© 2020 Wlodzimierz Bryc. All Rights Reserved.

Laplace transforms

$f(t)$ $F(s)$
$e^{at}$ $\frac{1}{s-a}$
$t^n$ $\frac{n!}{s^{n+1}}$
$\cos (at)$ $\frac{s}{s^2+a^2}$
$\sin(at)$ $\frac{a}{s^2+a^2}$
$u_c(t)$ $\frac{e^{-cs}}{s}$
$\delta(t-c)$ $e^{-cs}$
$$\mathcal{L}(c_1f_1+c_2f_2)=c_1F_1(s)+c_2F_2(s)$$ $$ \mathcal{L}(f')=s F(s)-f(0)$$ $$ \mathcal{L}(f'')=s^2 F(s)-s f(0)-f'(0)$$ $$ \mathcal{L}(f(t-c)u_c(t))=e^{-cs} F(s)$$ $$ \mathcal{L}(e^{at} f(t))=F(s-a)$$

Notation

.


Solve the differential equation $y''+y=\delta(t-\pi), y(0)=0, y'(0)=1$.
  1. $y(t)=\cos (t) + u_\pi(t)(1-\cos (t))$
  2. $y(t)=(1-u_\pi(t))\sin t$
  3. $y(t)=\sin (t) + u_\pi(t)(1-\sin (t))$
  4. $y(t)=\sin t + u_\pi(t)\sin t $
  5. None of the above



File