© 2020 Wlodzimierz Bryc. All Rights Reserved.

Laplace transforms

$f(t)$ $F(s)$
$e^{at}$ $\frac{1}{s-a}$
$t^n$ $\frac{n!}{s^{n+1}}$
$\cos (at)$ $\frac{s}{s^2+a^2}$
$\sin(at)$ $\frac{a}{s^2+a^2}$
$u_c(t)$ $\frac{e^{-cs}}{s}$
$\delta(t-c)$ $e^{-cs}$
Notation $F=\mathcal{L}(f)$ means $F(s)=\int_0^\infty e^{-st}f(t)dt$. Heaviside function $u_c(t)=\begin{cases}0 & t\in[0,c) \\ 1& t\geq c\end{cases}$
DE Poll


Express $$f(t)=\begin{cases} 0 & t\in[0, 3) \\ 2 & t\in[3,4) \\ 12 &t\geq 4 \end{cases}$$ in terms of functions $u_c$.
  1. $f(t)=2 u_3(t)+12 u_4(t)$
  2. $f(t)=2 u_3(t)+10 u_4(t)$
  3. $f(t)=12 (u_3(t)-u_4(t))$
  4. None of the above



File