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Abstract

“It doesn’t matter what we cover. It matters what you discover.”
[Attributed to Viktor Weisskopf, theoretical physicist, 1908 — 2002]
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particle spin/helicity baryon number lepton number electric charge

up, charm, top 1/2 1/3 0 2/3

down, strange, bottom 1/2 1/3 0 -1/3
Ves Vs Vr 1/2 0 1 0
electron, p, 7 1/2 0 1 -1
photon 1 0 0 0
gluon 1 0 0 0

W=, Z 1 0 0 +1,0
h 0 0 0

Table 1: SM particle content

symmetry conserved quantity
Spatial translations Momentum

Time translations Energy

Rotations Angular momentum

Global inner symmetries Charge (electric, color, ...)
“Accidental” symmetries baryon number, lepton number

Table 2: Symmetries

1 Introductory Remarks

Elementary particle physics is the search for the fundamental laws of nature. The theoretical
framework is given by relativistic quantum field theories (QFT — a consistent combination
of quantum mechanics and special relativity). While QFT gives the general framework, it is
brought to life by assigning a specific particle content (a “model”).

“Elementary” means roughly “no substructure”. More precisely, a QM state that is charac-
terized by its energy, its momentum, and further discrete quantum numbers, such as charge,
spin, etc. Le. we label each free one-particle state as | Epn), where the discrete index n de-
notes particle type, spin, charge, etc. The most important model of particle physics is the
Standard Model. Its particle content is summarized in Tab. 1.

What are suitable observables? According to the principles of QM, we cannot exactly
observe particle trajectories.

Time-independent: bound states (energy spectra, ...)

Time-dependent: scattering processes, particle decays, ...

Example: muon decay p~ — e~ v,

The number of possible processes is restriced by symmetries: (Non-)examples: =~ — e~ v,
p—e,p—ety, e = u ..



2 Relativistic Kinematics

See this PDG article for a good review. In general, the PDG has excellent review articles on
the topics of this lecture.

2.1 Lorentz transformations

The laws of nature are invariant under Lorentz transformations — space-time transformations
of all four-vectors

o = (2% ) (2.1)
that leave the Lorentz scalar product
roy=ayP’ —z-y (2.2)
invariant. Defining the metric tensor
1 0 0 O
0O -1 0 O
nuz/ = O 0 _1 O Y (23)
o 0 0 -1
Eq. (2.2) can be written
Ty = Z 'Y N = Z "y, (2.4)
pv p
(the summation sign is often dropped by convention). It follows that Lorentz transformations
't = A x (2.5)
must satisfy
NN N 5 = 1o (2.6)
because then
z' - Z// = CU/”Z//VUW = AupAyaxprmw = xpyonpa =TY. (2-7)

Application: Four-momentum. For a particle with mass m in the rest system, we define
p* = (m,0), and p? = m? is invariant.

2.2 Kinematics of scattering processes

We can deduce several properties of p,p, — p.pq scattering without knowledge of the de-
tailed dynamics of the process. Conservation of energy and momentum implies

Pa T Pb = DPe+ Pd - (2.8)
In the center-of-mass system (c.m.s.), denoted here by the asterisk, we have

P, +p,=p.+p;=0. (2.9)


https://pdg.lbl.gov/2023/reviews/rpp2022-rev-kinematics.pdf

As an example, we would like to express energy and momentum of particle a in the rest
frame of particle b (“lab frame”) in terms of Lorentz-invariant quantities. We define

s=(pa+m) =(E,+E;)
—_———
= .+ D; + 2Da - Do (2.10)
=m2+mi +2E,m, .

TV
lab frame

From this expression we obtain the energy

2 2
S—m, —m
E,=-——2 "0 (2.11)
2mb

and the absolute value of the momentum

[Pa| = EG —mj;

1
= T s+ md +mi — 2sm2 — 2sm? + 2m2m? — dm2m? (2.12)
1
= —A\(s, mi,mz) ,
me

with the symmetric phase-space function

Mz, y, 2) = /a2 4+ 192 + 22 — 20y — 222 — 2y (2.13)

More generally, we can express all kinematic variables in 2 — 2 scattering in terms of the
Lorentz-invariant Mandelstam variables

s = (pa+1m)°, (2.14)
t= (pa - pc)2 ’ (2'15)
u= (pa—pa)*. (2.16)

They are not linearly independent:

s+t+u=(pa+p)’ + (Pa— )’ + (Pa — pa)’

= m) +my +m? +mi+2pa - (P +Pp— Pe—pa) = Y_m; . (2.17)

(There are only two independent kinematic variables for 2 — 2 scattering: of the 8 compo-
nents of the momenta p. and py, the energies are fixed by E; = \/m? + |p;|?. Conservation
of energy and momentum yields four more conditions, so we have 8-2-3-1 = 2 independent
variables.) Every choice of two variables (energies, scattering angles, ...) can be expressed
in terms of two Mandelstam variables.



Integration on the mass shell

The Lorentz-invariant integral of an arbitrary (Lorentz-)scalar function f(p) of the four-
momentum p* with p?> = m? > 0 and p° > 0 can be written as

/ﬁmﬁ—WWWﬁ®

:/fmwawv—f—wﬁwwvmw> (2.18)

— /d3pf(p7 V p2 +m2) )

2 p2_|_m2

It follows that the Lorentz-invariant integration measure for integration “on the mass shell”

is d®p/+\/p* + m2. The Dirac delta function is defined by
3

F(p) = /F(p’)é(p —p)d’p = /F(p’) [\/p’2 + m26(p —p’)} \/% . (2.19)

so the invariant delta function is given by

VP2 +m2(p—p) =p"5(p—p). (2.20)

3 Scattering theory

3.1 The S-matrix

We are interested in scattering experiments. For ¢t — —oo: particles far apart, not interacting;
for finite ¢: interaction; for ¢ — oco: particles far apart, not interacting.

Assume we can split the Hamiltonian H of a system into a free part Hj and an interaction
term V,

H=Hy+V, (3.1)

such that H describes an arbitrary number of non-interacting particles, and V' is Hermitian,
describes the interaction, and vanishes if all particles are far apart from each other.

We will use the Heisenberg picture and define incoming and outgoing states, |, +) and
|, —), as eigenstates of the full Hamiltonian,
Hla,£) = Ey|a, £), (3.2)

such that they appear, for measurements at ¢ — Foo, like eigenstates |a)q of the free Hamil-
tonian,
Hyla)o = Eala)o . (33)

Our normalization convention for the states is

0<&’B>0 = 6<Oé - 6) = 53(p/1 _p1)501015n’1n1 IR (34)



The states |, +) and |a, —) are elements of the same Hilbert space, so we can express, e.g.,
the |a, +) in terms of the |, —):

la, +) = /dﬁsgaw, —). (3.5)

This defines the S-matrix Sg,. The incoming state |, +) looks, for t — —o0, like a state
of free particles, |a)o, and for ¢ — +oc like the superposition [ dSs.|3)o. Therefore, Sg,
contains the full information about the scattering process.

One can show that the states |«, +) and |a, —) are orthonormal, so

(B, —la, +) = / 0SB,y —) = / 07,068 — ) = Spa. (36)

We see that S, is the transition amplitude for the process |a, +) — |5, —). As the incoming
and outgoing states are orthonormal, the S-matrix is unitary.

3.2 Decay rates and cross sections

Time and translation invariance imply conservation of total energy and momentum, respec-
tively; hence, we can write

Sga = 0(8 — a) — 2mid(Es — Ea)d°(Ps — Pa) Msa - (3.7)
What is the transition probability |Ss,|?? Imagine the system in a finite box (Volume V') for
a finite time 7" (later V,T" — o0). Then

2T

p= f(nb N2, M3) (3.8)

with n;, € N and L? = V, and the delta functions become

/ 1 i(p'—p)-x
53 (0 — p) = o /d%e(” PT _ Wap,m, (3.9)

Hence, the “box states” have a factor (V/(27)3)" in the scalar product (N is the number of
particles in the box state). Therefore, define normalized states

PBOX = (@) Na/z\lfa, (3.10)
with
(WX, WE) = bag - (3.11)
The time delta function becomes
T/2
or(Ey — Ep) = % / dt ' Ba=Ep)t (3.12)
~T/2



The transition probability into a specific final state is

Nao+N,
Pla— f) = | S8 = <<2VL)3> i (313

The number of one-particle box states in momentum volume element d*p is Vd3p/(27)3 (see
Eq. (3.9)). We define d33 = d3p) - - - d®ply » such that the number of states in df3 is

No— ()
dNg = —= ) dpB. 3.14
= (o) @ .
Hence the total probability for the transition into the range df is
2m)*)
dP(a — ) = P(a — B)dN3 = <( 3) ) ‘Sga‘Qdﬂ. (3.15)
Interpretation of the squares of delta functions:
Vv
00 (pa = Pa)]" = 81 (P = Pa)3V (0) = V(P — o) . (3.16)
T
[0r(Es — Ea)]* = 61(Es — Eo)3r(0) = 67(Es — Eo)g (3.17)
(3.18)

and Eq. (3.15) becomes
No—1

27

(2m)°

dP(a — B) 2 (27)? (T) | Mga| 0% (D5 — Pa)or(Es — Ea)dB.  (3.19)

The transition probability is proportional to T; the coefficient is the differential transition rate
dl'. For V, T — oo

(o = B) = dP(a — B)/T = (21)* N2V "N | My, |*6* (ps — pa)di3, (3.20)
where (for a £ [5)
Sga = —2m’54(p5 — Pa)Mpse . (3.21)
N, = 1: Decay rate
Here, the volume cancels and
dT(o = B) = 2| M| 6% (ps — pa)dp (3.22)



N, = 2: Collision of two particles

Rate is proportional to 1/V, density of one particle at the position of the other particle.
Usually, one measures the rate per flux ¢, of incoming particles,
u
o, = 7‘” , (3.23)
where u,, is the relative velocity between the two particles. This is called the differential cross
section

dl'(a — _ 2
do(a — ) = % = (2m)*ug ! [ Msa| 6 (ps — pa)ds . (3.24)
The cases N, > 3 play a role in astrophysics, cosmology, and chemistry, but rarely in
particle physics.

What is u,,? One can show that

ST IMs* TI ET] E = R (3.25)

spins B

is a Lorentz scalar function of all four-momenta. Hence the decay rate (3.22), summed over
particle spins, can be written as

ST~ B) = 20 Roud (05 = pa) T - (3.26)
B

spins
This is Lorentz invariant apart from factor £, ' — the faster the particle moves, the slower it
decays (time dilation).
Similarly, we write the spin-summed differential cross section as

dp

d = 2m)V U ET Y ES Y Rs,0% (g — po) —— .
D dofa— B) = (2m) B By oo (0 = )T

spins

(3.27)

To make this a Lorentz-invariant function, one usually defines u, such that u,FE;FE5 is a
Lorentz scalar. Moreover, in rest frame of one particle, u,, is the velocity of the other particle.
Hence

vV (p1 - pa)? — mim}
E\E, '

(If particle 1 is at rest, p; = 0, 1 = mq, and p; - po = mq Es. Therefore,

VE;—mi _ Ipo| (3.29)

Ey Ey’

Uy = (3.28)

Uy =

the velocity of particle 2.)

10



Phase space To calculate the phase space factor §*(ps — p,)d3, we work in the center-of-
mass frame, such that

pa=0. (3.30)
For a final state with momenta p/, p), . . . we have
' (pp — pa)dB = () + Py + .. )0(Ey + Ey + ... — E)d®p\d°pl, . .., (3.31)

where F is the total energy of the initial state. The integral over, e.g., p| can be easily solved
using the momentum delta function:

6" (ps — pa)dB — §(By + Ey+ ... — E)d°p, . .., (3.32)

where now everywhere
PL=-DPh—P3— ... (3.33)
What about §(£)? The easiest case is Ng = 2:

§'(ps — pa)dB — 6(E, + Ey — E...)d°p),

(3.34)
= 5(1/IpAl? + m 4 \/Iph2 + miE — E) g *dlp} a2,
where p, = —p} and the solid angle is d2 = sin #dfd¢. Now we use
oz — xp)
(f(x) = ———, (3.35)
D =T o)

where x is a simple zero of f. In our case, the zero of the argument of the energy delta
function is k' = |p/|, where

, = = mB) — AmPmf _ MNE* i, mf)
K= = : (3.36)
2F 2F

and, therefore,

E2 - 12 12
By = \/k2+mp = T;% oy , (3.37)

Bl =/ k? 2 3.38
and the derivative
d \/ /12 12 \/ /|2 12 k, k, k/E
— - E)’ = — 4 — = . 3.39
(VPP md e b e —E)| ==y 69
Finally, we have
KE B!
6 (pg — pa)dB — —2"2dS. (3.40)

11



In particular, the differential decay rate of a particle at rest with energy F into two particles
is

dl'aw — 2k’ B ES
(dQ ) = 2| Mpgo|?, (3.41)

and the differential cross section for 2 — 2 scattering (in the c.m.s.) is

do(a — )  (2m)*K ELE}

_ 2 |M ’2 (27T>4I€IE1EQE1E2
df FEu,, po

E?k

| Mg |?, (3.42)

where' k = |p1| = |pa|.
For Ng = 3 we have

0%(pp — pa)dB — 54(\/(1)’ P52+ mE [ mE + \[pF + mf — ) d'phd'p

(3.46)

We define the polar and azimuthal angles of p!, with respect to the pj direction as 53 and
(93, and write

with the differential solid angle dS2 for pi;. The angle 63 is fixed by energy conservation,

VP12 + 2141195 cos s + P12 + 2 + /g4l +m + ([ phf2 +mf = B (3.49)
The derivative with respect to cos flo5 of the argument of the delta function is

OE]  |pyllph)

= 3.49
0 cos Oy E; (3.49)
and so
0*(ps — pa)dB — |Ph|d|py| [P} |d|p5| B dQadas . (3.50)
Using dE/dp = d\/p? + m?/dp = p/ E we finally obtain
§'(pg — pa)dB — E|EyEidEydEydQ3ddos . (3.51)

Eq. (3.25) shows that > . |M, sal? [1. Ea [ Ep is a scalar of four-momenta. If we assume
this function is constant, Eq. (3.51) tells us that the final states are uniformly distributed in
the ), — E! plane. Any departure from a uniform distribution of events gives useful clues
about resonances or asymmetries in the decay process (“Dalitz plot” [1]).

Here, we have used

V(E1Ez + k2)2 — (E? — k2)(Ey — k?)

o = 3.43
u BB, (3.43)
VEEZ +2kE 1 Ey + k* — E3EZ — k* + k2(E? + k?)
= (3.44)
FE1Es
kE
= . 3.45
B L, (3.45)

12



3.3 Perturbation Theory

We will calculate the S-matrix as a power series in the interaction term V' (see Eq. (3.1)).
As a preparation, we need to find a slightly different form of the S-matrix. We have defined
in and out states via the condition

tlgcnoo exp(—iHt)|a, £) = tEijoo exp(—iHot)|a)g - (3.52)
Then we have
v, &) = Q(Fo0)|a)o, (3.53)
with
Q(7) = exp(+iHT) exp(—iHoT) . (3.54)
Now we can write the S-matrix as
Spa = (B, —|a, +) = 0(5\Q*(+oo)§2(—oo)]a>o = o(B|U(+00, —00)|ar)g , (3.55)
where
Ut,t) = QN #)Q') = exp(iHot) exp[—iH (t — t')] exp(—iHt') . (3.56)

To derive a perturbative expansion of the S-matrix, we differentiate Eq. (3.56) with respect
to t:

th(t ) = i% [exp(mot) exp(—iH(t — t')) exp<—m0t’)}

— i[exp(iHOt)(iHo —iH)exp(—iH(t —t)) eXP(—iHot’)] (3.57)

= [exp(iHot)V exp(—iHOt)} [exp(iHOt) exp(—iH (t —t")) exp(—iHyt')
=Vi(t)U(t, ).

Here, the index “I” denotes the interaction picture (time dependence of operators given by
free Hamiltonian Hj). The initial condition for U is

Ut,t)=1. (3.58)

Eq.s (3.57) and (3.58) are equivalent to the integral equation
¢
Ut t) =1 — i / dr Vi(P)U(r ). (3.59)
W
Solve through iteration:

t

U(t,t’):]l—z'/dﬁVI 1) /dﬁ/deVJ 71)Vi(72)
/dTl/dTg/dTgw T1 V} ’7'2)%(7'2)

13

(3.60)



This may be rewritten using the time-ordered product, s.th. operators with larger (later) time
argument appear to the left of the earlier ones:

T{V(r)} =V(r), (3.61)
T{V(Tl), V(Tg)} = 9(7’1 — TQ)V(T1)V(7’2) + 9(7’2 — 7'1)V(7'2)V(7’1) s (3.62)

etc., with n! terms in the time-ordered product of n operators V. Each term, integrated
between ¢’ and ¢, gives the same integral as the n-th term in Eq. (3.60). Hence we have

t

Ut 1) = i (=" / dry . e T{V(n)--V(r)}. (3.63)

n!
n=0

t/
From Eq. (3.63) we obtain the Dyson series for the S-matrix (F. Dyson 1949 [2]):

o0

(o] _'i n
S=1+ Zl ( n!) / dry ... dr,T{V (1) V(ma)} . (3.64)
Short-hand notation: .
S = Texp (— i / dt V(t)) . (3.65)

However, in general the series does not converge; it may be regarded as an asymptotic series
in some coupling constants.

What about Lorentz invariance? One can show [3] that S commutes with the generators
of the Lorentz group if

V(t) = / drH(z,t), (3.66)
where H(z) is a scalar “Hamilton density”, in the sense that
U(A, a)H(z)U (A, a) =H(Az +a). (3.67)
We can then write
(=)
S=1+ Zl - d*zy .. de, T{H(z1) - H(z,)} . (3.68)

The time ordering of two events z1, x5 is Lorentz invariant unless their difference is space-
like, (z1 — 22)? < 0. If all H(x) commute at space-like distances, no special inertial system
is introduced:

[H(z),H(z)] =0 for (x—2')<0. (3.69)

14



3.4 Unitarity and optical theorem

Using
Sso = 0(B — a) — 270 (pg — pa)Msa (3.70)

the unitarity condition STS = 1 can be written as
iy —a) = /dﬁS;WSga
= 0(y — @) = 2mi6* (py — pa) Mya + 2mi6* (py — pa) M., (3.71)
+ 472 / d554(p5 — p7)54(p5 — Pa) Mz Mg, .
For p, = p, this gives
0= —iM,q +iM;, + 27 / dB6* (ps — pa)Mj, Mg, . (3.72)
For the special case o = 1, this is
(M) — —7 / 485" (ps — po)| Misal? (3.73)

We can use this result to calculate the total rate for a given initial state (see Eq. (3.21))

r, = /dﬁw = (27 )3Na=2y/ 1= Na / |Mﬁa|254(pﬂ — Do )df3

' (3.74)
_ _;(2ﬂ)3Na—2V1—NaIm(Mw) .
If o is a two-particle state and o, the total cross section,
0a = / dﬁ%;m = (2m)"ug! / | Mal"8" (ps — pa)ds. (3.75)
we can write Eq. (3.74) as
Im(Mp,) = — ?ZZQ‘ . (3.76)

Introducing the scattering amplitude

47 [k
fla—B) = —FV E B B Fy EMBO” (3.77)

we can write Eq. (3.42) as
do(a — f3)

_ 2
2D (o B 679)
For elastic scattering, we have £’ = k, E! = F;, and so (using Eq. (3.28))
k
I L. 3.79
m{f(o = a)] = -0 6.79)

This is the optical theorem.

