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Abstract

“It doesn’t matter what we cover. It matters what you discover.”

[Attributed to Viktor Weisskopf, theoretical physicist, 1908 – 2002]
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0 Introductory Remarks

These lecture notes are based on hand-written notes provided by Philip Argyres; the originals

can be found on his course homepage.

1 Electrostatics

1.1 The electric field

The force on a charge Q at point rrr due to other (static) electric charges is

FFF = QEEE(rrr) . (1.1)

The charge Q is measured in units of Coulomb (C), the electric field EEE in units of Newton

per Coulomb (N/C). (Recall that N = kg m/s2). The electric field due to a point charge q, at

position rrr′, is

EEE(rrr) =
q

4πϵ0

rrr − rrr′

|rrr − rrr′|3 . (1.2)

The permitivity of free space is ϵ0 = 8.85 × 10−12C2/Nm2
(effectively, this is the definition

of the unit “Coulomb”).

The electric field due to many charges qi is the sum of electric fields due to each individual

charge:

EEE(rrr) =
1

4πϵ0

∑
i

qi
rrr − rrr′i
|rrr − rrr′i|3

. (1.3)

For continuous charge distributions, it is frequently useful to define charge densities, which

we denote as follows:

density unit

0-dimensional point charge q C

1-dimensional line charge λ C/m

2-dimensional surface charge σ C/m
2

3-dimensional volume charge ρ C/m
3

The sum over point charges then becomes an integral. For line charge densities:

EEE(rrr) =
1

4πϵ0

∫
C

dℓ′ λ(rrr′)
rrr − rrr′

|rrr − rrr′|3 , (1.4)
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where dℓ′ = |dℓℓℓ′|. For surface charge densities:

EEE(rrr) =
1

4πϵ0

∫
S

da′ σ(rrr′)
rrr − rrr′

|rrr − rrr′|3 , (1.5)

where dℓ′ = |dℓℓℓ′|. For volume charge densities:

EEE(rrr) =
1

4πϵ0

∫
V

d3r′ ρ(rrr′)
rrr − rrr′

|rrr − rrr′|3 . (1.6)

1.2 Gauss’ law

We calculate the divergence of a static electric field due to a volume charge density:

∇∇∇ ·EEE =
1

4πϵ0
∇∇∇ ·

∫
V

d3r′ ρ(rrr′)
rrr − rrr′

|rrr − rrr′|3

=
1

4πϵ0

∫
V

d3r′ ρ(rrr′)∇∇∇ · rrr − rrr′

|rrr − rrr′|3

=
1

4πϵ0

∫
V

d3r′ ρ(rrr′)4πδ(rrr) =
ρ(rrr)

ϵ0
.

(1.7)

This is the (differential form of) Gauss’ law. Integrating this equation, we obtain∫
V

d3r∇∇∇ ·EEE =

∫
V

d3r
ρ(rrr)

ϵ0
=

Qencl.

ϵ0
, (1.8)

where Qencl. is the total (net) charge enclosed within the integration volume. Using the di-

vergence theorem, this is equivalent to∮
S=∂V

daaa ·EEE =
Qencl.

ϵ0
, (1.9)

This is the integral form of Gauss’ law.

Next, we calculate the curl of the static electric field.

∇∇∇×EEE(rrr) =
1

4πϵ0
∇∇∇ ·

∫
V

d3r′ ρ(rrr′)
rrr − rrr′

|rrr − rrr′|3

=
1

4πϵ0

∫
V

d3r′ ρ(rrr′)∇∇∇× rrr − rrr′

|rrr − rrr′|3 = 0 .

(1.10)

It follows that ∮
C

dℓℓℓ ·EEE = 0 (1.11)
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for any closed contour C . A consequence is that there exists a scalar function V (rrr) (the

electric potential) such that

EEE = −∇∇∇ · V (rrr) . (1.12)

In summary, Coulomb’s law

EEE(rrr) =
1

4πϵ0

∫
V

d3r′ ρ(rrr′)
rrr − rrr′

|rrr − rrr′|3 . (1.13)

is equivalent
1

∇∇∇ ·EEE =
ρ(rrr)

ϵ0
, (1.14)

∇∇∇×EEE = 0 . (1.15)

These are the equations for electrostatics.

