© 2020 Wlodzimierz Bryc. All Rights Reserved.

Second Order Linear DE

The general solution of the constant coefficient non-homogeneous equations $ay''+by'+cy=g(t)$ is $$y(t)=C_1 y_1 +C_2 y_2+y_*$$ where $C_1 y_1 +C_2 y_2$ is the general solution of homogeneous equation $ay''+by'+cy=0$ and $y_*$ is a particular solution of the non-homogeneous equation.
$g(t)$$y_*$
$1$$t^{s}A$
$t$$t^{s}(A+Bt)$
$ e^{\alpha t}$$t^{s}A e^{\alpha t}$
$ t e^{\alpha t}$$t^{s}(A +B t)e^{\alpha t}$
$ \cos(\alpha t)$$t^{s}(A\cos (\alpha t) +B \sin(\alpha t))$

A student seeks particular solution of the form $y_*(t)=t (A+B t)e^{3t}$. For which equation will this be the right choice?
  1. $y''-6 y'+9 y=t e^{3t}$
  2. $y''-2 y'-3 y=t e^{3t}$
  3. $y''-2 y'+ y=t e^{3t}$
  4. none of these



File