15



3.5 Partial-wave expansions®

Frequently, it is useful to choose a basis of states where all variables, other than total energy
and momentum, are discrete. (For instance, for two particles in the c.m.s., the components
of the particle momenta lie on a two-dimensional spherical surface and can be expanded in
spherical harmonics. More generally, for fixed total momentum and energy, the components
of the individual particle momenta always form a compact space.) Therefore, we label the
free-particle states as | EpN), normalized as

(E'P'N'|EpN) = §(E' — E)8°(p — p)onrn - (3.80)
The S-matrix elements are then
(E'P'N'|S|EpN) = 0(E' — E)6°(p' — p)Swn(E.p) . (3.81)
where Sy is a finite unitary matrix. The transition matrix elements are now defined by
Syn(E,p) = dny — 2irMyy(E,p) . (3.82)

As an example, consider a state of two non-identical particles nj, ny, with non-zero masses
my, Mg, and spins s1, so. We can label the state by the total momentum p = p; +p,, the energy
E, the species labels n1, no, and use Clebsch-Gordan coefficients (see Sec. B) to combine the
two spins into a total spin s with z-component 1, and then combine the total spin with the
orbital angular momentum ¢ with z-component m into a total angular momentum j with
z-component 0. Le. we label the states as |Epjolsn). These states have scalar products with
states of definite individual momenta and spins

) pjotony = 27! = p2)0(E = v/IpiP 3 = /IpaP 13 ) b
101P202N | LLPJOoLSTY) =
vV ’plelEQ/E
% 3" Copes (51501, 92)C (G 031, 1)V ()

m,p

(3.83)

Here, Y™ are the usual spherical harmonics. With this definition, the states are properly
normalized in the c.m.s.:

(E'D'§'0'l's'n'|E0jolsn) = §°(p')o(E — E)0;1i051600005 50nrm - (3.84)

If the transition operator M is translationally and rotationally invariant, its matrix ele-
ments in the c.m.s. must take the form

(E'p'j'a'l's'n'|M|EQjolsn) = 6°(p')d(E — E)M],

0's'n! Lsn

(E)6;1050 - (3.85)
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It follows that the scattering amplitude in the c.m.s. is given by

f(kal, —koy,n — k'cy, —k'oyn )

k'EYESEE
= —4q? %(k’ 1 — Koy’ |M|koy — koan)

47T2 (3.86)

- _7 Z Cs132<57,u;0-170-2>Cf,3(j70-;m"u)

jollm's' u'fmsp
~!
X Cs’lsg(slaﬂl;aiag;)cﬂ (]70 m’ M)Y (k)}/Z’ (k )Mﬁ’s’n’,ﬁsn(E) .
where we inserted two completeness relations, used Eq. (3.83), and note that the M amplitude

is defined with a total energy and momentum conservation delta function factored out.
We will now take the z-axis in direction of the initial momentum k, such that

20+ 1
dr

Y (k) = 6mo (3.87)
The differential scattering cross section is given by | f|2. Integrating this over the direction
of the final momentum &’ and summing and averaging over final and initial spins, we obtain
the total cross section for the transition n — n’,

Z <2j + 1 }62%55 857’1, 'n Sé"s ! ésn(E”Q . (388)
jlst's'

™
k2(281 + 1)(282 + 1)

on—n;E)=

(Here, we used several standard sum rules for the Clebsch-Gordan coefficients, see Eq. (B.3)-
(B.5).) Summing over all two-body channels then gives the total cross section for all two-body
reactions,

;"(” i E) = k2(251 + 1)(2s5 + 1) ;Qj 1)

< [(1=S7(E) (1 = SU(E))] 1y pem -

We can compare this to the total cross. Using Egs. (3.82), (3.86), and (3.87), the spin-
averaged forward scattering amplitude is

(3.89)

?

f(n: ) = 2k(2s1 + 1) (252 + 1) %S:(Qj FOIL=SE) (520

The optical theorem then gives the total cross section

2
k2(2s1 +1)(2s2 + 1

Ororal (15 E) = ) D 2+ DRe[1=S(B)], ... (391
jls

This agrees with Eq. (3.89) if only two-body final states can be reached at energy E, because
then the S-matrix (or at least the submatrix relevant for 2-to-2 scattering) is unitary, and so

[(1 = SU(ENH L = S(E))] 1y g0 = 2Re[L = ST(E)], o (3.92)
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If final states with more than two particles are accessible, then the difference between Egs. (3.91)
and (3.89) gives the total cross section for producing extra particles,

m
k?(2s1 +1)(2s2 4+ 1)

Fproduction (13 E) = D 2i+ D= (E)S(E)],, . (393

jls

If the relevant part of the S-matrix is diagonal (e.g. for 77 — 7" scattering below the
threshold for producing additional pions), then unitarity requires

e = exp[2ide6n (E)|60e0550nrm (3.94)

n'/ lsn

where real phase 0,5, (E) is called the phase shift. The elastic and total cross sections are
then given by

4
k?2(281 —|— 1)(282 —|— ].)

D (2 + 1) sin® Gjean(E) . (3.95)
jls

on—=nE) = owa(n; E) =

Threshold behaviour of cross sections

We expect the matrix element (k'c] — k’'oiyn’| M |ko, — kogn) to be an analytic function of
the momenta k and k' near k£ = 0 and / or £/ = 0 (if the interaction falls off sufficiently fast in
position space). This allows us to obtain some information about the threshold behaviour of
the scattering amplitudes. First, we note that k°Y,™ (I;:) is a polynomial function of k, so look-
ing at the partial-wave expansion Eq. (3.86), we see that M}, ,,, must go as k*1/2/*+1/2
as k, k'’ — 0, and in this limit the scattering amplitude is dominated by the lowest partial
waves. There are three different cases:

Exothermic reactions

In this case, & — const. for k¥ — 0, so Mj,s/
as k*min—1 Here, (. is the lowest contributing orbital momentum; typically, /,,;, = 0. Note
that the reaction rate is given by the cross section multiplied by the flux, so for {,;, = 0
the reaction rate approaches a constant. However, the probability of absorption for a beam
crossing a target is proportional to the scattering cross section. An example is the absorption
of slow neutrons in a nuclear reactor.

gmin+1/2 ]
wtsn k , and the cross section goes

Endothermic reactions
Here, the reaction is forbidden until £ reaches a threshold, at which &’ = 0. Just above
threshold M, — (K')%int1/2 where £/, is the lowest orbital momentum that can be

produced, typically ¢

n'/ £sn
!
min

= 0. The scattering cross section goes as (k')?mn*1; for ¢/ . = 0, this

min
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is? k' ~ \/E — Ereshola- Example: associate production of strange particles, e.g. p + 7~ —
A® + KO,

Elastic reactions
Here, k' = k, and the lowest orbital momenta are ¢ = ¢ = 0. Hence, the scattering cross
section approaches a constant value. This is conventionally written in terms of a scattering

length, defined by

s
0sn’,0sn

k

— ——ag(n —n'). (3.97)
T

The scattering amplitude becomes

f(koy, —kos,n — k'o}, —k'c}, 1)

— Z Cyys,(8,0;01,09)C4 5, (8, 0507, 05)as(n —n') . (3.98)

SO

2, summing and averaging over final and initial spins gives

The total cross section is 47| f
o(n —n';k=0)

41
- (281+1)(282+ 1) Z 08182(870-;0-170-2>CS182(S,7O-,;O-170-2)

soo1028'0'0) 0}

X Oy, (85,0507, 05)Cys, (8, 0501, 05)as(n — n')ag(n — n')

in (3.99)
2 2
= Z ((53/5) (5,,/0) as(n — n')ag(n —n')
(281 + 1)(282 + 1) soale!
4
= 25+ 1)a%(n — n').
(251+1)(282+1) ;( ) S( )
Example: neutron - proton scattering, with ag > a;.
2At threshold, we must have Fipreshola = M + mb, hence (for E ~ Fy,,)
2k/ _ \/(E2 - m/12 - ml22)2 B 4m32m’22
a E
B = BB+ 2mimh)? — AmPmi
N E
E

= \/(E — Eu)?(E + Eue)?/E2 + 2m)m}y(E — E)(E + Ep )/ E?
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3.6 Resonances®

4 Quantum fields

Goal: construction of a Lorentz-invariant interaction Lagrangian

4.1 Fock space of multi-particle states

Denote the state containing N particles with momenta p;, spins o;, of type n;, by
Ip1,01,n1;...;PN, 0N, nN). All known particles are either bosons or fermions; i.e., for iden-
tical particles we have

|...pon...po'n..)==|...po'n...pon...). (4.1)

We choose the normalization accordingly:

N=0: 00y =1, (4.2)
N=1: (d|lq) = (p'o’'n'|pon) = 5*(p' — P)dyieOnm = (¢ — q), (4.3)
N=2: (@l ara2) = 0(d) — q1)0(qy — q2) £0(qy — q1)0(qy — @2) , (4.4)

and in general

(sl an) = oxar > 0p | [ 0 — ami) (4.5)
P i

where P is a permutation operator. We define the creation operator a' (pon) by

a () qgz- .- qn) = |aqiga - - qn) - (4.6)

Thus, we can obtain the N-particle state from the vacuum state |0) as

101Gz - - - qn) = a'(q1)a’ (g2) - - a' (g)|0) - (4.7)

The adjoint annihilation operator a(pon) removes a particle from the state. In particular,

a(q)lg) = 10), (4.8)
a(q)|0) = 0. (4.9)
One can show [3] that these operators satisfy the following (anti-)commutation relations
[a(q), a'(¢)]5 = a(@)a’(¢) F a'(¢)alg) = 6(4 — q), (4.10)
[a(q), a(¢)] = la' (), a'(¢")]z = 0. (4.11)

All operators acting on the Hilbert space of multi-particle states can be written as a sum of
products of creation and annihilation operators (see Ref. [3] for a proof). In particular, this
applies to the interaction Hamiltonian (density) H(z). The interaction Hamiltonian must
be a Lorentz scalar and satisfy the condition (3.69). This is achieved in the simplest way of
constructing the Hamiltonian out of quantum fields.
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4.2 Dirac algebra and spinors

Reminder: Lie algebra of the Lorentz group. The generator of the rotations, J, satisfy the
commutation relations

[J¢, J7] = i€k gk (4.12)

Together with the generators of the Lorentz boosts, K, we have in addition
[J K7 = ie* K" (4.13)
(K, K9] = —ieF " (4.14)

Defining J = (J%, J3!, J'?) and K = (J°!, J%2, J%), this can be written in a compact way
as

[JH, JP7) = (P JHT — ' JV = T 4T T (4.15)

where J*” = —J" are the generators of the Lorentz group, i.e.
D(A) = exp ( — %wWJ’“’) , (4.16)
with w,, = —w,,. For instance, for four-vectors we have D(A) = A; for a boost in the z

direction we find the familiar expression

0 0 0 n coshn 0 0 sinhp
‘ a 0000 0 00 0
a _ 03 — _
A% = exp( 1wz ) 5P| 0 0 0 0 00 0 (4.17)
n 0 0 0 sinhn 0 0 coshnp

Goal: construction of the spin-1/2 representation of the Lorentz group (“spinor represen-
tation”).
Start with a set of four 4 x 4 matrices v* satisfying the Clifford relation
(VA=A A =2 (4.18)
We then define
J" =30 (4.19)
It is tedious but straightforward to show that these J*" satisfy Eq. (4.15). One can also show

D(ANID ' (A) =1, (4.20)
D(A)y"D7HA) = A7, (4.21)
o y—1 . o v
D(N)JP”D7(A) = AMPAV T (4.22)
We now define
vs = iy° 'R (4.23)
It is easy to show that
{757 fyﬂ} =0 ) (424)
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and
1; v T 755 Vs (4.25)

form a basis of the Clifford algebra.
We can introduce a “parity transformation” using

p=+"=p""1. (4.26)
We have
b1 =1 ...scalar (4.27)
ByB=—~ BB =4" ...vector (4.28)
BTYB=J9. BIYS=-TJ° .. tensor (4.29)
BY Y8 =755 BY 8 =" ... axial vector (4.30)
Bvs0 = —75 ...pseudoscalar (4.31)

A useful explicit representation of the Dirac matrices is the so-called chiral representation:

0 1 . 0 o

0 7

A0 = (]l 0) ’ ~ ( ; 0) 7 (4.32)
with the Pauli matrices

ol = ((1] (1)) , o? = ((Z) BZ> , od = ((1] _01) : (4.33)

In this representation,
-1 0
V5 = ( 0 ]l) . (4.34)

The matrices D(A) in this representation act on four-component Dirac spinors (not on Lorentz
four-vectors!). The generators are (in the chiral representation):

. 1 ... 7cF 0 ) 1 (o7 0
iy _ — ijk o _ 2 )
JY = 26 (0 k) , J 5 (O ]) . (4.35)

Now we choose a basis for the Dirac spinors:
(4.36)

where

§= ((1)) ; n= (?) . (4.37)
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These are eigenvectors of the spin-z operator

3 _ 12_1 o 0
J =T _§<0 03,), (4.38)

with eigenvalues L —%, —%, % How do the spinors transform under a L.T.?

Reminder: four-momentum

E m 0008 m m cosh 0
0] e | 0| 0000 0] 0
ol = exp(—z@K ) ol =210 0 0 0 ol = 0 ) (4.39)
p? 0 6 0 0 O 0 msinh
We have E = mcosh 0 = Z(e? + %), p* = msinh 0 = Z(e? — e?), and therefore
E +p? E —p?
i , P b (4.40)
m m

Now let us perform the same boost for spinors. We write u(0,0) = (x, x)”/v/2, where
x =& mandp = (0,0,p%)?

- B4 2)]()

m ef/? X

-V 2E e?/? % (4.41)
e—0/2

o3 _ o3
_ o () e () : X
=\ 3g 0 60/2<#) —1—6_9/2(%) X
Now we use /me?? = \/FE + p3 and \/me %% = \/E — p3, and find
(V) ()

up, o) = — . (4.42)

e Ve (e) v )
One can easily show, by an explicit calculation, that
ul(p, o)u(p, o) = 1. (4.43)
For y = £ = (1,0)” and a large boost (E ~ p?), Eq. (4.42) becomes
u(p,1/2) = \/;_E (\/V g ;iig) — (g) . (4.44)

3The presence of the normalization factor /m/E is required such that the quantum fields (to be defined later)
have the desired Lorentz transformation properties. See Ref. [3] for details.
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For x =1 = (0, 1)7

u(p,—1/2) = ( EL+Zﬁ") - (g) . (4.45)

V2E \VE - pn
The spinors (4.44), (4.45) are eigenstates of the helicity operator
p : J 1 ~k O'k 0
h=—" == 4.46
with eigenvalues —i—% and —%, respectively. Generally, using
. @23 (0 O . w2 (1 O
o= (1), - (), am
we can decompose every spinor W into a “left-handed” and a “right-handed” part:

Lorentz-covariant bilinears

Not all generators in Eq. (4.35) are Hermitian: (7% )Jr = J%, but (JY% )T = —J%, Hence, in
general D(A)" # D(A)™!, and u'u is not a Lorentz scalar. We can use a “trick” to construct
a Lorentz scalar, as follows: Define i = u/3 = uf+°. Then

= ulBu = (D(A)u)BD(A)u

= u'D(A)'BD(A)u

= ul exp (%w,wj’“‘”*) B exp (—%ww,j“”)u (4.49)
“2) u' B exp (2w T exp(—swu T )u

= uu.

In analogy, we can construct Lorentz four-vectors uyHu, etc.
The Dirac spinors u(p, o), u(p, o) satisty the Dirac equation (here, we introduce Feynman’s
short-hand notation p,7* = p):

(p— m)u(p,0) =0, (450)
(p +m)v(p,o) =0. (4.51)
Consider, e.g., Eq. (4.50) in the rest frame:

(p=mu(p.0) = (m" —mju(0.0) L 2L (—lﬂ jlﬂ) @ —0. (452)

Perform a Lorentz boost (drop global factor \/m—/E’):
0 = D(A)(my° —m)u(0,0) = [mD(A)Y° D~ (A) — m]D(A)u(0,0)
(421 [mAHOV“ — mlu(p, o) k=l 0) [k,,AHZ’y“ — mlu(p, o) (4.53)
= (p —mu(p, o).
Similarly for v(p, o).
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4.3 The Dirac field

Using the Dirac spinors, we can write the Dirac field as

Z/ 27) 5/2 ,o)a(p,o)e” " +v(p,0)a’ (p, 0)e??] . (4.54)

Here, the uy, v, are given by Eq. (4.36). One can show [3] that a(p, o) annihilates a spin-1/2
fermion with momentum p, spin-z component o, and mass m. a“/(p,o) creates the cor-
responding antiparticle with opposite charge. The four-momenta are on-shell, ie. p° =

\/|p|? + m2. We also have

_ d3p — c —ip-T — t ip-x
== Z/W[w@, o)a’(p,o)e”P" + uy(p,o)a’ (p,o)e™*] .| (4.55)

Eq.s (4.50), (4.51) immediately imply that the Dirac fields satisfy the Dirac equation

(id — m)e(x) = 0. (4.56)

Let’s calculate the equal-time commutators for the Dirac field:
& (p_p/)(sao'/

we..vlwn) - [ 5 3 (e o)t (. e Talp ) a1 o))
+u(p, o) (p), )" Y (o (p, o), a"(p, ")} ]

-

93 (pfp’)éw,
dgp —ip-(T— ip-(x—
= / (2)3 Z [U(P, U)uT(P, o)e p-(z—y) + v(p, O')UT(p, O_)ep(z y)j| _

(4.57)

Calculate the spin sums:
> ulp,o)ul(p, o)
N g S D(L(p))u(0, o) (D(L(p))u(0, )"
- gDO(L(pD ; u(0,0)u(0,0) ' D(L(p))’ (4.58)

“ (L)1 +~°)D(L(p))!

2p°
— o (DD (L) + DD (L))"
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(Here, we used 3D = D73 and 1 = 7°+° in the second-to-last line, and the same “trick”

as in the derivation of the Dirac equation in the last line.) Similarly, one shows

1 0
ZU(p7 O‘)UT(]L o) = Q_p()(p —m)y

o

Insert into Eq. (4.57):

0 _ .. —ip-(z—y)
(W0} = [ S8 —p e+ e
+ (" =y = m)eP V]

in IZ’IT(}i_tgrm dsp 1 0.0 0.0
= 2r)pE 20 [(0°Y° =p-v+m+p"y +p-'y—m)h e

-

2pY

=0*(x —y),

or, with explicit indices,

{@Dg(l‘, t)v iwl:(yv t)} = 263(1" - y)éékz .

The other anticommutators are (exercise)

{Welx, 1), dnly. )} = {ivj (2, 1), i} (y. £)} =

4.4 Canonical formalism for the Dirac field

(4.59)

(4.60)

(4.61)

(4.62)

Eqs. (4.61) and (4.61) show that we can regard ¢ = ¥, p = iU' as canonically conjugated

variables.

The Lagrangian L = L[W(t), ¥(t)] is a functional of the fields and their time derivatives.

The conjugated fields are defined as

The equations of motion (e.0.m.) are

OL[Y(t), W (t)]

(@ t) = —5em

The e.o.m. follow from a variational principle: Define the action as

o0

sz/ﬁuwmwm.

—0o0
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For an arbitrary variation 0¥ with ¥ (+o00) = 0 we have

o

SIV] = / dt [%N%H 55}(@5\1}%)}

o / it / P [W %5 \ifeL(x)]d\Pé(x)

(action principle). In Lorentz-invariant field theories, we write L as an integral over a La-
grangian density L,

(4.66)

LW, (1) = / e L(V(z, 1), VU (2, 1), Uz, 1) (4.67)
such that the action becomes (0, = 9/0z")
1] = / d'e £(U(x),0,V(z)) (4.68)

The variation of L under ¥ — ¥ + W becomes

oL oL oL
_ 3 ﬁ é £
(5L_/d {a\waw a(v\w)w\p e g(sqf}

(4.69)
oL oL oL
_ 3 9~ 0y ¢
(22 Yo 9 ]
and comparing with Eq. (4.66) we get
oL oL oL
50 v Y (V) (470
oL oL
owt  owt
The e.o.m. (4.64) are then the Euler-Lagrange equations
oL oL
0 = . 4.72
b 0,00 O (4.72)
The Hamiltonian is given by the Legendre transformation
H= Z/di”xng(x,t)\iﬂ(x,t) — L[W(t), U(t)]. (4.73)
¢
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4.5 Global symmetries

Assume that the action (4.65) is invariant under the infinitesimal field transformation

Uh(z) — Uh(x) +ieF'(2), (4.74)
ie.
0=261=ic / d%%ﬂ(m) . (4.75)

For € a constant this is a global symmetry. (NB: The e.o.m. need not be satisfied, otherwise
Eq. (4.75) is trivially satisfied.) Now consider € = €(x). In order that 6/ = 0 for constant e,
we must have

O¢(x)

oxH

6 = — / d*zJ" () : (4.76)
for some current J*(x). If now the fields satisfy the e.o.m., we have §/ = 0, and integrating

by parts yields
0J"(x)
= . 4.77
0 Oxt (4.77)

This is Noether’s theorem: symmetries imply conservation laws. For each conserved current
J*, Gauss’ theorem implies that

F= / P T (4.78)

is conserved: IF
0= —. 4.79
7 (4.79)

If the Lagrangian density £ is invariant under the transformation (4.74), we can calculate
J* explicitly. The variation of the action, with € = €(z), is

SI[T] = i / diz [%.ﬂ(z)e(w) +%@L(ﬂ<x)e<x>> | (4.80)

The invariance of £ for constant € requires

o oL

— = Ft —= 9, F 4.81
0 8\1"}— () + a(au\w)ﬁu}" (x), (4.81)
hence the variation of / for arbitrary fields is
oL
IV =i [ d* ¢ : 4.82
O[] z/d xa(au\w)}"(x)@ue(a:) (4.82)
Comparison with (4.76) yields
oL
[— £ 4
J za(auw) (4.83)
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Application to the Dirac field
The Lagrangian density for the free Dirac field is

L=9(id—m). (4.84)
The Euler-Lagrange equations give
oL oL - _
=0 —— — = = 9, ay* 4.85
0 8“8(@1/1) 90 Oty + map (4.85)
and, after multiplying by  and Hermitian conjugation,
(i —m)p =0. (4.86)

(This is the Dirac equation again.)
Invanriance of Eq. (4.84) under ¢ — €'“¢) = 1) + iey) gives the corresponding Noether
current
oL

JH =
"0(0,0)

=y (4.87)

Spin*
4.6 Vector fields

In analogy to Eq. (4.54) we now define a quantum vector field (for now, we only consider
massive particles), i.e. here we have D(A)#, = A*,. We have

Hx) = —d3p et (p, o)alp, o)e P* + e (p. o)a (p, o)e®®
V) =3 [ G 0 o) e o) oy | as)

Here, a(p, o) annihilates a massive spin-1 particle with momentum p and spin-z component
o,and a (p, o) creates the corresponding antiparticle. We can choose the polarization vectors
as follows. For p = 0 we define

0 0 0
1 1
et(0,0) = 8 , e*0,41) = _E 1 . €*(0,0) = E _1Z : (4.89)
1 0 0

The polarization vectors for non-zero momenta p # 0 can then be obtained by a Lorentz
boost. We denote by L(p) the L.T. that transforms (M, 0) into (F,p). Then we have

et(p,o) = L(p)*,e”(0,0), (4.90)

For the polarization sum we obtain (exercise!)

