© 2020 Wlodzimierz Bryc. All Rights Reserved.

Linear DE

  1. The general solution of the constant coefficient non-homogeneous equation $a_0y^{(n)}+a_1 y^{(n-1)}+\dots+a_{n-1}y'+a_n y=g(t)$ is $$y(t)=\left(C_1 y_1 +C_2 y_2+\dots+C_ny_n\right)+y_*$$ where $C_1 y_1 +C_2 y_2+\dots+C_ny_n$ is the general solution of the corresponding homogeneous equation $a_0y^{(n)}+a_1 y^{(n-1)}+\dots+a_{n-1}y'+a_n y=0$, and $y_*$ is a particular solution of the non-homogeneous equation.
  2. Method of undetermined coefficients:
    $g(t)$$y_*$
    $1$$t^{s}A$
    $t$$t^{s}(A+Bt)$
    $ e^{\alpha t}$$t^{s}A e^{\alpha t}$
    $ t e^{\alpha t}$$t^{s}(A +B t)e^{\alpha t}$
    $ \cos(\alpha t)$$t^{s}(A\cos (\alpha t) +B \sin(\alpha t))$
  3. Variation of parameters for third-order equation $L[y]=g(t)$ with fundamental set $y_1,y_2,y_3$ and $t_0=0$: $$y_*=y_1(t)\int_0^t \frac{W_1}{W} g(s)ds+y_2(t)\int_0^t \frac{W_2}{W} g(s)ds+y_3(t)\int_0^t \frac{W_3}{W}g(s) ds$$

According to WolframAlpha, the general solution of a homogeneous equation $L[y]=0$ with constant coefficients is $y=C_1e^{-t}+C_2 e^{t}+C_3 t e^{-t}+C_4 t e^t$ Which of the following is the right choice for a solution of the equation $$ L[y]=e^{-t} $$ by the method of undetermined coefficients?
  1. $y_*=A e^{-t}$
  2. $y_*=A t e^{-t}$
  3. $y_*=A t^2 e^{-t}$
  4. $y_*=A t^3 e^{-t}$
  5. none of these



File