© 2020 Wlodzimierz Bryc. All Rights Reserved.

Laplace transforms

$f(t)$ $F(s)$
$e^{at}$ $\frac{1}{s-a}$
$t^n$ $\frac{n!}{s^{n+1}}$
$\cos (at)$ $\frac{s}{s^2+a^2}$
$\sin(at)$ $\frac{a}{s^2+a^2}$
$u_c(t)$ $\frac{e^{-cs}}{s}$
$\delta(t-c)$ $e^{-cs}$
$$\mathcal{L}(c_1f_1+c_2f_2)=c_1F_1(s)+c_2F_2(s)$$ $$ \mathcal{L}(f')=s F(s)-f(0)$$ $$ \mathcal{L}(f'')=s^2 F(s)-s f(0)-f'(0)$$ $$ \mathcal{L}(f(t-c)u_c(t))=e^{-cs} F(s)$$ $$ \mathcal{L}(e^{at} f(t))=F(s-a)$$ $$ \mathcal{L}(f*g)=F(s)G(s)$$

Notation

.
DE Polls


Question If $y^{(4)}+5 y''+4y=g(t) $, $y(0)=0, y'(0)=0,y''(0)=0,y'''(0)=0$ then
  1. $y(t)=\frac16\int_0^t \left(2\sin u-\sin(2u)\right) g(t-u) du$
  2. $y(t)= \int_0^t g(u)\left(\sin (t)-\sin(u)\right) du$
  3. $y(t)= \int_0^t g(t-u)\left(\sin (u)\sin(2 u)\right) g(t-u) du$
  4. $y(t)=\frac13 \int_0^t g(u)\left(\sin (t-u)-\sin(2(t-u))\right) du$
  5. None of these


Answer: A.
Solution $Y(s)=\frac{G(s)}{(s^2+1)(s^2+4)}=\frac13G(s)( \frac{1}{s^2+1}-\frac{1}{s^2+4})=\frac16 G(s) ( 2 \frac{1}{s^2+1}-\frac{2}{s^2+4})$

File