1" (p) = Z el(p,o)e” (p,o) = —n"" + Py : (4.91)
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The field V (z) satisfies an important field equation. Defining k* = (M,0) and using
Eq. (4.90), we see

Pue’ (P, 0) = nupp"e" (P, 0) = 1o L7, (p) L", (p)K7€"(0, 0) = 110, k7€”(0,0) = 0, (4.92)

and therefore*

D, Vi (z) =0. (4.95)

4.7 Massless vector fields?

Consider the “object”

=) / 3/2 [ “(p,o)a(p,o)e """ + e (p,o)al (p,0)e™] . (4.96)
o==+1 27T

Here, a, a' annihilate / create massless spin-one particles. We can choose polarization vectors
as follows. Let k* = (k,0,0, ), k? = 0, and define

0

ik, 1) = — | 1 (4.97)

et (k, =75 | =i .
0

Denote by R(p) the rotation that brings the z-axis into the direction of p. Then the e* for
general momenta are (note that a boost in z direction does not affect e*(k, +1))

e (p, 1) = R(p)", c" (k, +1). (4.98)
In particular, ¢ (k,+1) = 0 and k - e(k, £1) = 0, so
(p,+£1) =0 (4.99)

and
p-e(p,+1)=0. (4.100)

*Interestingly, these would be the equations of electrodynamics for M — 0 in Lorentz gauge. Is it allowed to
take this limit? Assume a Hamilton density of the form H = J,V*#, where J, is some four-vector current.
The squared transition matrix element then has the form

oV
\ Yet* (p,o)|* = (TN [ =+ D . (4.93)
H v n M2
~——
— o0 as M—0

We see that <J#>p“ has to vanish, or, equivalently, J,, has to be conserved:

O J" =0. (4.94)
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Therefore, A*(x) satiesfies the field equations
A°(z) = 0 (4.101)

and

V.Ax)=0. (4.102)

This shows immediately that A*(z) cannot be a Lorentz four-vector. In fact, it can be shown [3]
that under a L.T. A* transforms like a four-vector only up to a gauge transformation,

Au(r) = A A, (Az) + 0,9(x) (4.103)
with a scalar function §2(z). One has to construct 7 (z) in terms of
F,., =0,A,(x)—0,A,(z) (4.104)

(this is a Lorentz tensor, due to antisymmetry), or with terms of the form A, J*, with 9, J* =
0. This is the origin of gauge invariance.
From Eq.s (4.97), (4.98) we obtain the polarization sum

p'p
Ip|?

(4.105)

Z ei<pa U>€j*(p7 0) = 6ij -
o=+

5 Quantum electrodynamics

5.1 Gauge invariance

How can we construct a Lorentz-invariant interaction out of the fields (4.96), (4.54), (4.55)?
Recall A, — A, + 0,(). Require that the action be invariant under the gauge transformation

A, (z) = Au(x) + 0,e(x) . (5.1)

To this end, couple A, (x) to a conserved current:
Iy D —/d4x JHA,(z). (5.2)
Then under the transformation (5.1)
0y = — / d*z J"0,e(x) = /d4x 0, J"e(x) =0. (5.3)

We have seen that the symmetry transformation i (z) — ¥(z) + 69 (x), with

p(z) = —ie(x), (5.4)

yields a conserved current for constant ¢, and for € = €(x) (see Eq. (4.76))

5y = / d*z J"0,e(x), (5.5)
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so we can couple A, to this current J*. In summary, the action must be invariant under the
combined transformations

0A,(x) = 0,e(x), (5.6)
0p(x) = —ie(x)e(x), (5.7)

where we factored out the electric charge e. This is a local or gauge symmetry.
The antisymmetric tensor field

F(x)=0,A,(x) —0,A,(x) (5.8)

is invariant under (5.1). We use (5.8) to construct the kinetic term of QED:

L, = _é}l /d4xFW(x)F“”(x). (5.9)

5.2 Quantization of electrodynamics

Quantizing electrodynamics is a complicated business, due to gauge invariance and several

constraints (such as A = 0). In this lecture, I will not attempt to explain it and refer to

Ref. [3] or my lecture notes on QFT. Instead, I will just give the result of the analysis in a few

lines. For the rest of the lecture, we will just use these results to calculate physical processes.
The QED Lagrangian in the interaction picture is given by

L=y —m)p — 1E, F* — J, A", (5.10)

with B
T = ep(z)y"(x) . (5.11)

The interaction Hamiltonian can be obtained by a Legendre transformation. In particular,
the interaction term is given by

V(t) = / T, ) A, 1), (5.12)

where
JH(x,t) = exp(iHot) J"(x,0) exp(—iHot) . (5.13)
5.3 Propagators

As a preparation for later, we will calculate the propagators.

5.3.1 The propagator for the Dirac field
The propagator is defined as the vacuum expectation value of the time-ordered product

(0T {x)1(2)m () }0)

= 0(2° — y°) (O (2)t (1)]0) — O(y° — 2°)(0|thyn (y)21()]0) - (5.14)

32



Consider the first term:
(Olhr ()30 (y)|0)
d3 d3 ! ) '
= (0] / % ; [(uz(p, o)e P a(p, o) + v(p, 0)e?"a (p, 0))

X (on (P, 0")e V0B o) + (0, 0" Ml (0 ")) ] [0)

Only the term with aa' survives. We use

(0la(p, 0)al (@', ")[0) = =0+ 6*(p — P')dser
to find
d3p

@m0} = [ e S . )i 8,
wsyy [ d’p (P+m)im e
7

2m)3 2p0

In complete analogy we find

d’p (_}7) +m)im eip (@=y)

T e
Thus, we can write the propagator as
(01T {tu(2)thm(y) }0)
= 0(z" — ") (id + m)A s (z —y) +0(y° — 2°)(id + m)Ay(y — ).

Now we use 5 5
B0 0 = (0 0y — 0_,0
ax()@(l’ y') 83609(?; z7) =6(z" —y")

to move the time derivatives in Eq, (5.19) past the 0 functions:

(O1T{thu ()b (y) }10)
= (i +m)[0(z° —y") Ay (x —y) +0(y° — 2°) Ay (y — )]
—i°6(a’ — ") [Ay(z —y) — ALy —2)] .

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

For 2° = 0, A, (z) is even in = (compensate £ — —z by shifting the integration variables

p — —p), hence the terms in the second line cancel, and we have

(OIT{r(2)thm () }0) = (i) + m)im iAp (2 = y),
with the Feynman propagator

iAp(z) = 0(2") A (2) + 0(—2°) AL (=)
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K —ie

Figure 1: Fourier representation of the 6 function.

We can rewrite this as follows, using the Fourier representation of the ¢ function

-1 f —ist
o(t) = — / gs P (5.24)
2m s+ 1€
(This can be seen as follows. The integrand has a simple pole at s = —ie. For ¢ > 0, the

integrand converges for Im(s) < 0, so we can close the contour in the lower half plane. The
residue theorem gives — 274 for the integral. For 7' < 0 we can close the contour in the upper
half plane, and the residue theorem gives zero. See Fig. 1.)

Insert Eq. (5.24) into the Feynman propagator:

(5.25)

1 d*p / 1 [exp(—ip x —isz?) N exp(ip - x + isz°)

YAN S — _
Br(@0) = =55 | @rp | B0 s+ e s+ e

—00

Now we perform a change of integration variables: ¢ = p, ¢° = p° + s in the first term, and
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q = —p, " = —p" — s in the second term. We then find

iAp(x / / d3q expzq x—qu)
o 2+m2
1 5.26
o { + ’ (5.26)
q° — q2+m2—i—ie —q° — \/@% + m? + ic
a/aTE?

—(¢9)24¢24+m?2 7i62\/q2+m2+(9(62)

d4q efz'q-z
Ap(z) = / B E e i (5.27)

Hence, the Dirac propagator is

d'q i(d+m)
2m)4 2 — m? +ie

el (@) (5.28)

OIT ()T ()} o) = / :

5.3.2 The propagator for the photon field

The calculation of the photon propagator proceeds along similar lines, but is slightly more
involved. It can really be understood only using path integrals. Therefore, we just quote the
result. The photon propagator is defined as

i@ — ) = (OIT{Au(2) A, (5)}]0) (5.29)

The explicit calculation gives the result

d'q —in.
iDL (T —y) = / 9 " ~ig@=y) (5.30)

6 Elementary processes of QED

6.1 eTe” — utp~
Our interaction density for QED is (cf. Eq. (5.12))

H(x) = Ju(x) A (x), (6.1)

with the current B -
jp(x> =e we%%(ﬂf) + 6%%%(1‘) . (6.2)
We insert this into the S-matrix (3.68). Now consider an e™ e initial state, with momenta p,

p’ and spins s, §', and an putp~ final state, with momenta k, k' and spins 7, r’. Le. our “in
state” is

p, 59’ ") = al(p,s,e”)a’ (@', 5", €7)[0) (6.3)
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and the “out state” is
(k,r k' r'| = (Ola(k,r, p~)a(k', ', ™). (6.4)

By a suitable choice of the vacuum energy we can write all creation operators to the left of
all annihilation operators in Eq. (6.2); this is called normal ordering, in symbols : H(x) :.

It is easy to see that, in our case, the first non-vanishing term in (3.68) is n = 2. Therefore,
we need to calculate

Sga = —2%254 (pg — Pa) Mpa

/d4 /d4 Olatk, r, o )a(k, v, 5t

ST B Ae) s ++ Ty A (e) 9
X ( ( )A(y)¢e< )i+ &u(@/)A(?/)l/’u(y) : )}
x a'(p,s,e”)a'(p/,s,e")|0).

Our strategy is, as usual, to move all annihilation operators to the right, until the annihi-
late the vacuum state. The only non-zero left-over terms originate from the arising delta
functions. Reminder:

e ~al(e7) +ale?),
e ~ ale”) +al(e”),
U~ at(p™) +a(uh),
U~ a(p”) +al(ut).

We denote the “(anti-)commutation” of an annihilation-creation-pair as a contraction; nota-

tion: ...a...a'.... The following contractions contribute to the matrix element in (6.5):
‘ - al \ R -
(O )i T (B + ki) () (A + D))} () ()0
and
I + | - - - ‘
(Ol )alu " VT{ (o Atse + i) (@) (G i, + A (9 }a o).

(In addition, we need to contract the corresponding photon fields.)
The contraction of the external states with the fields gives (we write only the relevant
fields, for simplicity)

(Ola(k,r, u™)¥u(@). .. |0)

" 0la(k,r ) / '<z—i>€/2 > (alp.0)e™ al(p.o) +...) ... |0)

(4.10),(4.17) d®p _ w3 (6.6)
= —0+<0|/W§U:u(p,a)ep 3k —p),s...|0)
ﬂ(k, T, Q ) ik-x
T 2n)3 (0f...10)
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Similarly, we find
v(K' 1wt e

(Ola(k', 7", ™)t (2)]0) = G ¢ ’, (6.7)
01000 (5. [0) = “B e, )
— o+ ,

Ole(y)a@. s'.e*)[0) = %e (69)

In total, we get the two terms

:__/d4 /d4 (27
x (u(k,r)y (k' r ))( (p s") v u(p, s))
x [ty =iy (0| T{ AM(2) AY (y) e (x) }O)

ot (0| T{ A" (y) A” (x)e(2) }0)]
5 (ulk, )y, (K, ) (0(p', 8" )pu(p, 5))

(530) €
)°
d'q —inn i(k+k' i(p+p'
x/d4y/ 1z efzq-(xfy)ez(kJrk )-:pefl(Per )y (610)
k,r

(2
8 /d (2m)* ¢ + e
~ ™

d*q 1 4cd / 44 /
« /unz'e(%) 5 (=g + k+ k) 2m) oM g — p— )
e (ak, vk ) (00, 8 )y ulp, ) o .
Rk o+ ) T

= 2mid*(k+ K —p— P')Mpgq -

)yuv (K ) (0, s )" ulp, 5))

p—7)

where in the second equality we used that the expression is symmetric under the exchange
T &y

Next, we would like to calculate |Mp,|*. As a preparation, we need the following relation
for the Hermitian conjugate of the Dirac matrices (exercise!):

| 2

() =p"8, n=0,1,2,3. (6.11)
Our matrix element is
62 1 — / / — / /
My, =~ s s (kK )T ) ulps) . (612)
We have
(@y0)* = (uf By0)t = iy BT = 1B, 88u = Dy,u, (6.13)

and similarly
(Dy,u)* = ay,v. (6.14)
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Therefore, we find
et 1
2m)8 ((p+p')?)?

|Mﬁa|2 = (’L_L(k, T)Vul}(k/, T/))(T)(klv T’)’yyu(k, T))

x (o(p', s)v"u(p, ) (a(p, s)y" 0@, 8")) -

(6.15)

In realistic experiments one frequently does not know the polarization of the electrons in the
initial state. If we are not interested in the polarization of the muons in the final state, we
average the cross section over the spin states of the initial-state particles and sum over the
spin states in the final state. Hence, we need to calculate

1 2
32320 IMal.
We insert (6.15) and use the spin sums (4.58), (4.59). The first factor in Eq. (6.15) gives (writing

the spinor indices explicitly):

YD (k) (y)aen (K, ) 0e (R ') () carial, )

rr’  abed
/ 1
= Z [(% + mu)da(ﬁ)/,u)ab(k - mu)bc(fyu)cd] W (616)
abed
1

= oo Tk m) (K —m)y }

Similar for the second factor in (6.15). In total, we have for the “summed and averaged”
absolute value squared,

[MPP={) [MP, (6.17)

spins

writing p + p’ = q,

1 4 1 1 / / v
|M]? = 4 (2(;)6 ? 16]{;0]<;/()p()ploTr{(}é +mu) vk — mu)’y,,}Tr{p Yy } (6.18)

where we neglected the electron mass (the electrons in this process are always ultra-relativistic,
since m,, > m,.). Next we need to evaluate the traces. We have

Tr{v"} = Tr{v" 575} = —Tr{157"75} = —Tr{" 1575} = —Tr{+"} (6.19)

and so Tr{y*} = 0. In general, the trace of a product of an odd number of Dirac matrices
vanishes. Furthermore,

Tr{y"7"} = 5Te{y"y" +"7y"} = 5 - 2- " Tr{1} = 49" (6.20)
Similarly, one can show that

Tr{y"y"7P77} = 4(" 0’7 — """ + "7 y”") . (6.21)
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Figure 2: Kinematics foree™ — p ™ in the center-of-mass system.

Using these results, we get
Te{p Py} = pppoTr{y"7"977"} = 4("p" = W' -p) " +0"P")  (6.22)
and
Te{ (F +m) v — mu)ny = —4m2n,, + 4Kk, — (K - k) n + kok,) . (6.23)

Inserting this into (6.18) yields

1 et 1 1
4 (2m)8 g* 16kOkOpOp/0 (6.24)
x 16 [2m2(p' - p) +2(0" - K)(p- k) + 200" - k) (p - K')] .

[\V]

| M]|

To simplify this further, consider kinematics in center-of-mass system (see Fig. 2). Here,
k| = \/E? —m2 and k, = |k|cosf. We have ¢* = (p + p/)* = 4E%* p-p = 2E>
p-k=p kK =FE?>—FElk|cosO;p-k =p -k = E?+ El|k|cos 0. With this we get

I = 1 2% 1 1
~ 4(2m)S 16EY E.E.E,FE!,
x [2m?E* + EQ(E — k| cos0)* + E*(E + |k| cos 6)? |
2E4+2E2(E‘2,—m3) cos2 6

1 2% 1 1 m’, m;
= X Copt1 ol (1 ) cos?a) .
4 (27)5 16E* B4 { Tt ( E2> cos

(6.25)
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Inserting into (3.42) gives

do(ete™ — utp=™)  (2m)%k|E*

= M|?
ds? 4F? - F |M]
1 et 1 m:, m?, oV E(E? —m2)'/?
= 1@ iE [1 Tt (1 o A Q} 1 (6.26)

o’ my [ ™ M\ o

with s = (2F)? the square of the center-of-mass energy and o = €?/(4m) & 1/137 the fine
structure constant. Integrating over df) = 27d cos  we obtain the total cross section

_ _ 4 m?2 1m?
olete” = putp™) = » — E—g (1 + §E—g> . (6.27)

In the high-energy limit (£ > m,,) we obtain

do Esm, o?

" E(l+cos2 9), (6.28)
my 4 2 m4
i gj + O(ﬁ) . (6.29)

For £ > m,, the energy is the only dimensionful quantity in the process, so Eq. (6.29)
follows (up to the constant factor) from “naive dimensional analysis” (NDA).

6.2 The Feynman rules for QED

Our strategy to calculate the S-matrix element by bringing all annihilation operators to
the right generalizes (“Wicks theorem”, C. G. Wick 1950 [4]). Formally, one transforms a
time-ordered into a normal-ordered product. The appearing contractions can be represented
graphically. As usual, we classify external states by their three-momentum p and spin-z
component (or helicity) 0. Then we have for an

l

incoming fermion: —>—"° : Qéggrp)’g(/? , (6.30)
incoming antifermion: ———— - ve(p,0) 6.31
incoming antifermion: ; PR (6.31)
t . f . . ._>_£ . /ae(p7 0-) 6 32
outgoing fermion: : o) (6.32)
tgoing antifermion: S———— - ve(p, 0) 6.33
outgoing antifermion: : )i (6.33)

. . K e,u (p7 U)
incoming photon: ~ VVVVW\ . — (6.34)

@r)P 2
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w e, (p,o)
' (27)3/2 /2p0

The interactions are symbolized by vertices. The integration over z1, zo, ... in (3.68) effec-
tively yields a momentum-conservation delta function for each x;. Hence, each vertex gives
a factor

outgoing photon: ®YVVVVV (6.35)

m k
N\
MW —iQ () (2m) 04k + K = q)
¢ /1;’ ! (6.36)

Here, ()¢ denotes the charge of fermion f. The contraction of two internal fields yields a
factor

e 1T 1 i(¢d+m)
— " . 4 : (6.37)
(2m)* ¢ — m? + ie
for fermions, and
[ q— » 1 .
MNV — v (6.38)

(2m)% g% + i€
for photons. The Feynman rules to obtain the transition matrix elements are:

1. Draw all Feynman diagrams contributing to a given process, with a given maximal
number of vertices, using the building blocks (6.30)-(7.43).

2. Replace each building block by its mathematical expression.

3. Integrate over the momenta of all internal lines, and sum over contracted Lorentz and
Dirac index pairs.

4. Add the contributions of all diagrams.

5. Each closed fermion line yields a factor (—1). If two Feynman diagrams differ by an
odd number of permutations of fermionic annihilation or creation operators, they get
a relative minus sign.

Example: Muon pair production.

NB: We symbolize all contributions obtained by a mere renumbering of internal vertices
by the same Feynman diagram! This cancels the factor 1/n! in (3.68).
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6.3 ete” — putu~: High-energy limit and helicity structure

In this section we will treat electrons and muons as massless (high-energy limit). Where does
the angular dependence (1 + cos f) in Eq. (6.28) come from? As an exercise, we construct the
transition amplitude using the Feynman rules:

—2mid*(k+ K —p—p )M
u(k,r , v(k',r’ ,
= [ |G i G e+ K = )

)2 2y
" 1 —in,
(2m)* g% + i€ (6.39)

_ie? (ﬁ(kar)’r"v(k',"“’))(@(ﬂ )W(P $)) <4 .
- (2n)? (p+p)? Ptk

NB: When not writing explicit spinor indices, all fermion lines must be “evaluated” against
the direction of arrows.

We will evaluate the amplitude separately for all helicities (massless fermions!). First, we
decompose all spinors into their LH and RH components:

V=Pp+Prp =t +¢Yr=11—- )0+ i1 +y). (6.40)

We have seen that the massless LH and RH spinors, u(p, —1/2) = Pru(p, —1/2) and u(p, 1/2)
Pru(p,1/2), are eigenstates of the helicity operator with eigenvalues —1/2 and +1/2, re-
spectively. Similarly, v(p, —1/2) = Prv(p, —1/2) and v(p,1/2) = Prv(p,1/2), are eigen-
states with eigenvalues +1/2 and —1/2, respectively. Using this, we can project onto the
different spin states. Consider, for instance, the second factor in (6.39). We replace

o(p’, ) ulp, s) = o(p' s 5 (1 +35)ulp, 5) - (6.41)

Then the amplitude vanishes for a LH polarized electron (h = —1/2), while it is unchanged
for a RH electron (h = +1/2). We have

p—p).

