© 2020 Wlodzimierz Bryc. All Rights Reserved.
DE Poll
$f(t)$ $F(s)$ $e^{at}$ $\frac{1}{s-a}$ $t^n$ $\frac{n!}{s^{n+1}}$ $\cos (at)$ $\frac{s}{s^2+a^2}$ $\sin(at)$ $\frac{a}{s^2+a^2}$ $u_c(t)$ $\frac{e^{-cs}}{s}$ $\delta(t-c)$ $e^{-cs}$ Notation $F=\mathcal{L}(f)$ means $F(s)=\int_0^\infty e^{-st}f(t)dt$. Heaviside function $u_c(t)=\begin{cases}0 & t\in[0,c) \\ 1& t\geq c\end{cases}$
$$\mathcal{L}(c_1f_1+c_2f_2)=c_1F_1(s)+c_2F_2(s)$$ $$ \mathcal{L}(f')=s F(s)-f(0)$$ $$ \mathcal{L}(f'')=s^2 F(s)-s f(0)-f'(0)$$ $$ \mathcal{L}(f(t-c)u_c(t))=e^{-cs} F(s)$$