© 2020 Wlodzimierz Bryc. All Rights Reserved.

Laplace transforms

$f(t)$ $F(s)$
$e^{at}$ $\frac{1}{s-a}$
$t^n$ $\frac{n!}{s^{n+1}}$
$\cos (at)$ $\frac{s}{s^2+a^2}$
$\sin(at)$ $\frac{a}{s^2+a^2}$
$u_c(t)$ $\frac{e^{-cs}}{s}$
$\delta(t-c)$ $e^{-cs}$
$$\mathcal{L}(c_1f_1+c_2f_2)=c_1F_1(s)+c_2F_2(s)$$ $$ \mathcal{L}(f')=s F(s)-f(0)$$ $$ \mathcal{L}(f'')=s^2 F(s)-s f(0)-f'(0)$$ $$ \mathcal{L}(f(t-c)u_c(t))=e^{-cs} F(s)$$
Notation $F=\mathcal{L}(f)$ means $F(s)=\int_0^\infty e^{-st}f(t)dt$. Heaviside function $u_c(t)=\begin{cases}0 & t\in[0,c) \\ 1& t\geq c\end{cases}$
DE Poll


Solve the differential equation $y''+4y=4u_{\pi}(t),\; y(0)=1, y'(0)=0$.
  1. $y(t)=\cos (2t) + u_\pi(t)(1-\cos (2t))$
  2. $y(t)=\cos (2t) + u_\pi(t)(1-\cos (2t-\pi))$
  3. $y(t)=\sin (2t) + u_\pi(t)(1-\sin (2t))$
  4. $y(t)=\sin (2t) + u_\pi(t)(1-\sin (2t-\pi))$
  5. None of the above



File