Y3 (L4+y5)u =0 By 3(1+y5)u = v 2 (1 + %) 87" u = (1 + 5)v) By u,  (6.42)

so the positron must be RH polarized! In general, the amplitude vanishes unless electron and
positron have opposite helicity.
Let’s calculate the squared matrix element. The “electron factor” yields now

Z‘U(P (1 +75)u(p, s ‘ = Tr{pv" 31+ )" 5(1+75) }
spins (643)
=Tr{y"py"5(1+7)} -
Now we use
Tr{’y“’y”fypfy"’yg,} = — 43P’ (6.44)
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and obtain

2 - 14
ST o@, s (1 + s ulp, s)|* = pr (p"p” + " — " p - pl — e plps) . (6.45)

spins

The analogous calculation for a RH ;= and a LH p ™ yields

2
Z |u(k, )75 (1+ )k, T/)‘Q = ZIE0R0 (ko + ko — nk - k' — €0 kPE') . (6.46)

spins
Therefore, the squared matrix element for epef — pupuf is

et 1 4

M2 = _
| ’ (27T)6 q4 16p0p’0k0]€’0
< 200 K) (P - K) + 200 k) (p- k) — €' € pimnplpsk? K]
et 1 16 (6.47)
= @ ¢ 6o P PR
4
c.m.s 6

1
ms € 1+ cos 6)?
orp16ET LT eosd)

with p'p Pk = E; ¢*> = 4F2, (p' - k) = (p- k') = E*(1 + cos0). In the first line, we used
€M €0y = 2(0307 — §67). Inserting into (3.42) yields the cross section

2

d - +_> — T
o(erer = Mrhiy) _ Z_(l +cos0)?. (6.48)
s

ds?
To calculate the remaining three non-vanishing amplitudes, we just need to reverse the sign
of 75 in (6.45) and / or (6.46). That just changes the signs of the terms with the Levi-Civita
tensor, and we get

2

-+ -+
d0'<6ReLdS;> /’LLILLR) _ Z_(]- — COoS 0)27 (649)
S
—+ -+ 2
dU(eLeRd; MRML) _ Z_(]- — cOoS 9)2’ (650)
S
-+ -+ 2
da(eLeRd; Hitz) = Z_s<1 + cos 6)?. (6.51)

Summing the four terms and dividing by 4 for spin averaging, we reproduce (6.28).
The physical meaning of, for instance, Eq. (6.48) can be understood as follows. For § = 7
the cross section vanishes. This is nothing but conservation of angular momentum:

before : e~ O > < O et

after 1 = <« O Q > "

Since the total angular momentum is conserved, the amplitude must vanish (see Ref. [5],
ch. 5.2 for more details). Helicity is conserved in the high-energy limit.
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6.4 eTe~ — ptp~: Nonrelativistic limit

For F ~ m,, the unpolarized cross section (6.26) becomes

do(ete”™ = utp™) o? m2 m’ m’, Brm, o |k
=—4/1 1+ —- - £ 20— —1 .

i 1s 2 N ) A 25 F
|k|/E ~2 ~0

-~
=

(6.52)

How can we understand the absence of the angular dependence? Let’s calculate (6.52) ex-
plicitly in the NR limit.

Consider again the “electron factor” in (6.39). Since e and e~ must be ultrarelativistic
(m,, > m,!), we choose helicity eigenstates, e.g. RH e~ in 2 direction, LH e in —z direction.
The corresponding spinors are (cf. Eq. (4.44))

0 0
up1/2) = |1 w2 =| ) (653)
0 -1
Using (4.32) we obtain
oo, 1/2 ulp. 1/2) = (0.-1)0% () (650
with
ot =(1,0). (6.55)

A simple calculation gives

’U(p> 1/2)7’“@6(}), 1/2) = (Oa _17 _i7 O) . (6-56)

For the “muon factor” we use the general basis in the NR limit, Eq. (4.36). We write

w(0,0) = % ()’é) . 0(0,0) = % (_X;<,> : (6.57)

where (see Eq. (4.36))

(6.58)
X - 1 ) X - 0 ) or o0 = 2
Defining
= (1,-0), (6.59)
Eq. (4.32) becomes
0 ot
po_
At = (5” 0 ) , (6.60)
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and we get

2 ak

0 e (6.61)
{_XTUixla n= 17273'

_ kk'—0 1 ko0 , ,
alk, )y ok, ') S="0 2 () (00 ) X =X

The Lorentz scalar product of (6.56) and (6.61) finally gives the scattering amplitude (¢*> =
4m?)
o

M(—+ +,,7) — 62 1 T 01 / 2
epey — W )__WWX 0 o)X- (6.62)
m

This expression is independent of the scattering angle; the orbital angular momentum of the
't pair is zero (“s wave”). We see from (6.58), (6.62) that we need to choose o = +1/2 for
both " and i~ to get a non-vanishing scattering amplitude. This is again conservation of
angular momentum!

B

before : _— after :

ut
We find the scattering cross section for this process by summing over the muon spins (only
one terms contributes); this gives (cf. (3.42))
do(eger — ptp~) o k|

e =0 (6.63)

The amplitude for the process e, e}, — p'u~ yields the same cross section. Summing the
two terms and dividing by 4 (spin average) yields again (6.52).

6.5 e - — e~ p~ and “crossing symmetry”

We now consider the process e~ — e~ . To leading order in QED we have
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The corresponding scattering amplitude is

ie? (apy, ')y ulpr, s))(@(@y, ") yuupe, )

—omiM = (6.64)
(2m)? (p1 —p1)?
The summed and spin-averaged square is then (taking m. = 0 as before)
M = 1 et 1 1
4 (2m) ((pr — p1)?)? 16pYpYPSPY (6.65)
X Tr{?h“?ﬂu}n{(}”/g + mu)%ﬁ(}% + mu)’YV} .
This is the same expression as (6.18) after the replacements
p=p, P -ph, ko, F o ops (6.66)

We can do the same replacements in (6.24), so we do not need to calculate the traces again.
That gives

= | et 1 1
4 (2m)8 (p1 — ph)* 16pYpPoPY (6.67)
X 16 [ — 2m2 (py - ) + 2 - P5) (1 - p2) + 2(P - p2) (p1 - )] -

The kinematics for this process is, however, totally different. We work again in the c.m.s. (see
Fig. 3), where E? = k? + mi, k. =kcosO, /s = E+ k. With this we get p; - p, = p} - ph =
K(E+k)iph - p2 = p1-phy = k(E + kcosO); pr - py = k*(1 — cos0); ¢* = (p1 — p)* =
—2p; - py = —2k*(1 — cos ), and obtain

1 et 1
|M’2:Z 976 16197010/
(2m)¢ 16pY P p3ps (6.68)
1 2 2 2 .
X 421 — cos )2 [(E +k)* 4+ (E+ kcosf)” — mu(l — cos 6)} )
Inserting into (3.42) gives the differential cross section
do(e p~ —e p~) a?
df  2k25(1 — cosf)? (6.69)

X [(E+k)*+ (E+kcos)> —m?(1 —cos0)]
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Figure 3: Kinematics fore” = — e~ u~ in the center-of-mass system.

and in the high-energy limit (m, — 0, &/ = k)

do(e p~ —e p~) o?

ds2 N 25(1 — cos 0)? [4 + (1 + cos 9)2} : (6.70)

Remark: The differential cross section diverges like 1/6* for § — 0 (“Rutherford peak”).
The crossing relation becomes more transparent if we use Mandelstam variables:

/1;’ k’\\

s=(p+p)P=k+kK)?, (6.71)
t=(k—p)*=F*-p)", (6.72)
u= (k' —p)*=(k—p)*. (6.73)

Example: e¢te™ — ptp~ in the high-energy limit
Here,t = —2p- k= —2p - k', u = =2p' - k = —2p - k’, and the squared amplitude becomes
(cf. (6.24))

M2 = (6.74)

et 1 1 t2+u2
2 2

1
Z(QW)6 KO K/0p0p/0 219 "9

Crossing:
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Hence, we have to perform the following replacements (particles in initial state — antipar-
ticles in final state and vice versa; momentum with opposite sign)

p — —k, K — —p, pD—=p, kE— Kk, (6.75)
and hence
s=@+0)? = p-k’=t, (6.76)
=(k—p? = -p?’=u, (6.77)
u=(k—p)? — K +k?=s. (6.78)
Therefore,

| M

1 et 1 1[u?  §2
2 2

— = =+ = 6.79
A s ¢ 2 (679
This agrees with (6.67).

If only a single diagram contributes to a given process, once refers to “s-channel, t-channel,
u-channel”. They lead to a characteristic angular dependence of the scattering amplitude:

. 1_ 1
s-channel: ~ ¢ = o
. 1 _ 1 .
t-channel: ~ ;= 1——;
. 1_ 1
u-channel: ~ & = .

6.6 Compton scattering”

Compton scattering plays a large role in cosmology and astrophysics, so we discuss it here in
detail. The two lowest-order Feynman diagrams are shown in Fig. 4. They give the amplitude

. 7Ti4 R R _ (—i€)2 e e (k.o
2mid (k?—f—p k p)M (QW)Q\/Q_M)\/W H<k7 ) u(kv )
L [2@L S+ K+ me)yulp, ) N (e, s ) (" (p — K +me)y)ul,s)]  (6.80)
(p+k)* —m? (p— k) —m?
x 0 k+p—FK —7p).
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K /

P ,ffJ p ,.JJ-J ki

rJ,J’J q p’ q p’
k k

Figure 4: Leading-order diagrams for Compton scattering.

Simplifying the denominators, this gives

i(_ie)z A
Weu(k,a)eu(k o)
a(, ) (p + K+ m)yJulp,s)  alp', ) (P — K +me)y”)ulp, s)

p-k p-K

M =
(6.81)

Now we simplify the numerators by using the Clifford relations and the Dirac equation:
(p + me)’y#u( 78) = [2pﬂ - 7“(? - me)]u( 78) = 2pﬂu( 7S> ’ (682)
and similarly for (p + m.)y"u(p, s). This gives

-2

1€
M=—————¢,(k,0)e (K, o
N uw(k,o)ey (K, a’)

x u(p', s) {27”1)’;—{—]3”%7“ - nyup;_.;uk /yy] u(p, s) (6.83)
_ ie? 20" (p-e) +¢ k¢ 24(p-e7) — gk ¢” (o s
- (27)\/W(p ){ p-k p-K } P.s).

Next, we calculate the squared matrix element, summing over the final and averaging over
the initial electron spins. For this, we need to evaluate the trace

e [ L 20 ) AT

p-k p-K

(6.84)

X (p+m.) [2¢'(p : ;*.)];r £ 2 pe) - ¢H ¢ ] }

This can be further simplified observing that (p-e) = (p-¢’) = (p-e*) = (p-€*) = 0, which
can be seen to be true in the rest frame of the initial-state electron and in Coulomb gauge.
The trace simplifies to

el em S Aol )

Before we proceed, we need to say a few words about the photon polarization. (We do not
want to immediately sum over photon polarizations, as the polarized cross section plays a
role in both astrophysics and cosmology.)
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6.6.1 Photon polarization

In Sec. 4.7, we have defined the polarization vectors for photons of helicity -1 as

0
1/v2

(%1 = RG) | 40 (6.86)
0

The matrix element for absorbing or emitting a photon in a general superposition of helicity
eigenstates v, [p, +1) + a_|p, —1), with |a,|? + |a_|*> = 1, can be obtained by simply using
the corresponding linear combination of polarization vectors

e(p) = arel(p,+1) + a_e’(p,—1) (6.87)

in the Feynman rules. Eq. (6.86) shows that the polarization vectors for definite helicity are
normalized as

e, (p,a')e"(p,0) = b0, (6.88)

and therefore the general polarization vectors satisfy
e, (p)e’(p) =1. (6.89)
The limiting cases are circular polarization, with o, = 0 or o = 0, and linear polarization
with |a| = |a_| = 1/v/2. By adjusting an overall phase, we can choose the coefficients for

linear polarization as o = 79 /1/2, such that the polarization vector is

0

e’ (p) = R(p) cos ¢ (6.90)
sing |’
0

with ¢ the angle of photon polarization in a plane perpendicular to the photon momentum
p. In this case, the polarization vector is real.

In general, the initial photon state may be in a statistical mixture of polarization states

eff) (p) with probabilities P, normalized as ) . P, = 1. The rate for absorbing such a photon

is then proportional to
> Blel) (p) M [P = M** M"p,,(p) ., (6.91)

which can be expressed in terms of a density matrix

pou(@) = Pl (p)e" (p) . (6.92)

It is straightforward to see that the matrix p(p) is Hermitian, positive definite, and has unit
trace, and further that pg,(p) = p.o(p) = 0 and p,,.(p)p" = p.,.(P)p” = 0. Therefore, it can
be diagonalized with two real, positive eigenvalues A, A satisfying \; + Ay = 1, i.e.

pon(@) = Aeu(p. s)es(p, s) (6.93)
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where e, (p, s) are the two normalized eigenvectors coresponding to A, satisfying

eo(p,s) = eu(p,s)p' =0. (6.94)
It follows that the rate for absorbing the photon is proportional to
> A, s) MM (6.95)

showing that any statistical mixture of initial photon polarization states is equaivalent to
two orthonormal polarization states with probabilities A,. In particular, if the initial photon
polarization is unknown, we have \; = Ay = 1/2, and

%Z ei(p, s)el(p, s) = %(@j — Dib;) (6.96)

S

pij(p) =

(see Eq. (4.105)). This result does not depend on which particular orthonormal pairs of po-
larization vectors we average. Similarly, if we do not measure the final photon polarization,
we may sum over any pair of orthonormal final photon polarization vectors.

6.6.2 Polarized cross section

We now proceed to evaluate the trace (6.97). A straightforward calculation leads to a lengthy
result that can, however, be simplified by using the on-shell conditions k¥ = (k') = 0, the
normalization conditions |e|* = |¢/|> = 1 and e* - ¢/ = 0, as well as the relations p’' -k = p- K/,
Pk =p-kpp=k-kK+m?:e p=c¢-kande-p = —c-kthat follow from the
conservation of total four-momentum. We obtain
/% % * / Iyl gx
d (o efék?’f ¢ e¢%¢ £k
r{(}Mrm){p- p-K (p+me) bk pk
8(k - k')?
(p-k)p-K)’

and the squared matrix element, summed over initial and final electron spins, becomes

) . 8k - )2
2 M = G {32(6 ”(p-k)(p-m}

8,8’

(6.97)
=32(e-e)? +

4

(6.98)

Evaluating this in the laboratory frame, with &k = (w,0,0,w), ¥ = (W', k'), p = (m,,0),
we find k- k' = ww'(1 — cosf), p-k = mew, and p - k' = m.w', and so
4

Z M = ¢ |:32(€ -e) +

64(27)5m.pww’

S8ww' (1 — 0)?
ww'( 2cos ) } | (6.99)
m2

According to problem set 1, the scattering cross section in the laboratory frame is given
by

doley —e )  (2m)pWw w' 2

| M

= 6.100
dQ) Me +w —wcost w ( )
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This can be written more compactly by using the relation between w and w’ that is given by
the kinematics of the process; conservation of energy gives

Me +w=+/m2+ @) +w =/m2 +w?+ ()2 —2ww' cos + ' (6.101)
It follows that
(me +w —W')? =m2 +w? + (W)? — 2ww' cos b, (6.102)
or .
W =w = (6.103)

me + w(1 — cosf)

Alternatively, this can be written as a shift in wavelength,

1 1_1—0080

Using Eq. (6.103), the cross section formula (6.100) becomes
d N 3 e~ 2710)40 ()3
oty > ery) | GOy e (6.105)

dQ2 MW

Inserting the matrix element, using Eq. (6.103) again, and including a factor 1/2 for electron
spin averaging gives
do(e” +v,e—=e +7,€) o J*[w W

= =4+ = —244(e-€)?. 6.106
dQ dm? w? (W w +ale-€) ( )

This is the Klein-Nishina formula.

Frequently, the polarization of the initial-state photon is not known, while the polarization
of the final-state photon can be measured (for instance, in measuring the polarization of the
cosmic microwave background). In this case, we should average over the helicities of the
photons in the initial state, as explained in Sec. 6.6.1. Using Eq. (6.96) then gives

dofe”+v—e +7,e) o W [w o

i Bl Y o o\2
10 —4mg e w/—i— - Q(k e) . (6.107)

The scattered photon tends to be polarized perpendicular not only to the outgoing, but also
the incoming photon momentum, i.e. perpendicular to plane in which the scattering takes
place.

6.6.3 Unpolarized cross section and Thomson scattering

If the final photon polarization is not measured either, we sum over its possible polarizations.
Applying Eq. (6.96) (without the factor 1/2) for the final polarizations, we find

(6.108)

do(e”+v—e +7) o Wi w W
d 2m?2 W2 '

—,+——sin26’
w w
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where cosf = k - k.
In the non-relativistic limit, i.e. w < m,, Eq. (6.103) shows that w = w’, and the differential
cross section reduces to
do(e”+v—e +7v) o

e =5 (1+cos*f) . (6.109)

€
Performing the integration over df2, we obtain the Thomson cross section

Sma’

=37 (6.110)

ar

We conclude this section by pointing out a shortcut to the calculation of the unpolarized
cross section. As a consequence of gauge invariance, in calculating the squared matrix el-
ement summed over initial and / or final photon helicities, it is permissible to replace the
photon polarization sum (4.105) by an “effective” polarization sum

> et(p,o)e”(p.o) =~ (6.111)
o=%

Instead of proving this statement, we will just use it to calculate the unpolarized cross section
and verify that we obtain the same result. We start with the amplitude

ie?

M=—————c¢,(k,0)e (K, o
. 29"p" R 2 — R '
/ /
<ty )| ).
Taking the absolute value squared and using the relation (6.111), we obtain
¢! 2P R 20— K
M 2 Y o A .
o7 ‘ ¢ (6.113)
_ 2%Pu + Wk 2Py — WE Y,
xu(p,s)[ 2'k“ _“n PR E o s) .
Summing now also over initial and final electron spins leads to the trace
2P+ k2 — K
T ! e —
r{(p+m)[ p-k p-K
290 + %k 2900 — 1k
— 6.114
X(Pmee)[ 0k oK (6119

32 [p-k p-k o 1 1 WaR! 1\?
= 2 - _ - )
4p°p’°[p'k+p‘k’+ "\pk pw) T\ oW Pk
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Evaluating the dot products in the laboratory frame gives, as before, p- k = m.w and p- k' =
mew’, so the spin averaged squared matrix element becomes (in the frame where the electron
is initially at rest)

32¢* W w 11 11\’
- M|? = om. [ — — — L —— 6.115
ZI | 27r)64wwmp’0{ e (w w’) +me<w’ w) ]’ ( )
or, using Eq. (6.104),

2 2.2 /
—Z:|M|2 Ta [w + = —sin 91 (6.116)

(27)bww'm,p’° W’

Inserting this into Eq. (6.105), we recover the cross section (6.108).

7 Quantum chromodynamics
Short reminder: QED as gauge theory

We have seen in Sec. (4.6) that the description of massless spin-one particles (such as the
photon) requires the invariance of the action under local gauge transformations:

Ay (z) = Au(x) + 0,0(x), (7.1)
Y(z) — e @y (z) = () — iealz)p(z) + ... . (7.2)
The photon field must couple to a conserved fermion current. In total, the QED Lagrangian
is
. 1 ,
£:w(z(z9—eA—m)z/1—ZFWF“ . (7.3)
We can write this more neatly by introducing the covariant derivative
D, =0, +icA,. (7.4)
Then we can write Eq. (7.3) as
. 1 y
Ez@/}(@]D—m)l/z—é—lFWF“ . (7.5)

The combination D,1)(x) transforms linearly under local transformations, in the sense that
D,(z) = (0, + ieA,(x)) v ()
— [0 + ieA,(z) + ie(Dua(x))] e @y (z)
= e @[, +ieA,(x) +ie(dua(x)) — ie(Dpa(x))] ¥ (x)
— 716& .'L' #w( )

and so &Duw (and hence the Lagrangian (7.5)) is gauge invariant. More generally we can
construct gauge-invariant Lagrangians by replacing ordinary by covariant derivatives.

(7.6)
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7.1 Lie algebras and gauge invariance

Eqgs. (7.1) and (7.2) tell us that the QED Lagrangian in invariant under a local phase transfor-
mation of the matter fields. The gauge group of QED is U(1). The standard model of particle
physics uses a generalization of this construction.

We consider a number of fermion fields ¢, (z), with £ = 1,..., N, and require that the
Lagrangian be invariant under the local transformation

Yo(z) = U, (2)hm(x) , (7.7)

where U is an element of the special unitary group SU (V) (these are complex N x N matrices
that satisfy the conditions UTU = 1 and det(U) = 1). Any such matrix can be written as

U(z) = exp [ia®(z)T"], (7.8)

where the generators T satisfy the conditions (7%)" = T and Tr{7“} = 0. One can show
that the generators 7' form a Lie algebra with the commutation relations

[T, T°] = T°T" — T°T* = iC***T". (7.9)

The structure constants C°*° can be chosen completely antisymmetric and uniquely determine
the group structure.
By explicit calculation, it is straighforward to verify the Jacobi identity

0=[[T*,T",T + [[T°,T*],T"] + [[T", T°],T"] . (7.10)
Inserting Eq. (7.9) yields a further condition on the structure constants:
0= Cdabcvedc + Cdcacedb + C«dbcceda ] (711)
This allows us to define matrices
(t4),, = —iC™ (7.12)
that satisfy the conditions (7.9):
[t?‘l’ t?41| cd - (taA) ce (tlA) ed (tz) ce (t?“) ed
— _Caceobed + Cbcec«aed
— _Ceaccdeb + C«ecbc«dea (713)
— _Cebacdec — Cabecvecd
— Z'Cabe( . icecd) — ioabe (ti)cd )

This is called the adjoint representation of the Lie algebra.
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Example: Quarks and color SU (3)

Each quark appears in one of three indistinguishable “color” states (7, g, b). Hence, for each
quark we introduce a triplet of fields,

g(z) = | ¢°(z) | (7.14)

and require that the QCD Lagrangian be invariant under SU (3) rotation of the quark fields
() = U-q(z), (7.15)

with U € SU(3). If we further require that these rotations be a local (“gauge”) symmetry,
we can couple the quarks to massless spin-one particle (gluons), in analogy to QED.

