© 2020 Wlodzimierz Bryc. All Rights Reserved.

Second Order Linear DE

The general solution of the constant coefficient non-homogeneous equation $a_0y^{(n)}+a_1 y^{(n-1)}+\dots+a_{n-1}y'+a_n y=g(t)$ is $$y(t)=\left(C_1 y_1 +C_2 y_2+\dots+C_ny_n\right)+y_*$$ where $C_1 y_1 +C_2 y_2+\dots+C_ny_n$ is the general solution of homogeneous equation $a_0y^{(n)}+a_1 y^{(n-1)}+\dots+a_{n-1}y'+a_n y=0$ and $y_*$ is a particular solution of the non-homogeneous equation.
$g(t)$$y_*$
$1$$t^{s}A$
$t$$t^{s}(A+Bt)$
$ e^{\alpha t}$$t^{s}A e^{\alpha t}$
$ t e^{\alpha t}$$t^{s}(A +B t)e^{\alpha t}$
$ \cos(\alpha t)$$t^{s}(A\cos (\alpha t) +B \sin(\alpha t))$

Which of the following is the right choice for a solution of the equation $$ y''''-2y''+y=e^{-t} $$ by the method of undetermined coefficients?
  1. $y_*=A e^{-t}$
  2. $y_*=A t e^{-t}$
  3. $y_*=A t^2 e^{-t}$
  4. $y_*=A t^3 e^{-t}$
  5. none of these



File