. Hint. Transform the system into a single equation of order 2. (Alternatively, you can use the Laplace transform.)

Table of Laplace transforms $\mathcal{L}(f)=\int_{0}^{\infty} e^{-t s} f(t) d t$

$f(t)$	$F(s)=\mathcal{L}(f)$	(domain of $F(s))$
1	$\frac{1}{s}$	$(s>0)$
t^{n}	$\frac{n!}{s^{n+1}}$	$(s>0)$
$e^{a t}$	$\frac{1}{s-a}$	$(s>a)$
$\cos a t$	$\frac{s}{s^{2}+a^{2}}$	$(s>0)$
$\sin a t$	$\frac{a}{s^{2}+a^{2}}$	$(s>0)$
$u_{c}(t)$	$\frac{e^{-c s}}{s}$	$(s>0)$
$\delta(t-a)$	$e^{-a s}$	$(s>0)$

Laplace transform formulas

$$
\begin{aligned}
\mathcal{L}\left(f_{1}(t)+c f_{2}(t)\right) & =\mathcal{L}\left(f_{1}(t)\right)+c \mathcal{L}\left(f_{2}(t)\right) \\
\mathcal{L}\left(f^{(n)}(t)\right) & =s^{n} F(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0) \\
\mathcal{L}\left(e^{a t} f(t)\right) & =F(s-a) \\
\mathcal{L}\left(t^{k} f(t)\right) & =(-1)^{k} \frac{d^{k}}{d s^{k}} F(s) \\
\mathcal{L}\left(u_{c}(t) f(t-c)\right) & =e^{-c s} F(s) \\
\mathcal{L}\left(\int_{o}^{t} f(\tau) g(t-\tau) d \tau\right) & =F(s) \cdot G(s) \\
\mathcal{L}(f(a t)) & =\frac{1}{a} F\left(\frac{s}{a}\right)
\end{aligned}
$$