7.2 The Lagrangian for QCD
The kinetic term for the quark fields,

‘CtextQC'DJcin = (j(ﬂf) (Za - mq)Q(x) ) (716)

contains a derivative. We want to replace this by a covariant derivative constructed such
that the Lagrangian is invariant under local SU (3) transformations.

How many generators does SU(3) have? 7% has N? complex, hence 2N? real parameters.
TT =T gives N? conditions, and Tr{T'} = 0 gives one further condition, so we have 2N? —
N? —1 = N? — 1 independent generators.

a 1

We can choose the eight Gell-Mann matrices as generators for SU(3): T = 5\, with

010 0 —i 0 1 0 0
M=[10 0], MN=|i 0 0f, NM=|0 -1 0],
000 0 0 0 0 0 0
001 00 —i
M=1[0o00], NX=100 0], (7.17)
1 00 ¢ 0
000 00 1 (L0 0
N=10o0 1], N=[0o0 —i], N=—|[01 0
010 0 ¢ O V3 00 -2
The normalization is chosen such that Tr{7T*T"*} = 15°.
Let’s first consider an infinitesimal gauge transformation:
qi(7) = qi(x) +ie"(2)Tq(x) - (7.18)
Then
0qi(xr) — 0qi(w) + ie"(x)T};0q;(x) + 0" (x) T};q;() . (7.19)
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To construct an invariant Lagrangian we need to introduce a field whose transformation
property allows to cancel the last term. Since €%(z) carries an adjoint index a, we suspect
that the field transforms with ¢%. We write tentatively G%(z) — G () + 0G%,(v), with

6G(x) = Ouc®(x) + ie"(x) (t%) G4 (x) = Due(x) + i€ (x) fP*° Gl (x) . (7.20)
Using this, we can again define a covariant derivative, acting on quark fields:

(Duq(x)), = Ougi(x) — iG) () Tq;(x) . (7.21)
It transforms as
3(Dua(x)), = 9 (i€"(2) T}, (x))
- i[ﬁueb(x) + fbeed (x )GC( )} q; () (7.22)
— G () TR T i€ ()5 ()
Now we use
—if TG = AT = TaT - T (7.23)
and renaming the indices, we obtain
§(Dug(x)), = i€ (x)T};0uq;(x) + € ()T T, G5 () g5 (x)
= i€ ()T [0k0ug; () — TGy () g ()] (7.24)
= i€’ ()T, [ Dug ()],

ie. D,q(z) transforms like ¢(x). The finite gauge transformations are

q(z) = U(z)q(z), (7.25)
Dug(z) = U(x)Duq(z), (7.26)
Go(x)T* — U(x)Gs(x)TUT(z) — i(9,U (2))U' (2), (7.27)

where, as always, U (z) = exp[ia®(z)T"].

Unfortunately we are not yet finished, as the terms with derivatives acting on the gluon
fields are still missing. The term 0,,0,€*(x) cancels in the transformation of the antisymmetric
combination 9,G}, — 0,GY; however, the second terms in Eq. (7.20) still contribute.

We start with the commutator of two covariant derivatives acting of a quark field,

([Dy, DuJa(@)); = (95 — iGRTH) (9,05 — Gy Thy Ja(x) — (k> v)
= 0,0,q; — 1(0,G0) Thar — iGLTHDuqr — iGYT0,q

— GUGI T Thaqe — (b <> v) (7.28)
= —iT5(0,Gy — 0,,Gu) qr — fachZGb
= _ZjﬁlalchZVQR )
with the gluon field strength tensor
GL, = 0.G, — 0.G), + f“bCGZGi . (7.29)
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The transformation properties ¢ — Uq and [D,,, D,|¢ — U[D,, D,]q = U[D,, D,|UUq
finally imply
TGy, — UT*GoUT . (7.30)
Even though G7,, is not gauge invariant itself, we can now easily construct a Lorentz- and
gauge-invariant term:
a a v 1 a a (v

Te{T*GS, T°G""} = 3G G (7.31)
Conventially one makes the gauge coupling explicit by rescaling 7% — g, 7%, f%¢ — g, fote.
In this way, we have now found all ingredients of the QCD Lagrangian,

N 1 a a v
Loc = (@) (i) = mg)a(x) — 3G, (2)G* (), (732)
with the covariant derivative
D, =0, —igT"G} (), (7.33)
and the field strength tensor
G, = 0,G, — 0.G), + gsfachZGf/ . (7.34)

7.3 The Feynman rules for QCD

Most of the QCD Feynman rules are a simple generalization of the rules for QED. Dropping
the spinor index and displaying the color index instead, we have the following factors for
external lines

incoming quark (color index 7): _— : ?(L;(:)’;Z) , (7.35)
incoming antiquark: — : qz;(f:)’ 372) , (7.36)
outgoing quark: &———— 1{;(:)’372) : (7.37)
outgoing antiquark: e 1(};(:)’372) ) (7.38)
incoming gluon: ! s : % , (7.39)
outgoing gluon: ewwsTTTS : % , (7.40)
as well as the quark-gluon vertex
J
i (7.41)
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Quark propagator:

q —

le— o) . i ) (7.42)
(2m)% ¢ — m? + ie
Gluon propagator:
q— .
K, a v,b 1 — V(Sab
®TTTTTTHTO® Tl (7.43)

:(27'(')4 q* + i€

In QCD, there are additional interaction terms involving three and four gluon fields, re-
spectively. Their Feynman rules can be most conveniently derived using the path integral
formalism. As an example, we will show the “conventional” derivation of the rule for the
three-gluon vertex. The requisite term in the QCD Lagrangian is

Locp D —inw(x)GaW(x)
> —1(9,G8 — QVGZ)gSfabCG“bG”C — }lgsfachZGf, ("G — 8”G’“) (7.44)
— _gsfabc(auGZ) GubGl/c )

We consider the following, unphysical “scattering process”
The corresponding scattering amplitude is

— 2% MMk +p + q)

[

—F— | \ (7.45)

= —i—z’/d4x<0| — g [ (GGG al (k,r, a)a (p, s,b)al (g, t,c)[0) .

Only the terms in the gluon fields containing annihilation operators give a non-zero con-
tribution; they supply a factor e~**. Therefore, the derivative yields a factor —i/y. Next,
we need to calculate the contractions; there are 3! different ones. The contraction indicated
above gives

— 2itM&* (k+p+q)

: : k,r.d) eX(p, s, e)
= —ig, d4$ def —ik 6/{( v ' (Sad i) 6€b
g / fE i) (2m)32V2K0 (2m)3/2,/2p0

SRS, RV
(27)3/2 /240

= — 95" kAnun0, 6%

(7.46)
et(k,r,a)e’ (p,s,b)e’(q,t,c)
(27)3/20/2K0(27)3/2/2p0 (27)3/2 1/ 2¢°
=)

2m)*'5(k+p+q).

The factor (*) belongs to the Feynman rules for the external lines. In total, this contraction
then gives a contribution to the Feynman rule of the three-vertex of

- —gsf“bckl,nup(Zﬂ)‘lé(k +p+q). (7.47)

59



The remaining five contractions yield similar contributions, with permuted Lorentz and color
indices. Note that £ is antisymmetric — sign changes!

By convention one represents by the same Feynman diagram all contributions that differ
only by a permutation of indices. The Feynman rule for the three-gluon vertex is therefore

ft,a

2
v,b Vq\

: gsfabc [nuu(k - p)p + va(p - q)u + 77,0#(‘1 - k),,] (27)454(k +p+q).

p,c

(7.48)
Similarly, one finds for the four-gluon vertex
—igs(2m)* 0 (k +p+q+0)
X[ fabe pede (o — o) 7.49)

+ facefbde (,r//wnpo . 77,u,ch]l/p)
+ fade]cbce (nuunpa . nupnua)} )

NB: For a consistent quantization of QCD one should also include in the Lagrangian a
gauge-fixing term, as well as “Faddeev-Popov ghosts”.

7.4 Asymptotic freedom and confinement

You may have heard that the strong coupling constant oy = g2 /47 is “running”, i.e. it is a
function of the energy scale p: o = a(p). What is the meaning of this scale dependence?

In QED and QCD, the couplings and masses cannot be predicted by the theory; they must
be determined experimentally, e.g. by measuring scattering cross sections. The divergences
that appear in calculations of higher-order terms in the perturbation series require the renor-
malization of the theory. One can show that physical observables (such as scattering cross
sections) do not depend on the renormalization procedure (“renormalization scheme”); the
values for the masses and coupling, however, are scheme dependent. They are “pseudo ob-
servables”; their values are not physical. One can use this dependence to improve the con-
vergence of the perturbation series: choose a scheme in which the couplings are small!

If physics at two (or several) different energy scales contributes to a given process, then
radiative corrections are typically enhanced by logarithms of the ratios of the energy scales.
E.g. log(my/My ) in B physics. One can sum part of these enhanced corrections to all
orders in perturbation theory; this leads to the concept of running couplings and masses
(“renormalization-group improved perturbation theory”).
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Example: Running of the strong coupling constant

ags(M
as(p) = ( i,) —, (7.50)
1 + &S(Mz)g 10g M_Z
with the one-loop coefficient of the QCD beta function
Bo=11—2N;. (7.51)

Here, Ny counts the number of fermions. If o;(My) is extracted from data, one can calculate
o) at any other scale (as long as perturbation theory makes sense). Physical observables
do not depend on p!

7.5 Production of quark - antiquark pairs

We consider the process eTe™ — ¢q. This is a simple generalization of ete™ — p*p~. The
corresponding Feynman diagram is

— i

e q

et q'

where 7 = 1, 2, 3 is a color index. We can obtain the cross section from Eq. (6.29) by replacing
the muon charge —e by the electric charges of the quarks, Q e (with Q, = Q. = Q; = 2/3,
Q4 = Qs = Q, = —1/3), and summing over the three color states of the quarks. That gives,
in the high-energy limit,

olete” — qq) °=*° 3( Z Q?)O‘O , (7.52)
where dra?
op=c(ete” = putu”) = 7;)@ : (7.53)
s

The sum in Eq. (7.52) runs over all quark flavors that are kinematically accessible (in depen-
dence on the center-of-mass energy +/s). The quarks in the final state will hadronize and
form two jets of hadrons, with an angular dependence given approximately by Eq. (6.28).

In the high-energy limit, the ratio

o(eTe” — hadrons)

R pr—
olete = ptu)

(7.54)

is proportional to (>, @?) N,; that provides an experimental verification of N, = 3. See
Fig. 5
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Figure 5: Cross section o(ete™ — hadrons) and R ratio. From Ref. [6].

7.6 Deep-inelastic scattering

The next process we would like to consider is electron-proton scattering at large momentum
transfer:
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The momentum transfer ¢ is space-like,

(k—K)? =[(k,0,0,k) — (k,k))* = (0, =Ky, —k,, k — k.)? (7.55)

= —|k|> — k* + 2k® cos 0 = 2k*(cos — 1) <0, '
so one frequently defines Q* = —¢*. We see that Q* can be determined by measuring the
electron momentum and energy.

We consider the process in the high-energy limit in the c.m.s. The proton carries a light-
like momentum along the collision axis. In the “parton picture” we consider the proton to
be a loosely bound collection of massless constituents (“partons”); each of them carries a
fraction of the proton momentum P, and we write

p=£pP, (7.56)

with £ € [0, 1]. The electron-proton scattering cross section is then given by the electron-
quark cross section, where p is given by Eq. (7.56), multiplied by the probability that the
quark carries the momentum fraction &, integrated over £, and summed over the partons.
The probability that the proton contains a parton of type ¢ and carries a fraction of momen-
tum between £ and £ + d¢ is given by the non-perturbative, universal parton distributions
functions (PDF) f¢(£)d€. The cross section is then given, in terms of the “partonic” cross
section, by

oleTp—e X) /d{fo ole qr > e qy). (7.57)

The cross section for the partonic process can be obtained from (e~ = — e ). Using
Eq. (6.79) we find (use { = (k — k')? = —2k - k' = —2k?(1 — cos#), and so df = 2k*d cos 0)

(7.58)

do(e”qr — e qy) B 277042ng 5% 4+ 2
dt & 2 |’

where t etc. are the Mandelstam variables for the partonic process. Using t = (k — k')> =
—?=Q%*and 5= (p+k)? =2 k=26P -k =&P+k)? =¢s,aswellas 4 = —5 — 1,
we obtain finally

do (e - X) Q?
ole Zc;e /deff o Q4 {H (1—5—8) }0@3—@2)- (7.59)

The theta function implements the kinematic restriction § > |{| (note that, for massless
partons and in the C.M.S., Eq. (7.55) reads t = %é(cos 0 —1)).

Interestingly, it is sufficient to measure the electron momentum in order to determine the
¢ dependence. Since the partons have negligible masses, we have

0=p+q9)°=2p-q+¢ =2P -q¢—Q°, (7.60)
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and so, defining the kinematic quantity

Q*
= 7.61
X 2P . q ’ ( )
we have simply
r=¢. (7.62)

Apart from the factor [1 + (1 — Q?/xs)?]/Q* that characterizes the underlying partonic
process, Eq. (7.59) does not depend on Q?; this is called Bjorken scaling.
It is useful to introduce dimensionless variables. In addition to x we define

2P-q 2P -q
= = 7.63
YToaP T s (7.6%)
In the rest system of the proton this evaluates to
0
q
Y=10- (7.64)

i.e. the fraction of the electron energy that is transferred to the proton. We can express y in
terms of partonic Mandelstam variables,
2p-(k—FK) s+a

= = 7.65

such that

w |

=y—1. (7.66)

Eq. (7.64) implies 0 < y < 1. Now we use

rys = Q°, (7.67)
and hence
5 2 dQ?
df dQ =dv dQ = dwd—dy =2xSs d:L‘dy, (7.68)
Yy
and obtain » ( X) .
olep—e o 9 2TQ"S 2
dedy Xf: vfy@)Q, =g 1+ (1-v)]. (7.69)

The factor [1 + (1 — y) 2} is characteristic for scattering on partons of spin 1/2 (“Callan-Gross
relation”).

7.7 The parton distribution functions

Electron-proton scattering is not sufficient to determine the individual parton distribution
functions (see Eq. (7.69)). Deep-inelastic neutrino-proton scattering gives further informa-
tion. The following processes contribute:
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i pt o ut
v v v v
%4
u d d d
d U i (7

For instance, in the limit that the momentum transfer is much smaller than the W mass, the
first diagrams gives

do(vd - pou) g A §24 _ G_2F7 (7.70)
dt 2(4m)28% My, T
and the second diagram
do(vu — ptd) gt W G 5

= = =—(1- . 7.71
i dampE ML, o Y (7.71)

Following the same line of reasoning as before, we find

do(vp — u=X) Gis

( - X) = L [zfalz) + 2 fa(z)(1—y)?], (7.72)

dxdy

and
Ao (v +X G2
U(szx;yu ) - - *eful@)(1 - y)? + afi(x)] . (7.73)

The measurement of a suitable combination of scattering processes allows for the determi-
nation of the parton distribution functions. See Fig. 6.

To leading order in o the distributions function are independent of (9?; QCD corrections
lead to a small, logarithmic dependence on Q?, f¢(z) — fr(z, Q?).

The PDFs satisfy several conditions. Since p ~ [uud|, we have

1

/ﬁﬂnuw—hmn=2, (7.74)
and .
/mmw—mmzL (7.75)

In the limit of exact isospin symmetry (u <> d) we have for the neutron PDFs

fi@) = falx),  fi(e) = fulz),  fi(2) = falx), ... (7.76)

(in practice, these relations are valid up to percent corrections). The following relations are
exactly valid:

ff(x) :fzI('T)v fg($) = fu(x)a (7-77)
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Figure 6: Plot of the CTEQ parton distribution functions, evaluated for Q* = 16 GeV>.

The total proton momentum must be carried by all partons, therefore

1

/ doalfule) + fale) + fal) + fa() + fo(0)] = 1. (7.78)

0

Measurements tell us that about half of the proton momentum is carried by neutral partons

(gluons).

7.8 Hadron collision processes

If in a collision of hadrons a large momentum perpendicular to the collision axis is transferred
(“high-pr”), we can predict the process perturbatively.

7.8.1 Lepton pair production (“Drell-Yan”)

We expect a schematic form of the scattering cross section

a(p(Py) + p(P2) = 740~ 4+ X)

1 1
:/diCl
0

(7.79)

o\

dry Y fr(an) fi(wa)o(gr(@iP) + qp(waPy) — £707).
1
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T1p1  T2pP2

The underlying partonic process is g7 — ¢*¢~. We can read off the partonic cross section
from Egs. (7.52) and (7.53) (averaging rather than summing of initial color states gives the
relative factor 1/9):

4’
35
Measurement of the lepton momenta determines the four-momentum of the virtual photon.

We can even determine x1, xo! Let

1
olardy = £707) = 305 (7.80)

M? =¢%. (7.81)

We parameterize the component ¢°, measured in the proton-proton C.M.S., in terms of the
rapidity Y (cf. Eq. (4.39); there, Y was called 7):

¢ = McoshY . (7.82)

The momenta in the proton-proton C.M.S. are (s = 4E?)

P =(E,0,0,F), P,=(FE,0,0,—F), (7.83)
and so
q=a1P + 1P = ((x1 + 22)E, 0,0, (z; — 22)E) . (7.84)
Using this, we find
M? = 4z 29E% = 21295, (7.85)
as well as
T+ o 1 T T2
hYy = = - — — 7.86
cos SN 2(,/@-1—“@), ( )
and consequently
expY = iy (7.87)
T

This allows us to express x; and x5 in terms of M and Y:

M M
T = —e’ | Ty =—=e ¥ . (7.88)

Vs Vs

In order to rewrite the integral in Eq. (7.79), we need the Jacobi determinant (Y = 1 log(z1/x5))

O(M?Y M?
O(z1, x2) 271 2z 122
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In total, we get (5§ = ¢*> = M?)

d? — (T + X A
a(pde2 G ) _ ; ff(:zfl)ff(am)ch97T—]\j2 . (7.90)

7.8.2 General pair production

If we are interested also in the angular distribution of the final state, we can derive a triply dif-
ferential cross section. Allowing also for hadrons in the final state, the general cross section
is given by

Bo(pp = 3+4+ X) do(1+2—3+4)

= = x x = 7.91

Trrdiadi fi(z1) fa(x2) yr (7.91)

As for Drell-Yan, we can express x1, 2, { in terms of observable parameters. We choose

the common transverse momentum p; = |p,| of the final-state partons® as well as their
longitudinal rapidities ys, y4, defined by

E; = p, coshy;, pi)| = p1sinhy; . (7.92)

The longitudinal rapidities parameterize the boost from the frame where the partons have
vanishing longitudinal momentum. They add under Lorentz boosts along the beam axis,
while the transverse momentum remains invariant under such a boost.

Let us use an asterisk to denote quantities in the partonic C.M.S. In this frame, the mo-
mentum of 3 is given by

D3|« = %\/gcos 0, , D3 s = % 5sinf, , (7.93)
in terms of the partonic scattering angle 6,, while ps, = —ps.. Moreover, in the C.M.S.
we must have ys3. = —y4. = ¥.. Since rapidities add under successive boosts, we see that

y3 =Y +y,andy, =Y — y,, and so

Yo = 3(ys — ya) Y =1(ys +ya)- (7.94)

SNote that, to leading order in QCD, the initial partons have parallel momentum, so the transverse momenta
of the final-state partons must be equal and opposite, while their longitudinal momenta are not constrained.
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To determine the scattering angle, note that the energies of the final-state partons in their
C.MS.is given by F, = %\/E = p, coshy,, or (since p3 | . = p, and using Eq. (7.93))
1

coshy, = . (7.95)

Therefore, we can express the partonic Mandelstam variables as

4 2
§ = 4p® cosh?y, = — ];L (7.96)
sin” v,
and®
t= %é(l — cos0*) = —2p?% coshy,.e ¥ . (7.97)

Using Eq. (7.88) and evaluating the Lorentz-invariant M? = § in the partonic C.M.S., this
gives
2p1 % 2p1 vy
r1 = —= coshy,e’ | Ty = —= coshy,e™ " . 7.98
1= Y 2= Y (7.98)
Finally, to convert from the set of variables x;, x, { to the measurable quantities ¥, yo,
p 1, we need the Jacobian’

| B mewr e
a(x17 x27 t) P\L/g —ys+Y pi Ys—Y 2 —2yx
_ = = 756 __86 —pie
O(ys, ya,pr) |2 coshy,.e¥ 2 coshy,e™Y —4 hy,.e™¥
= Ysl 75 coshy.e P cosnyye
P’ eV —e Y e
1 —Yx * - *
=2"=coshy, le™¥ —e¥ —e W (7.99)
1 1 —2e Y

3
=224 cosh Y| (e7V + 7)) — (—e7V —er) — 2(e7 W — e¥r)
s

3 3 2pJ_§

S

= 2L cosh Yu(26¥ + 2e7Y) = 8L cosh? Yu =
s s

Thus, we can write Eq. (7.91) as

do(pp = 3+ 4+ X)

2p 5do(1+2—3+4)
dysdyadp '

dt

= fl(xl)f2(1’2)

(7.100)
Using § = x1225 and d*p, = 2mp . dp, (using rotational symmetry about the beam axis), we
find the final form of the cross section for pair production in proton-proton collisions,

d*o(pp = 3+ 4+ X)
dysdyad®p |

_ mfl(xl)m(m)%da(l - 2(; 3+4) (7.101)

using 1 —cos =1 — \/(cosh2 —1)/ cosh? = (cosh — sinh)/ cosh
"We have Ox1/0y34 = p1//s(£sinhy, + coshy.)eY, 0x2/0yss = pi/+/s(E£sinhy, — coshy,)e Y,
Ot/dys 4 = Fp1 /+/s(sinhy, — coshy,)e ¥+,
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Example: Jet pair production at the LHC

P P
Lo X

7.9 Elastic electron-proton scattering and form factors

X

Now we want to calculate the scattering of electrons on protons at very low energies. Is the
situation hopeless?
If we naively replace the external quark states by proton states in the processe™q — e~ ¢,

e €

q p
we obtain the following transition matrix element:
— 2 Mo (k+p— Kk —p—)
— (_2—21)2 / d*zd*y(0la(k’,s', e )a(p’, 7", p)
x *T{(ede + QsqrAqy) (z)(ede + QrgrAqr) (y)}
x al(k,s,e”)al(p,r,p)|0).

We can calculate the contractions of the electron and photon fields in the usual way; summing
over [ = u,d, s, this gives

(7.102)

—2itM&*(k+p—K —p)
1€

= u(k', s")yu(k, 5)

(2m)?
X / dxdty /

(7.103)

) )

diq 1
(2m)* ¢
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with
THx) = eQss(x)y s () . (7.104)
7

The proton matrix element must be evaluated to all orders in «! Translational invariance
implies

@, | T (@), r) = e o | TH0) p, ) - (7.105)
Current conservation then requires
0= (p =)@ rIT"O)lp,7) . (7.106)
Setting 1 = 0 in Eq. (7.105), integrating over z, and recalling Eq. (4.78) gives
@,'Qlp,r) = (2m)°6° (' — p) (@, '|T°(0)Ip, 7). (7.107)
The electric charge of the proton is +e, so
01T Olp. 1) = 55500 (7.108)

Lorentz covariance gives further constraints on the form of the matrix element. In general,
the matrix element is of the form

(', 7*(0)p.r) =

T W p)ulp, ), (7.109)
where ['*(p/,p) is a 4 X 4 matrix, and u(p,r) the proton spinor function. One can de-
compose the matrix ['*(p', p) in terms of the basis (4.25), with the following contributions:
Scalar: pH, p'*
Vector: e o, ', M pty
Tensor: [y, 1% ), [p 1 I ¥
Axial vector: 57,7 p,pl,
with coefficients that depend on the single Lorentz scalar p - p’ (or, alternatively, on ¢ =
(p' — p)* = 2m} — 2p - p'). Using the Dirac equations

a(p/a ’l”/) (p/ - mp) - 07 (% - mp)u(pa T) - 07 (7110)
we can eliminate all terms apart from p#, p’*, and * (exercise!), and we obtain

u(p’, ") (v, p)u(p, )

it o lwmey @R o il =) (7.111)
=l |y + L G + ) |atpr).

Since J#(0) is Hermitian, we have
@, | T*0)p, )" = (p,r|T*(0)p',r') = alp, r)T*(p,p")u@, ), (7.112)

as well as

', 70)p, ) = (@', )T (W pulp,7))" = A, ) T (B, )Y ul@, 1), (7.113)
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and it follows that
YT ) =TH(p, ) . (7.114)

This implies that F'(¢*), G(¢*), and H (¢?) are real functions of ¢*> = (p' —p)* = 2m2 —2p-p.
The current conservation condition (7.106) is automatically satisfied for the first two terms
on the right side of Eq. (7.111) since (use the Dirac equation)

(p=0)u" = —mp) = (p —my), (7.115)
(p—P)ulp+0) =p*—p*=0. (7.116)

Since, in general, (p — p’)? # 0, we must have H(¢*) = 0.
In the limit p — p’ we obtain

a(p, ") |1 F(0) + 226 (0) | up, r) (7.117)

.17 0).7) = o "

Now we use {7",p —m,} = 2p" — 2m,y*, and hence®

o o
alp, )y ulp,r) = alp, ' yulp,r) 2 s, (7.119)
my P
This gives
e pH
"NTH0 = ———0,,|F(0)+ G(0)], 7.120
.11 7HO0)p.7) = oo [F(0) + G(0)] (7.120)
Comparing with (7.108) gives the normalization condition
F(0)+G(0)=1. (7.121)
Frequently, one writes the vertex function in the form
— / / / / / 2 7:O-Myql/ 2
al’, )W, p)ulp,r) = ul@', 1) | F() + — = E(g) [ulp, 7). (7.122)

where ¢ = p' — p and 0" = i[y",~"]/2. One can use Gordon’s identity (exercise!)

a(p’, ")y u(p,r) = u@', 1) Fp ;rﬂf ) + i02u;qy}u(p, r), (7.123)

to show that
Fi(¢?) = F(¢*) + G(¢%), (7.124)
Fy(q*) = =G(¢%). (7.125)

8In the last step, we used

a(p)u(p) = =u(0)T DT (A)Y*D(A)u(0) = ~u(0) 1 u(0) = =

= (7.118)
p p p
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The normalization condition is now
Fi(0)=1. (7.126)

The expressions (7.111) or (7.122) can be used in Eq. (7.103) in order to calculate the matrix
element. The form factors Fy, F5 (or F', G) be be determined experimentally (exercise!).
To understand the physics better, let’s rewrite (7.111) in a third way:

Y ;Y
a(@', T, p)ulp,r) = u(@', ') %Fl(ff) + (B + Fz(f))] u(p,7).
(7.127)
Consider the nonrelativistic limit |p|, [p|’ < m. The first term in the brackets in Eq. (7.127)
is spin independent and leads to Coulomb scattering. The condition (7.126) ensures that the
effective proton charge in this limit is +e. The second term is spin dependent and corresponds
(in the NR limit) to the magnetic moment of the fermion.
Now we consider an interaction with a classical static field Ay(z) = (0, A(z)). The inter-
action Hamiltonian is

H= / d'z A(z)J. (). (7.128)

Its matrix element is
W Hlp.r) = [ e Alfa)e i )T (Fy(q?) + Fal?))up, )
— /d4x efiq-maVAéil(x) (271-) ( ) ( ( ) —+ FQ( ))u( ,T’),

(7.129)

where we integrated by parts and used ¢” = i9”e~"¢*. Consider now the contributions with

pw=1v=2(@ndpu=2v=1). We have

30
012 = —021 = <% 03) ) (7.130)

and so (since the leading term in the interaction is linear in the momentum transfer, to obtain
the overall leading term we can set the momenta to zero in the external spinor functions, such
that effectively only two components contribute)

010 A + 030" A2 = 0 (92 A' — 9 A?) = 0 (V x A)° = 0° B, (7.131)

with B = V x A. If the magnetic field is nearly homogeneous, we can pull it out of the
integral. We then see that the matrix element contains a term proportional to

“ B-o(F, + F,)(0)=B-p,, (7.132)
myp

where

e
Ly = Gp 5 s, (7.133)
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with s = 30 the spin operator for the proton and the Landé g factor
gp = 2[F1(0) + F»(0)] = 2+ 2F5(0).

Measurements give g, ~ 2.79.

(7.134)

For elementary particles like the electron or the muon, F(¢*) = 1, F5(0?) = 0 to leading
order in QED. Higher-order contribution yield corrections that are (mostly) calculable in
perturbation theory. The most famous example is the anomalous magnetic moment of the

muon that has recently been measured very precisely at Fermilab.

A model for the form factor

Consider a spherically symmetric, exponentially falling charge distribution

p(?”) - pOQ_W )
with the normalization condition
1= [ & (r)y=4 2d _’“—S—W
= T p(r) = 4mpPy r-are _“37

0
so po = p3/8m. Taking the Fourier transform gives the form factor
2y _ 1 _
(1+¢*/12)

The mean square radius of the charge distribution is

r 12
(r?) = 47rp0/r2d7"7°261“‘ - _967?0 =,
/ 7 7
so we have )
F(¢*) = =1-3r)¢+....

2
1+ 550)g?)
In relativistic electron-nucleon scattering one typically uses the Sachs form factors
q 2
——F:
4m?\] 2(q ) bl
Gu(d®) = Fi(@®) + Fo(g?) .

Ge(¢®) = Fi(¢®) +

8 Spontaneous symmetry breaking

(7.135)

(7.136)

(7.137)

(7.138)

(7.139)

(7.140)

(7.141)

Spontaneously broken symmetries are symmetries of the underlying theory (the Lagrangian)

that are not realized as symmetry transformations on the physical states.
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8.1 Degenerate vacua

SSB is always associated with a degeneracy of the vacuum state (e.g. ferromagnetism).
As an example, consider the Lagragian
L =30.00"¢ — gm*¢* = V(9), (8.1)

where V' is an even function of ¢. If ¢(z) = ¢ is a minimum of V' (vacuum state), then so is
¢(x) = —¢; we have two degenerate vacua, |[VAC, £). Is the symmetry really broken? The
symmetry of the Lagrangian under ¢ — —¢ implies

(VAC, +|H|VAC, +) = (VAC, —|H|VAC, —) = a, (8.2)
(VAC, +|H|VAC, —) = (VAC, —|H|VAC, +) = b. (8.3)

The relevant part of the Hamiltonian can therefore be written

a b
H:(bJ, (3.49)

with eigenstates [VAC, +) £ |VAC, —) and corresponding energies a £ |b|. These vacuum
states are symmetric.

For large volumina, however, the transition matrix elements b are suppressed (tunneling),
and the system will be in one of the non-symmetric superpositions |[VAC, +) or [VAC, —).

8.2 Spontaneously broken global symmetries

We want to prove Goldstone’s theorem: For each spontaneously broken continuous symme-
try, the spectrum of physical states contains a massless particle with spin zero (a “Nambu-
Goldstone boson”; nobel prize 2008).

Consider a theory of N real scalar fields ¢,,(z), withn = 1,..., N. The Lagrangian is

L=1>0,6.0"¢0—V(9), (8.5)
invariant under some symmetry with infinitesimal transformation
On(r) = Gn() + i€ Y tumm(z), (8.6)
where it,,, is a real matrix. The potential must be invariant:
oV (9)
——tum®m = 0. 8.7
;;%n 0 (8.7)

Differentiating with respect to ¢, yields

Vv (¢) IV () -
; 5o, te + % 8¢ga¢nt”m¢m =0. (8.8)
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The first term vanishes at the minimum, gb( ) = ¢, 50

tm®m = 0. (8.9)

Z a¢€a¢n b=

The second derivative of the potentlal gives the masses. If the symmetry is spontaneously
broken, then ) t,,¢, # 0 is an eigenvector of the mass matrix with eigenvalue zero.
There is a massless boson for each “broken” symmetry generator.

8.2.1 Example: the linear sigma model

Consider again N real scalar fields, with Lagrangian
2 A )
=122 0600 b0+ 5D 0u60 = (D dudn)”. (8.10)

The Lagrangian is invariant under the group O(NN) of real rotations of the fields. If 1% < 0,
the minimum of the potential

2
A 2
isat ¢ =0, which is invariant under O(N) rotations. If ? > 0, however, the minimum is at
¢(z) = ¢, with
oy
=, 8.12
Zn: %= (8.12)
The (tree-level) mass matrix is then given by
V(9) _ N
; — 26 + Aopm 7+ 2XPnbm = 220 - 8.13
= B A, H Ot ;cbﬁ Ontom = 20000 (8.13)
It has an eigenvector ¢ with non-vanishing eigenvalue
m? =2)Y ¢ =2’ (8.14)
¢

and N — 1 eigenvectors, orthogonal to ¢, with eigenvalue zero. The “symmetry breaking
pattern” is O(NN) — O(N — 1) (the latter group leaves the vacuum invariant), so there are

INN-1)—3(N-1)(N-2)=N-1 (8.15)
Goldstone bosons. We can choose “coordinates” in field space such that
¢ =(0,0,...,0,v), (8.16)
withv = p/ V), and define shifted fields
¢(z) = (w(x), v+ o(x)). (8.17)
The Lagrangian (8.10) is then
£ = 4(0m) 4 5(040)" — 5 (2)* VMo Vs S0t~ o (n%) . (519

Note that the NV — 1 fields 7 are massless. For N = 4, this leads to a model of pions.
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8.2.2 Chiral symmetry of QCD
Consider QCD with two quark flavors (up and down) in the massless limit:
L = wilpu + dilpd = upilPpuy, + ugilPug + (v — d). (8.19)

This Lagrangian is invariant under the global chiral symmetry SU(2); x SU(2)r x U(1) x
U(1)a. To see this, we define doublets
u
Q= ( d) : (8.20)

L=QriQr + QrilpQr, (8.21)

and we see that the Lagrangian is invariant under the rotations Q); — U.Qr, Qr — UrQp,
with U, € SU(2)r, Ug € SU(2)g. Furthermore, the Lagrangian is invariant under ¢) —
e"*Q. For e""5inlU(1) 4 we have

gilDq = q'1%ipg — q'e i Pe' P q = g'y i Pe e g = GilDq . (8.22)

then we can write

However, the full symmetry is not realized:
1. U(1): baryon number conservation; .J* = Qy*Q
2. Uy, = Ug € SU(2), x SU(2)p: isospin (approximate); J** = 1Qv"0Q
3. U(1) is broken by quantum effects (“anomalies”)
4. the non-vectorial part of SU(2);, x SU(2)g is spontaneously broken.
The pions can be interpreted as the Goldstone bosons associated with the spontaneously

broken axial symmetry:.

8.3 Spontaneously broken local symmetries

The Goldstone bosons are unphysical if SSB occurs in a theory with a local gauge symmetry;
instead, the corresponding gauge bosons become massive. This is the Higgs mechanism.

8.3.1 Example: Abelian Higgs mechanism

We consider a complex scalar field with self couplings and electromagnetic interactions,
L= —1FuF" + Dyl = V(9), (8.23)

where, as usual, D,, = 0, + ieA,. Assume that the Lagrangian is invariant under the local
U(1) transformation

6) = Do(a),  Ae) > Aule) — 1 0,(0). (820
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For instance, if we choose

V(g) = —p’¢" o+ = (cb ¢)”, (8.25)

with 2 > 0, we find a non-vanishing vacuum expectation value (“vev”) for ¢ (cf. the lin-
ear sigma model), and the U(1) symmetry is spontaneously broken. The minimum of the

potential is at |¢p| = \/u?/\, e.g.

(Bo=0 =1/~ (8.26)

Again, we expand the Lagrangian about ¢. For this, we decompose ¢ into its real and imag-
inary parts,

¢(x) = ¢+

Then the potential becomes

( 1) +iga(x)) - (8.27)

1 1
V() =~ 4 Lot + O(eh). (8.28)
The field ¢; has mass 2u2; the field ¢, is massless (Goldstone boson). The kinetic term be-

comes

1D,¢|* = (D,¢) D¢ = (0, — ieA,) ¢ (9, + ieA,) ¢
1 - 1 _
= %( M¢1) (au¢2) + Eau(¢1 — Z¢2)Z€Au¢ — Eaﬂ(¢l -+ Z¢2)Z€AM¢ (829)

+ e*¢® A, A" + (cubic and quartic terms)
- %((9“@)2 + %(@L@)Q + \/5697”4#6“(/52 + %m?AAuAH +

We have a photon-Goldstone coupling oc /2u2/)e and a photon mass term with m? =
e2u /.

NB: The Goldstone boson is unphysical and can be eliminated by a suitable choice of gauge
(“unitarity gauge”): choose ¢’*(®) such that ¢(z) is real at each point .. The degree of freedom
of the original field ¢, appears as the third degree of freedom for the now massive photon
(three spin-z components vs. two helicity states!). (In abhorrent language, one often says
that the photon became massive by eating the Goldstone boson.)

8.3.2 Example: non-Abelian Higgs mechanism

We now consider a triplet of SU(2) gauge fields, A%, and a SU(2) doublet of complex scalar
fields, ®. The covariant derivative acting on P is

D,® = 9,® — igALr'®, (8.30)
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where 7% = 0%/2. If ¢ obtains a vev, we can perform a SU(2) rotation to bring it into the

form .
(@) = —= (0) : (8.31)

The kinetic term in the Lagrangian then yields a mass term

D8P 5 20,07t (0) gt = TV g g 8.32
u Dig o)t ) AL =5 A , (8.32)
with equal mass m4 = gv/2 for all three gauge bosons. None of the three generators leaves
the vacuum invariant.

9 The weak interaction

In order to describe the weak interaction, we extend our previous example by a U(1) sym-
metry; hence, the gauge symmetry is SU(2) x U(1). We assign the U(1) charge +1/2 to the
scalar field; in total,

O — T2 (9.1)

Assume that again ® obtains a vev that can be rotated into the form

(@) = - (0) ; (9.2)

this is invariant under a gauge transformation with generator

10 10 10
<0 0>:%<0 —1)+%(0 1) (0:3)

(this corresponds to a1 = as = 0, ag = [3). Thus, we expect one massless and three massive
gauge bosons.

9.1 Weak gauge-boson masses

The covariant derivative of the scalar is now
D,® =0, — igAZT“(ID — %g’Bu(I), (9.4)

where A}, and B, are the SU(2) and U(1) gauge fields, respectively. The kinetic term con-
tains the mass terms:

1 a__a O
|D,®* D E(O,U)(gAuT + %g’BH) (gAb”Tb + %g’B“) (v) ) (9.5)

(0,v) (é (1)> <2> = (0,v) (S) =7, (9.6)
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o0 (i 3)
(0,0) ((1) —01)

as well as {7¢, 7%} = §%°/2, and find

2
1D, @ > %UZ 97 (A4)" + g*(42)" + g(A2)" — 299/ ALB" + 67 B, B
2
=SSP+ () + (042 - B

We find three massive gauge boson fields:

1
+ 1 42
VVM - ﬁ(Auq:ZAu)7
with mass M,, = gv/2, and
. — (94} — ¢'B,)
B g2+g/2g”g“’

with mass Mz = /g% + g’?v/2. The field orthogonal to Z°,

A, = gAS +9gB,) .

1
/g2 + g/2 (
remains massless; we identify it with the photon field.
We now express the covariant derivative

D,® = 8,® — igA°T® — ig'Y B,®

with the U(1) hypercharge Y in terms of the fields in the mass eigenbasis:

1g _
D,® =9, — E(W;r+ + W)
v 2 3 2 igg’ 3
_ —g2 +g,2ZM(g 0 —g Y) - ——92 +g’2AM(T +Y) ,
where
=7l 4%,

We now identify the electromagnetic coupling constant as

/

99

e =

80

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)



and the electric charge as

Q=71"4Y. (9.18)
Further, we define the weak mixing angle 0,, by
Z,\ (cosf, —sinb, Az
(Au) N (sin 0, cosfy, > (Bu ’ (9.19)
where .
cos b, = 9 , sinf,, = S — , (9.20)
92 + gl2 /92 + 912
Using
g7’ =g = (" + ¢ - g7Q, (9.21)

we have finally

. g - - ig . .
D,®=0,9— ZE<W:T+ + W, T )<I> ~ cosd. Z, (73 — Qsin? Qw)CID —1eQA,P, (9.22)
where
- (9.23)
9= sin 0, ’
The W and Z masses are not independent; we have
My, = Mz cos@,, . (9.24)

9.2 Weak interactions of fermions

We know from experiment that W boson couple only to left-handed fermion fields. There-
fore, we decompose all quark and lepton fields into their LH and RH parts, v = ¢ + ¥g,
and require that the ¢, transform as doublets and the vy as singlets under SU(2). Then we
choose the hypercharges such that we obtain the correct electric charge (recall Q = 73 +Y):

_[u
- (1),

6

UR

R

i -

N.B. These gauge quantum numbers imply that a fermion mass term would break the gauge
symmetry:

Emass = _md_}@/} = _m<1/_}L + IZR)(#)L + ¢R) : (925)
Using ¢, = (Ppy")° = TP y° = ) Pr we get
Lmass = _m<"ZL’l/}R + &R"#L) . (926)

It follows that all fermions must be massless.
The kinetic term for the (first-generation) fermions is, thus,

Liin. = ELiDEL + QrilpQp + erilder + tigilDup + drilPdg (9.27)
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with the corresponding covariant derivatives D,,; for instance,

QriPQr = Qrin* (9, — igAym® — §9'B,)Qr (9.28)

etc. (Remember that there are no RH neutrinos in the SM!)
We can express Eq. (9.27) in terms of mass eigenstates and obtain

Liin, = €ide + Uei@ve + widu + didd + g(W,7Jpf + W, Il + ZFTY) + eAu by, (9.29)

with
It = i(ﬂm“eL +arytdy) (9.30)
V2
it = %(ém“% +dpy*ur), (9.31)
7= Coslew [%DL'WVL + epy*(sin? 0, — %)eL + erytsin? O ep

+ ary*(—2 sin® b, + $)up + upy*(—2 sin® b, )ug (9:32)
+ JL’W(% sin? 6, — %)dL + JRfy“(% sin? Hw)dR] ,

Jhy = e (—1)e + iy (3)u+ dy*(—3)d. (9.33)

9.3 Yukawa interaction and Higgs sector

The fermion masses in the SM arise from SSB. Consider, for instance, the electron. The fol-
lowing term is gauge invariant:

LD —AE;Per +he., (9.34)

with the Higgs doublet field . Replacing ¢ by the vev (9.2), we obtain a mass term for the
electron:

Ae
LD —2Z(eLen +eney). (9.35)

V2

The same procedure works for the down quark. For the up quark, however, we need a “trick”.
It is straightforward to verify that

io? -0 -io’ =o", (9.36)

ic?=e€= (_01 é) . (9.37)

Now we can construct gauge-invariant mass terms for both the up and the down quarks:

where

LD _)\dQL(I)dR - )\UQLECI)*UR + h.c.. (938)
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The combination ®¢ = ed* is the charge-conjugated Higgs field. The second term is SU(2)
invariant, since

QLECI)* N QLe—ia-TE(eiaﬂ')*(D* — QLe—iafree—ia-'r* d*

A, —leeT HioeT | Rk 2 * (9‘39)
=(Qre e €P* = Qred”,

where ¢®7 € SU(2) and € - ¢ = —1. You can check that the hypercharges work out, too.
If we replace ® by its vev in Eq. (9.38) and use

@ )E0-H6 o

we find the mass terms

i\;gl_LLUR - MCZLdR—f—hC (9.41)

LD~
V2

Hence, the fermion masses are

_ A A LAY
V2’ Ve

Later, we will generalize the construction to all three fermion generations.
By choosing a suitable gauge (unitarity gauge) we can eliminate the unphysical Goldstone
bosons and write the full Higgs field in the broken phase as

1 0
with the physical Higgs field i (z). The Higgs Lagrangian is then given by

Me (9.42)

Lriges = |D,®* + 12010 — \(@Td)? (9.44)

and the minimum of the potential is at

112
=1/ —=. 9.45
v=1/5 (945)

Inserting Eq. (9.43) into Eq. (9.44) gives

A
Litiggs D —p°h* — Ah® — I\n* = -1 MPn* — \/;Mhh?’ — Ixnt, (9.46)
with the Higgs mass

My, =V2pn=V2\. (9.47)

The kinetic terms in Eq. (9.44) give the gauge-boson mass terms and their Higgs interactions:

h 2
Litiggs D 3(0uh)> + [M{W W+ + LMZ 77 (1 + 5) . (9.48)
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9.4 The CKM matrix

The kinetic term for the three fermion generations is

3
Lin = D (LEiDLY + QLilQ} + Blpthy + i Pl + dhipdly) . (9.49)

k=1

where i is a generation index. This Lagrangian has a large U(3)° flavor symmetry: unitary
U (3) rotations among the three generations, for Ly, Qp, (g, ug, and dg. The most general
Yukawa interaction Lagrangian for the three generations is

3
Lo =—Y [g.;iwg% + V2Q, bl + VQL d°ul | + e, (9.50)
2,7=1

with general, complex 3 x 3 matrices Y*. Which of the 3-2-32 = 54 parameters are physical?

Leptons
The kinetic term for the leptons is invariant under

er — Ren., ér — egR', L, — SLy, L, — LSt (9.51)
with R, S € U(3);i.e, Y is equivalent to Y¢ = SY*R!. By a suitable choice of R and S, Y*
can be made diagonal, real, and non-negative (“Cartan decomposition”). Hence, we have

3
Lyuce=—» YL@l +he.. (9.52)
i=1

The Cartan decomposition is not unique; instead of R, S we can alsouse R' = DR, S’ = DS,
with

et 0
D=0 €% 0 |. (9.53)
0 0 e

(These phase transformations correspond to the conservation of individual lepton number.)
The total number of physical parameters is thus 2 - 32 — (2 - 32 — 3) = 3 - the three lepton
masses.

Quarks

The kinetic term for the quarks is invariant under

dR — RddR, CZR — CZRRL,
ur — RuuR, Urp — fLRRL, (9.54)
Qr — S.Q1, QL — QLSy,
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with Ry, R,,S, € U(3). Again, we can choose Y* = S,Y“R! diagonal, real, and non-
negative. Then however,
S,YRl =S,S, S, YR, =vyd (9.55)
—— ——
\%4 Yd...diag., real, non-neg.

is neither real nor diagonal. Here,

V=25,5 (9.56)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is unitary by construction. The quark
Yukawa interaction is now

EYuka - _< Z nyl (I)‘/’L]d] + Z y;LQLQCuR> + h C. (957)

1,7=1

Instead of R, Ry, S, we could also choose ¢’ R, ¢/ Ry, ¢S, so we have 4 - 3% — (3 - 32 —
1) = 10 physical parameters - six quark masses, three mixing angles, and one CP-violating
phase. (The symmetry under the phase transformation ¢ corresponds to baryon number
conservation.)

In order to find the quark masses, we define

Q= (Z;%j i ) : (9.58)

This diagonalizes the quark mass terms in Eq. (9.57), if we insert the Higgs vev; we find
O R N T
u \/§ Y \/§ Y Cc \/5 Y S \/5 ’ \/§ Y \/5

In this basis, the CKM matrix appears in the charged-current interactions; Eqs. and (9.31)
become

(9.59)

1 ) )
T ﬁ Zamﬂvijd; .. (9.60)
Tt = — Zd YVl + .. (9.61)

In the neutral currents, the CKM matrix cancels; there is no tree-level flavor violation in the
SM (“no tree-level FCNCs”).

10 Introduction to flavor physics

10.1 Phenomenology of the CKM matrix

The usual notation is

‘/;Ld Vus Vub
Vi=|Vu Ve Vo] . (10.1)
Via Vis Va
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Then, for example,

b _‘/—‘ ‘ ¢ ﬁ b
X Vcb ) X Ji :
w- w (10.2)

The unitarity of V' leads to several useful relations. The phenomenologically most interesting
is probably the orthogonality condidtion

ViaVay + VeaViy + ViaViy = 0. (10.3)

This equation defines a triangle in the complex plane - the so-called “unitarity triangle”
with the angles

ViaVit Ved Vot Viid Vb
_ _ _td"tb - _ _ca’cd = — L 2 10.4
“ arg( V;/,d‘/:b ’ 6 e ‘/td‘/;z ’ K e cd CT) ( )

A general, exact parameterization of V' is (see the PDG [6])

—is
C12C13 S12C13 S1ge” 01
_ —id —id
V = | —5s12023 — 125235137 "% C12Ca3 — S12523513€ 013 $23C13 ; (10.5)
i 8-
S12823 — C12Ce3513€~ "% —C12S23 — S12C23S513€ 1 C23C13

with ¢;; = cos0,j, s;; = sin 0;; (three angles, one phase). We define

So —i013

A= 519, AE)\_jv p+in=

S13€

Measurements give A ~ 0.22, A ~ 0.8, \/p?> +n?> =~ 0.4, so we can expand in the small
parameter \. This gives the Wolfenstein parameterization

1— %/\2 A AX3(p — in)
V= -\ 1— 1) AN? + 0O\ (10.7)
AN (1 —p—in) —AN 1

(There is an improved parameterization in terms of p and 7) that is exactly unitary to all orders
in \; see Ref. [6].) The CKM matrix shows a pronounced hierarchy.

10.2 Neutral meson mixing and CP violation

How does the SM Lagrangian change under the discrete transformations C, P : z# — z,,
T:2! = —2,?For X =C, P, T,CP,CPT we have

X: d — XbldX', (10.8)

with
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brdy(z") bR, (2")
C drbr(z") ne —CZR’Ypr(W) ne
P I{LdR(xu) 77p bR]/pdpL(l‘u) np
CP | dpbr(z,) nene —dry?br(z,) nenpe
T brdr(—x,) nr bryPdr(—xu) nr
CPT | dpbr(—a") nenpnr | —dry,br(—2*) nenpir

and the same with L <+ R. The arbitrary phase factors nx can be absorbed into the defini-
tions of the quark fields (since the Yukawa part of the Lagrangian is not invariant under this
redefinition, this corresponds to a choice of phase convention for the CKM matrix!).

The meson states transform like the corresponding currents, since QCD is invariant under
C, P, and T'. For instance,

CP|IB(p")) = —nene|B°(p,)) . CPIB(p")) = —ngmp| B () - (10.9)
The vector and scalar fields of the SM transform as follows:
A4(20), G (a7), Z4(2%) | W(a?) | h(z?)
C _Vu(xp) _W?M(Q;P) (:EP)
P Vi(z,) Wui(ffp) h(x,)
cpP —Vu(z,) _‘/V;T(wp) h(z,)
T V(=) Wpi(_xp) h(—x))
CPT | =VH(—zP) —WHH(—xP) | h(—zP)
Therefore, the charged currents transform under C'P as (e.g.)
VubaLv“bLW +V bbLy“uLW — VubbL’Y uLW +V bUL’}/MbLW+ (10.10)

This is the same only for V,, = V. Is this phase actually observable?
Let | B°(t)) be the state vector of a B meson that has been a B” at t = 0, i.e. |BO(t =
0)) = |B%). Generally, (t)) is then a superposition of |B°) and |B°). The time

evolution is described by
B _ (s i) (1B2O)
(|Bo(t)>) = (M=3T) <|BO(75)>) ) (10.11)

where M and I' are Hermitian 2 x 2 matrices. C'PT" invariance implies My = My, I'1; =
['55. The weak interaction induces off-diagonal matrix elements via box diagrams (Fig. 7) The

b d b =1V INN—— (
u7c7t W
|44 %% U, C, b pAu,c,t
u,c,t w
d < < «— b d —=INAANNNAN—— )

Figure 7: Leading order box diagrams for B-meson mixing.
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transition amplitude has the form

2

2
* * m; m;
A= Z Vi idvjb de<—M%/; Mév) (10.12)

i,J=u,c,t

We define x; = m?/M3,, \; = V, V5. CKM unitarity implies A\, + . + A\, = 0, i.e. the
amplitude vanishes for z; = 0 (this is called “Glashow-Iliopoulos-Maiani (GIM) mechanism”).
Since m; > m., m, and A\, ~ A, ~ A, B-meson mixing is dominated by the )\; term (careful,
this is not necessarily true for other meson systems).

We can diagonalize the Hamiltonian (10.11) to find the weak eigenstates

|BL) = p|B°) +4q|B°),
S (10.13)

|Bu) = p|B") —4|B7)

with |p|? + |¢|> = 1. The two states | B;) and | By) are not orthogonal. Their time evolution

is given by
[Bia(t) = exp | —i(Mys — T /2)t] | Br.s) (10.14)

with |[By(t = 0)) = |Bpyr), and My and 'y, the masses and life times of the By 1,
mesons. Now we define
M M I r
WE%IMM, FE%:HM
Am:MH—ML>O, ATl =Ty —-Ty.

(10.15)

Inverting Eq. (10.13) and inserting Eq. (10.14), we find the time evolution

1 . )
|Bo(t)> _ 2_p |:€—1MLt—FLt/2’BL> + e—zMHt—I‘Ht/2|BH>:| ’

1
=%

(10.16)

|B(t))

|:€7iMLt7FLt/2|BL> o efiMHtfrHt/2’BH>j| )
Now we can use Eq. (10.13) again to replace | By 1) on the right side:
q —
|B°(t) = g+(1)B") + —g-(t)|B") .
. » . P . (10.17)
[B0) = 9-()IBY) + 9. ()| B

with

ATt Amt ATt . Amt]

g (t) = e"mte T2 [Cosh — ¢os — isinh — s
, ATt Amt ATt . Amt
g_(t) = e"mte T2 [ — sinh — ¢os ™t icosh e sin ;n ] :

Since AT # 0, we have g (t) # 0 (with the only exception g_(¢t = 0) = 0). A B® will never
mix back into a pure BY state.

(10.18)
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M5 and I'y5 can (in principle) be calculated (e.g. via box diagrams in the SM). The con-
nection to experiment is provided by the relations

1
(Am)* - Z(AF)2 = 4| Mp|* — T, (10.19)
AmAT = —4Re(M;2T'],) , (10.20)
q_ _Am+ ZA,P/Q _ 2M7, - A ' (10.21)
P 2M12 - ZF12 Am + ZAF/Q
Frequently, one defines also
M
¢ = arg ( — J) . (10.22)
NP

Using Eq. (10.17) we can calculate the time-dependent decay rates I'( B°(¢) — f),T'(B°(t) —
f) (see Ref. [7]). This allows us to study CP violation. The following question is important:
which quantities are physically observable (in the sense that they independent of arbitrary
phase conventions)? Let us first define a short notation for the decay amplitudes,

Ap=(fIB%,  A;=(f|B%, (10.23)
and similarly Ay, A 7> with the CP-conjugated final state
|f) = CPIf). (10.24)

The phases of My, I'12, q¢/p, A;/A; depend on the phase convention for the CP transforma-
tion and / or the CKM matrix. The following quantities are phase-convention independent
(and thus observable):

p )

1 —, gb:arg(——), Am, Al. (10.25)
!
10.3 Three types of CP violation

10.3.1 CP violation in mixing (|q/p| # 1)
Eq. (10.21) implies
. (10.26)

'g t 'le*2 —il%,
p 2Myp — il
If = 0, then |¢/p| = 1, while |¢/p| # 1 implies CP violation.

Example: Decay into “wrong-sign” leptons. The final-state lepton of a semileptonic decay
of a BY ~ [bd] always has positive charge, B® — ¢*vX. Similarly, B° — ¢(~7X. See Fig. 8.
Now consider the asymmetries (here, f = ("0 X)

0 (B — (tvX) —T'(B° = (-vX)
Qg = = _
: ['(B — (+vX) +T(B° = (~vX)
EBg-){f1B) + g+ (O{f1B)* — g+ (1) (f1B) + Lg-(t)(f|B)I?
59-@O(S1B) + 9+ O(S1B)? + g+ (){fIB) + Lg-(O)(f|B)[?
[ =P 1 la/pl*
DB 1T+le/pl*
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wt b W=

Figure 8: Decay of a b quark vs. decay of a b quark.

Here, we used (f|B) = (f|B) = 0 and |{f|B)| = |(|B)].

10.3.2 CP violation in decay (|Af/Ay| # 1)

There can be two types of phases in the decay amplitudes A; = (f|B) and A; = (f|B). Weak
phases change sign under CP; in the SM, these phases appear only in the CKM matrix. QCD
can generate strong phases through rescattering in the hadronic final state. Strong phases do
not change sign under CP, since QCD is CP invariant. So, in general we can write

Ap =) Al A=y Ayl (10.28)
k k

where the Ay, are real, and 0 and ¢y, are the strong and weak phases, respectively.

CP is obviously violated if |A7/Ay| # 1 (direct CP violation). Direct CP violation can only
occur in a process that involves (at least) two amplitudes that differ in both their weak and
strong phases. For instance,

A 01 A 01 —i¢2 A A —ig2
e L) O b S (10.29)
Alez‘sl + A2€z61+1¢2 Al + A2€l¢2
Example: CP violation in the decay of charged B mesons.
(B~ — f)-T(B* = f 1—|Az/A;|?
( f) =1 f) 1= 1A7/A] (1030)

(B~ — f)+ (Bt = f) 14 |Af/As2

10.3.3 CP violation in the interference between mixing and decay (Ay # £1)

Consider the decay into a CP eigenstate fcp. If both B® and B° can decay into fop, there can
be CP violation in the interference between the decay without and with mixing, B® — fop
and B —» B° — fC’P-

As an example, consider the general time-dependent asymmetry

L(B° = f) —T(B° = f)
[(B° — f) +T(B° = f)

af(t) =

_ (1- |)\f| ) cos(Amit) (10.31)
O (1+ |A¢]?) cosh(AT't/2)

— 2Im(Ay) sin(Amt) [yo
— 2Re(\y) sinh(AT't/2) O(‘Mlg

sin ¢>
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as(t) # 0 for all three types of CP violation. In some cases we have |q/p| ~ 1, |A;/A;| ~ 1.
The standard example is B — .J/1 K. The dominant decay amplitudes are shown in Fig. 9.
Kaon mixing is dominated by the amplitude shown in Fig. 10. B-meson mixing is dominated

¢ JN J/

C

c
go b w+ B0 W=
5 s
\ (; K(V) \ . KO

Figure 9: Dominant decay amplitudes for B — J/1V Kg.

C

[SHR-

by the amplitude shown in Fig. 11. Therefore, we have

S = = —
&

A DO

Figure 10: Dominating box diagrams for K -meson mixing.

h ————— ]
t
t

d —S——e—=—<— )

Figure 11: Dominating box diagrams for B-meson mixing.

Mo = Qs (Vi) (VaVer | (Ve
s T = UATCYANAAY AN

cs’ed

o * . (10.32)
(Sl (1) e
ViaVi, ViaVi
For |¢/p| =~ 1, |A;/A;| ~ 1 (here, only one ampitude contributes!) we have
Im(Af) sin(Amit)
ap(t) = !

= cosh(AT2/2) — Re(),)sinb(AT7/2) = [m(As) sin(Am)., (10.33)

where in the last line we used AI't ~ 0. One can extract the angle J by measuring a, ., (%).
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10.4 CP violation in the neutral kaon system*

10.5 Weak effective Hamiltonian

Let’s calculate the decay rate for = — e~ 7.1/, We can read off the necessary Feynman rules
from Eq. (9.4) and Eq. (9.31):

-
P 2m) Sk K~ q).
v (10.34)
14
: \i/—%v“PL(QW)‘l&(k +kK —q).
+ (10.35)
The W propagator in 't Hooft-Feynman gauge is
[ q— v 1 .
AN\ /1% (10.36)

:(27r)4 @ — M2 +ie’
Using this, we can calculate the decay amplitude (see Fig. 12). Performing the momentum

P2 4
/

(&

Figure 12: Leading order contribution to muon decay.

integration gives

(27)* [ ig 2 y U(pa, s2)7" Pru(py, $1)U(p3, 53)7, Prv(pa, 54)
(2m)10 (\/§> (=0) (1 —pa)? — M2, . (10.37)

We have m., m, < My, and hence also (p; — p2)? < Mj,. In excellent approximation,
therefore,

—2mIM =

ig*  u(p2, s2)y" Pru(py, s1)u(ps, $3)7,PrLv(pa, s1)
2(2m)? MI?V

4G R
= —i—u(pa, $2)V' Pru(py, s1)u(ps, s Pru(py, s4),
\/5(27T>2 (P2, 52)7" Pru(py, s1)u(ps, 83)7u PLv(pa, 54)

—2mM = —

(10.38)
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with the Fermi constant

Gp 9
Sr__9 10.39
kT (10.39)
Using the master formula (3.22) we can calculate the decay rate.
Note that , )
2 4v/2 1
Gp = \/_g _ 42 , (10.40)
8M3E  8¢%v? /20?2
i.e. one can measure the Higgs vev via muon decay.
We can obtain the amplitude Eq. (10.38) directly using the “effective” Lagrangian
4Gp ,_ _
L= ——F(Vﬂfy“PLu)(efyuPLye) : (10.41)

V2

This Lagrangian is not renormalizable. It represents a low-energy limit of the SM.

11 Chiral Lagrangian®

11.1 The non-linear sigma model and effective field theory

We start by slightly reformulating the linear sigma model. Recall the original Lagrangian
Eq. (8.10):

2 A
L= %Zaﬂd)na“qﬁn + % Z Pnpn — Z(Z%qﬁn)? , (11.1)

invariant under the group O(N) of real rotations of the fields. We have seen that if u? < 0,
the minimum of the potential is at ¢ = 0, which is invariant under O(/V) rotations. If u? >0,
however, the minimum is at ¢(z) = ¢, with

Z¢2=M—2 (11.2)
n ! )\ . .

We will now only discuss the case N = 4, and call the four field components ¢ = (7, o).
(Note that for ? < 0, nothing distinguishes the four components.) Now we use the following
very useful relation for the Pauli matrices o (exercise!)

%0’ = 5% + jeo° (11.3)
and rewrite the four-component field vector ¢ as a matrix
Y=ol +io-m, (11.4)

such that
ol 47’ = %Tr(ZTZ) . (11.5)

The Lagrangian (8.10) can the be written as

L =1Tr(9,510"%) + £Tr(2'%) - ATr(218)”. (11.6)
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In this form, it is obvious that the Lagrangian has a SU(2);, x SU(2)g symmetry,
Y =Y =U,xUL, (11.7)

with U, € SU(2)r and Ur € SU(2)g. As before, for u? > 0 we introduce shifted fields,
now denoted by
c=0—v, (11.8)

where v = \/u? /), and the Lagrangian becomes
A
£ = 10,605 = 2°5%| + om0 — i (50 + ) = 2[ (6% + 1) =] (119)

The problem with Lagrangians like Eq. (8.10) or (11.9) is that, in order to calculate scattering
amplitudes, we need to include Feynman diagrams to all orders (unless A happens to be
small). However, we can rewrite the Lagrangian (8.10) in a form that allows for an expansion
in derivatives. The general strategy is as follows:

+ Perform a local symmetry trsnaformation to eliminate all NGB (Nambu-Goldstone bo-
son) fields.

+ NGB reappear as parameters of symmetry transformation.

+ Due to global invariance, no dependence on constant NGB fields can remain; every
terms that involves NGB fields must contain at least one derivative of the NGB fields.

« Derivatives translate into energy-momentum; this allows for an expansion for small
energies / momenta.

As an example, we write ¢(x) in Eq. (8.10) as a rotation of (0,0, 0, 0):

on(z) = Rpgo(z), (11.10)

where R(z) € O(4), ie. RT(z)R(x) = 1. It follows that

o(z) = > d2), (11.11)

and Eq. (8.10) becomes

4
1 2 Loy Ay
L= 3 El (Rp10uo + 00, Rpa)” + gHot = ot (11.12)
The orthogonality of R implies
1
§ R, =1, § RpsOy Ry = 5@ § R, =0, (11.13)
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so the Lagrangian simplifies to

4
1 1 1 A
L= 5@08“0 + 50’2 nEZI 8HRn48“Rn4 + 5[,&20'2 — 10'4 . (1114)

For ;i > 0, 0 has a vev () = p1//), as before.

The NGB fields can be chosen as R4, with a = 1, 2, 3, while Ry, is given by orthogonality.
There are several other representations, related to Eq. (11.14) by a non-linear field redefini-
tion. A general theorem of QFT tells us that on-shell S-matrix elements are invariant under
non-linear transformations of the fields in the Lagrangian. An important representation, the
so-called “exponential representation”, is obtained from Eq. (11.4) via the redefinitions

Y=0+ioc-1=@w+ 95U, (11.15)
where
U = explio -7 /v). (11.16)
An easy calculation yields
1 2
L= 3 0,SO"S — 2@252] + @Tr(@uUﬁ‘U) — AS? — M54, (11.17)

By construction, U transforms like >: for L € SU(2)., R € SU(2)r,
U— LUR'. (11.18)

The Lagrangian is still invariant under SU(2), x SU(2)g, but the symmetry is realized non-
linearly on the NGB fields, while S is invariant. (Note that the vectorial subgroup, L = R, is
realized linearly: 01 = 0 x .)

Since S is a scalar under SU(2);, x SU(2)g, we can “discard” it without impairing the
invariance under SU(2) 1, x SU(2) g of Eq. (11.17). (Formally, we can take the limit ;> — oo,
A — oo with j1/v/) fixed.) The Lagrangian is the simply

2

L= %Tr(auUa*‘U) . (11.19)

In fact, we did not have to start with the linear sigma model - the idea of effective field
theory (EFT) is is to write the most general Lagrangian with a given symmetry (breaking)
pattern. The “UV theory” is not unique. Comparison with the symmetries of the QCD La-
grangian at low energies shows that the pions of QCD can be interpreted as the NGB of the
spontaneously broken chiral SU(2), x SU(2)r symmetrt of QCD.

We could add to the Lagrangian (11.19) terms of higher order in the pion interactions, such
as Tr (QMU o*rU ) ? etc. As long as we include all interactions allowed by symmetry, the theory
will be renormalizable (in the generalized sense that all divergences can be absorbed into an
(infinite) number of counterterms).
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11.2 Spontaneously broken approximate symmetries

Example: QCD with two light quark flavors. Leads to low-mass spin-zero particles, “pseudo
Goldstone bosons”.

Assume we can split the potential as

V(9) = Vo(¢) + Vi(9), (11.20)
where V) is invariant under some symmetry transformation:
oVo(o)
w=0. 11.21

Vi is a small correction due to explicit symmetry breaking, i.e. the minimum of the potential
gets shifted from ¢ (the minimum of Vj) to ¢ = ¢y + ¢1, where ¢, is small compared to ¢y
(of first order in the small symmetry-breaking terms). The minimization condition is then

oV (¢)
Ion

=0. (11.22)
Pp=do+p1

The zeroth-order term vanishes by construction, so the first-order term must also vanish:

V(¢ Vi(9) ‘
Z a%a% o= ¢0¢17 L P 2
The condition (8.9) reads here
0*Vo(o
t° =0. 11.24
Z a¢na¢m . ¢O( )nz%:@ ( )
Multiplying Eq. (11.23) with (¢¢g),, summing over n, and using Eq. (11.24) gives
oy MVi(9) _
zn: (t"¢0) . %n |, " 0. (11.25)

This is called the vacuum alignment condition. ¢, can always be chosen such that Eq. (11.25)
is satisfied (to linear order). The vacuum alignment condition forces the direction of sponta-
neous symmetry breaking into alignment with the explicit symmetry breaking terms in the
Lagrangian.

Example: breaking of O(N) — O(N — 1). In the absence of explicit breaking, we can use
the underlying O(N) symmetry to chose which O(N — 1) subgroup is left unbroken. If we
add a perturbation o ) u,¢,, then the Lagrangian is invariant under the specific O(N —1)
that leaves u invariant. Without Eq. (11.25), we would expect only O (N — 2) invariance after
SSB (both u and ¢). Eq. (11.25), however, implies that u o< ¢ (exercise!), so the unbroken
symmetry is O(N — 1).
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11.3 Pions and kaons as Goldstone bosons

Recall that the QCD Lagrangian for two massless quark flavors has a global SU(2) , x SU(2) g
symmetry. What is observed in nature? Pions (7" ~ [ud], 7° ~ [ut — dd]), nucleons
(p ~ [uud], n ~ [udd]) respect an approximate isospin symmetry (interchange of up and

down quarks):

dm,  139.57 — 134.9766

~ ~3 11.26
My 139.57 %, ( )
)
N 5 0.1%. (11.27)
my

However, a “parity doubling” is not observed. We assume that SU(2);, x SU(2)p is sponta-
neously broken to SU(2)y isospin, and interpret the pions as Goldstone bosons. Same works
for u, d, s and SU(3) (plus kaons, 7). How can we test this hypothesis?

The Lagrangian (11.19) has the correct symmetry structure (including SSB), and can easily
be generalized to the case SU(3) x SU(3)g. What about explicit symmetry breaking (QED,
quark masses)? Let’s define ¢ = (u, d, s) and M = diag(m,,, mg, m;). Then the QCD quark
mass Lagrangian is

L=—-qMq= _(QRMQL + QLMQR) . (11.28)
Now we “invent” a static external 3 x 3 matrix field y, and replace Eq. (11.28) by
L=—-qgMqg=— (CjRXTQL + QLXQR> ; (11.29)

which is the same as Eq. (11.28) for Y = x" = M. However, Eq. (11.29) is formally invariant
under SU(3), x SU(3)g if x transforms as

X — VixVyi (11.30)

for Vg € SU(3)g, Vi, € SU(3)L. Thus we can construct the most general chiral effective
Lagrangian with the same explicit symmetry breaking pattern as in QCD, out of the fields U
and y (this is sometimes called the “spurion method”, and Y is called a “spurion field”). We

will use the parameterization
/2
U(x) = exp (MH> : (11.31)

f
with o
s 7 + +
el K
HEZXI a_ — _\7r/_§+\77/_% KO (11.32)
a K_ [_(0 28

7 -
Here, \* are the Gell-Mann matrices, normalized as Tr()\a/\b) = 0 and f is a constant with
dimension of mass (to be determined later; essentially, f is the pion decay constant).
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For instance, the interaction Tr(U'y + Ux') is invariant under SU(3); x SU(3)g and
parity
Ulz,t) < Ul(—x,t), x X' (11.33)
Making the replacement Y = x' = M, we find the most general pion Lagrangian with a
single M insertion
2 B 2
L= fZTr(auUTE)“U) + onTr (MU + U], (11.34)
where By is another low-energy constant. Neither f nor By can be determined from chiral
symmetry.
By expanding the mass term in Eq. (11.34), we can read off the entries of the pion mass
matrix:

M?2. = M?Z, = By(mg +m,), (11.35)
MZz. = By(mg +my), (11.36)
M3y = Bo(mg +my), (11.37)
4 s U
M? = By—~ J”;“er , (11.38)
and a -1 mixing term
M2, = By (11.39)

V3
From Mg+ =~ 493.7MeV, Mo ~ 497.6 MeV, M+ ~ 139.57MeV, M, 0o ~ 134.98 MeV we
see that mg > mgy, m,,.

To discuss the effects of the up- and down-quark masses, we should include the effects of
QED (i.e. replace J, — D,,). The electromagnetic current is

J' =1deqgy"Qq, (11.40)

where ) = diag(2/3, —1/3, —1/3). The vector and axial-vector currents are

Va =qqy* Nq, (11.41)

A =gty A, (11.42)
with charges

T = / Pz (11.43)

X*= /d3xA“0, (11.44)

which act as the QM generators of the symmetry. Their commutators with the electromag-
netic current are’

[T, J"] = —ieqy"[Q, \]q, (11.45)

It is straightforward to show that [T%, g] = —A\%qg and [X%, q] = —A%¥54.
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(X, JH] = —ieqy"5(Q, Mg . (11.46)

We see that J# commutes with X3, X6 X7, X8 and T3, T, T7, T®, so the electromagnetic
part of the effective Lagrangian is invariant under this SU(2) x SU(2) x U(1) x U(1) sub-
group. For zero quark masses, QED effects give no masses to the associated neutral 7°, K°,
K° and 7n bosons. Similarly, for zero quark masses, K+ and 7 transform as a doublet under
the unbroken SU(2) subgroup generated by

000 00 0 00 0
6~ 10 0 1), T'~|0 0 —i|, V3*—=T3~ |0 1 0 (11.47)
010 0 i 0 00 —1

(“u-spin”), so the electromagnetic corrections A to the K and 7" masses are equal. There-
fore we have

MQi = Bo(md—l—mu) —I—A,

Mgo = B()(md -+ mu) ,
M7y = By(mg +my,) + A,
M7o = MZ%, = By(ms +my),
dmg + mg + my,

3

(11.48)

MgZBO

As a consequence, there is one linear relation on the five boson masses [Gell-Mann 1961,
Okubo 1962]:
BM +2M2s — M2 = 2M7s +2M 7o . (11.49)

This gives M, = 566 MeV. The difference to the experimental value is due to mixing among
the 7%, 1, and 7.
Eq. (11.48) yields the quark mass ratios

mg Mo+ M2 — M.
me M2, — M2+ M2,

(11.50)

and M2 — MZ, — M2, + M?
U 2 - B
M _ 2Wg0 —~ Mo — Me + Wit (11.51)
m M2, — M2, + M2,

Inserting the meson masses we find my/ms = 0.049, m,,/m, = 0.028, and thus my/m,, ~ 2.

11.4 Weak decays in the chiral EFT

We still need to determine the constant f in Eq. (11.31) and Eq. (11.34). It can be extracted
from leptonic pion decay, 7~ — u,. The effective Lagrangian is

4G
Lo = —ﬁmd(mﬁ,&d) (i PLy,) + he.. (11.52)
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(There are no QCD corrections to this Lagrangian due to current conservation. Similar effec-
tive Lagrangians can be written for hadronic decays, in which case QCD effects can be quite
large.)

Lorentz invariance (together with conservation of parity) dictates that the pion-to-vacuum
matrix element takes the form

(Olay"ysd|m™ (p)) = iV2fxp”, (11.53)

where f, is the pion decay constant. The 7~ — v, matrix element of Eq. (11.52) then
becomes

M = g%vma@mm(pyu)<0|avpd\7r<p>> = 2iGrVia s up,)p, PLo(py,), (1154)

leading to the decay rate (exercise!)

G2 m?,

(™ — pw,) =
From '™ (7~ — up,) = 3.84 x 107/s we find
£ =92 MeV. (11.56)

Now let us calculate the same decay using the chiral Lagrangian. For this, we need to
implement the weak interaction. The weak Lagrangian contains a term

LD Vudi[ﬂL’}/udL]WJ + h.c. = [(jL’)/#gqu]W: + h.C., (11.57)

V2
where (,, = gTWJ / V2 with

0 Vg O
T=(0 0 0. (11.58)
0 0 0

(At low energies, it is better to think of W/j as an external source rather than a dynamical
field.) The last term in Eq. (11.57) is invariant under the chiral SU(3);, x SU(3)g if ¢, trans-
forms as ¢, — V.0 MVLT. Using the spurion method, we construct the corresponding terms in
the chiral Lagrangian:

2
. . g _
L= ZTr{(auU—w,LU)T(éWU—WU)}+. o= = H{Vid' T W the j 4 (1159)

Now we can compare the pion-vacuum matrix elements of Eq. (11.57) and Eq. (11.59). Using
Eq. (11.53), we find

g - _ g _ q.
Via—=(0lagy*d — V=L (0)ay sd — Vi Lifop
d\/ﬁ< [ury’d|m (p)) d2\/§< |uyPysd|T (p)) dQpr 1160
=— ud%f@l@”flﬂ_(?» =— ud%ifp”~

We see that f = 2f;.
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12 Tests of the standard model”*

12.1 Custodial symmetry

Question: Is the relation M3, = cos? 6,,M% “exact”? Consider the Higgs Lagrangian

EHiggs = |D,u¢|2 - V(¢) ) (121)
where
V(g) = —1’¢o + A(o'9)? (12.2)
and )
Dyt = (9, — igrWe — i%B#)qﬁ. (12.3)

Lhiggs is invariant under local SU(2) x U(1) transformations, and has an additional approx-
imate global symmetry. To see this, we write the components of the Higgs field as

Jr
6= (io) . (12.4)
Then also 0
¢ = ep* = (_¢_> : (12.5)
with (¢7)* = ¢, is a SU(2) doublet. Now we define the “bi-doublet”
1 1 [ o™ ¢+)
d=—(¢%¢)=—( 7 _ , 12.6
and write the Higgs Lagrangian
Lriggs = Tr{(D,®)' D'®} — V() (12.7)
with
V(®) = —p*Tr{®T®} + A\(Tr{®'0})? (12.8)
and )
D,® = 9, — igr* W d + i%Bu(I)ag . (12.9)

For instance, consider the term

1 0 _ 4+ 0x +
o3 (7 ) (% %)

_ L (908 oo g oy O
—ir{< ¢0¢0*+¢+¢_)}—¢¢ oo = oo,
The action of SU(2) x U(1) on the bi-doublet is

SUQ2): & — LP, (12.11)
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Ul)y : & — e 37 (12.12)
Now consider the limiting case ¢’ — 0. The covariant derivative is now
D@ =0,9 —igr*W;®. (12.13)
In this limit, Lyge has a global SU(2)z symmetry,
SU2)g: @ — ®R'. (12.14)
For instance, we have
Tr{(D,®)' D*®} — Tr{R(D,®)'D"®R'} = Tr{(D,®) D"®} . (12.15)
So, for g — 0, Lpiges has the global symmetry SU(2);, x SU(2)g,
SU(2)L x SUQ2)r: & — LOR'. (12.16)

Eq. (12.12) implies that U(1)y C SU(2), x SU(2)g.
The vacuum state of the bi-doublet is

1. 1 fv 0
@ =0 = (5 1) (1217

This vacuum breaks both SU(2),, and SU(2)r,
L) £ (@), (B)R £ (). (12.18)
However, SU(2). g (i.e. L = R) leaves the vacuum invariant:
L(®)VLT = (®). (12.19)
The breaking pattern is, thus,
SU2), x SU22)g — SU((2)p+r - (12.20)

The group SU(2)g (or, sometimes, SU(2), x SU(2)g) is called custodial symmetry (from
Latin “custos”, protector). The three massive gauge bosons associated with the breaking
pattern (12.20) are W+, W, 79 with masses

My, = 29202, M = i(g2 +(9))?, (12.21)
and so 2 7
MV%V = iR cos’ 0, (12.22)
or M2
p= m =1. (12.23)
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Figure 13: Corrections to the p parameter due to Higgs exchange

Figure 14: Corrections to the p parameter due to bottom- and top-quark exchange

In the limit ¢’ — 0, we have My, = M. The custodial symmetry “protects” the p parameter
from large radiative corrections, in the sense that these corrections must be proportional to
powers of ¢'.

For instance, the one-loop diagrams in Fig. 13 give

11GpM2sin®0,, . M?

= 0 . 12.24
p /o g 2 (12.24)
Recall that sin®§,, — 0 for ¢’ — 0.
Similarly, the diagrams in Fig. 14 give the contribution
3Gr ) ) mim; m?
0 =1 —2——5log— | =1 12.25
=155 (mt—l—mb 7 = %8 (12.25)

for m; = my. For y; = y, we can write the Yukawa Lagrangian as
Ly D —yQ}¢dy, — yQi ¢“u’, + he. = —yQ3 Q% + hec., (12.26)
with y = y; = y, and Qg = (tr, br)7; this is invariant under SU(2), x SU(2)x.

12.2 SMEFT

12.3 Electroweak precision tests

13 Neutrino physics”
14 Particle physics and cosmology”

A Spherical harmonics

This section is based on the discussion in Ref. [8]. We set i = 1 throughout.
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The components of the angular momentum operator L are
, 0
Li = —1 %: Eijkxja—kk . (Al)

Each of the components commutes with r = \/z? + xZ + z3, so they can only on the direc-
tion of z, not its length. In fact, we can show that in polar coordinates

x1 =rsinfcos ¢, To =rsinfsing, r1 =rcost, (A.2)

L acts only on the angles. For instance, we have

8gb Z 883; oz, = —rsm&smgb% —|—rsm€cosgz§aix2
(A.3)
:—.Tga—l—i-xla o ZL3
To obtain the other two components, we calculate
0 ox; 0 0 0
9 _ _ 9 2 = A4
50 : 90 0z, = rcosf cos ¢ xl—l—rcos@smgha o rsm@a . (A.4)
and notice that
cot@cosqbg + smgbﬁ = 7’(:059i — rsinfsin g—
¢ 0xo Oxs
(A.5)
=z i - i = —iL
- 38];2 281‘3 - 1,
and
0 0
cot@sm(b— — CcOS p— = —rcosf— + rsinf cos p—
¢ ol afL’l 8[)’23
(A.6)
= —Sﬂsa—ml + 51618963 —iLy,
so we have in total
lei(sm¢> +cotecos¢a¢) (A.7)
ngi(—cos¢ + cot @ sin ¢ <Z5> (A.8)
0
Lo = —ji— A9
3 Z@gzﬁ ) ( )
and hence Lo 5 Lo
L?=— — | sinf— —_— = . A.10
[smeae (Sm 89) * sin298¢2] (A.10)
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To find the spectrum of L?, we assume that we can expand the solutions about the origin
in terms of homogeneous polynomial in x4, x5, 3 of degree ¢. In polar coordinates such
polynomials have the form

Y(x) =r'Y(0,9), (A.11)

where Y is a homogeneous polynomial of order ¢ in the unit vector
z =2x/r = (sinf cos ¢,sin @ sin ¢, cos ) . (A.12)

As L? does not act on r, we will drop the factor r* from now on. From the usual rules of angu-
lar momentum in quantum mechanics, we know that the eigenvalues of angular momentum
satisfy

L*Y" = (L +1)Y," (A.13)

and
LY, =mY,", (A.14)

with m a positive or negative integer between —¢ < m < {, and ¢ a positive integer or
half-integer. We can write Y, (6, ¢) as a homogeneous polynomial in

iy =3y +idy = sinfe™? T3 = cosf. (A.15)

The functions Y,™ (6, ¢) are known as the spherical harmonics and can be written in the form

Y;™(0, ¢) o< P ()¢ (A.16)

The associated Legendre polynomials Pelm| satisfy the differential equation

1 d dp™ m?
——— " sing=¢ P =+ 1)P™, A.17
sin@d@(sm do )+sin20 e = A D (A.17)

see Eq. (A.10).

We can now simply find the spherical harmonics by writing all homogeneous polynomials
in  that satisfy the Eqs. (A.13) and (A.14). For instance, Y is just a constant. Y;™ must
contain one power of 7. or #3; Eq. (A.14) shows that Y, !, Y}, and Y}' must be proportional
to z_, x3, and x, respectively. We find, for ¢ = 0, 1,

1
Yy =4/— A.18
0 47T ) ( )
Y= \/ 5 (:L‘1 — mg) =4/ 838111 fe "7, (A.19)
=4/ x3 \/ — cos fe'? (A.20)

47
Vi =—/— (xl +idy) = —\/i sin fe™® . (A.21)

8T 8T
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The prefactors are chosen such that the spherical harmonics are normalized,

s 2
/sinede/dgbmm(e,w —1. (A.22)
0 0

Being eigenfunctions of the Hermitian operators L? and L3 with different eigenvalues, the
spherical harmonics are orthogonal. Since they are homogeneous polynomials of order ¢ in
Z, they change sign under space-inversion £ — —& according to

Y (m = 0,7+ ) = (=1)Y["(0,9). (A23)

The spherical harmonics for m = 0 are frequently written in terms of the Legendre polyno-

mials P;(cos ) as
2 1
yo(0) = /2 4+ Py(cos6) (A.24)
m

(The Legendre polynomials are functions of cos f because they can only be functions of Z3 =
cosf and 7% = 1 — cos® §. They are normalized as P(1) = 1.)

B Clebsch-Gordan coefficients

The Clebsch-Gordan coeflicients appear in the addition of angular momentum in quantum
mechanics:

jm) = > Cyryr(Gmsm/m”)|j'm/)|j"m") . (B.1)

m/m//
They are non-zero for |j — j”| < j < j' 4 j7” and m = m’ + m”, and are determined up to a
normalization and phase convention. Eq. (B.1) can be inverted to give

g'm) 3" m") =Y Cy (s m'm") | jm) (B.2)

jm

They satisfy the following completeness relations:

Z Cj'j” (]m, m/m”)Cj/jH (]m, m/m”> = 5m’ﬁz’6m”ﬁz” s (BS)

im

Z Cj’j” (]m, m/m”)C’j/ju (57’71, m’m") = 5]3577177_1 s (B4)
. o 2j + 1

n;l Oj’j” (jm; m/m//)cilj” (]m; m/m//> — m(sjg/(sm/m/ . (B.S)
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