If a problem has enough symmetry, we can use the integral form of Gauss’ law to quickly

derive the electric field. For instance, assume a spherically symmetric volume charge density,

ρ(rrr) = ρ(r), i.e. the charge density only depends on the distance from the origin. We choose

a “Gaussian surface” Sr, a sphere of radius r centered on the origin. The sperical symmetry

implies that EEE(rrr) = E(r)r̂̂r̂r. Why? The answer cannot
2

on how we rotate the coordinate

system around the origin, so must be independent of the angles θ, φ and θ′, φ′
. We have

∮
Sr

daaa ·EEE(rrr) =

π∫
0

sin θdθ

2π∫
0

dφ r2r̂̂r̂r · E(r)r̂̂r̂r = 4πr2E(r) , (1.16)

and

Qencl. =

∫
Vr

d3r′ρ(r′) =

∫
r′<r

(r′)2dr′
π∫

0

sin θdθ

2π∫
0

dφ ρ(r′) = 4π

∫
r′<r

dr′ (r′)2ρ(r′) . (1.17)

Using Gauss’ law, we find (for spherically symmetric charge distributions)

EEE(rrr) =
r̂̂r̂r

ϵ0r2

r∫
0

dr′ (r′)2ρ(r′) . (1.18)

Next, we assume a cylindrical symmetry (i.e. the charge density depends only on the

distance to the z axis, and is translationally invariant in the z direction). Then we choose the

1
So far, we have only shown that the electrostatic equations follow from Coulomb’s law, and not vice versa.

2
This is actually a subtle point: just because an equation has a symmetry, it does not necessarily follow that

the solution has that symmetry.
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Gaussian surface Ss,z to be a cylinder of height z and radius s centered on the z axis. The

cylindrical symmetry implies that EEE(rrr) = E(s)ŝ̂ŝs. We have

∮
Ss,z

daaa′ ·EEE(rrr′) =

s∫
0

s′ds′
2π∫
0

dφ ẑ̂ẑz · E(s′)ŝ′̂s′̂s′

+

z∫
0

dz′
2π∫
0

dφ s ŝ̂ŝs · E(s)ŝ̂ŝs

+

s∫
0

s′ds′
2π∫
0

dφ (−ẑ̂ẑz) · E(s′)ŝ′̂s′̂s′

= 0 + 2π z sE(s) ,

(1.19)

and

Qencl. =

∫
Vs,z

d3r′ρ(r′) =

z∫
0

dz′
s∫

0

s′ds′
2π∫
0

dφ ρ(s′) = 2πz

s∫
0

s′ds′ρ(s′) . (1.20)

Using Gauss’ law, we find (for cylindrically symmetric charge distributions)

EEE(rrr) =
ŝ̂ŝs

ϵ0s

s∫
0

ds′s′ρ(r′) . (1.21)

As our last example, we consider planar symmetry (i.e. the charge density is invariant

under translations only in the x- or y-directions, ρ(rrr) = ρ(z)). We choose the Gaussian

surface Sz,A to be a cylinder of arbitrary cross sectional shape A and height z along the z
axis. The planar symmetry implies that EEE(rrr) = E(z)ẑ̂ẑz. We have∮

Sz,A

daaa′ ·EEE(rrr′) =

∫
A

dxdy ẑ̂ẑz · E(z)ẑ̂ẑz

+

z∫
0

dz′
∫

dℓ′ n̂′n̂′n̂′ · E(z′)ẑ̂ẑz

+

∫
A

dxdy (−ẑ̂ẑz) · E(z)ẑ̂ẑz .

(1.22)

Here, n̂′n̂′n̂′
is perpendicular to the side of the cylinder, so lies in the x-y plane: n̂′n̂′n̂′ = ax̂̂x̂x+ bŷ̂ŷy. It

follows that n̂′n̂′n̂′ × ẑ̂ẑz = 0. Also, note that∫
A

dxdy = A . (1.23)
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Therefore, ∮
Sz,A

daaa′ ·EEE(rrr′) = AE(z)− AE(0) . (1.24)

Moreover,

Qencl. =

∫
Vz,A

d3r′ρ(r′) =

∫
A

dxdy

z∫
0

dz′ρ(z′) = A

z∫
0

dz′ρ(z′) . (1.25)

Using Gauss’ law, we find (for planar symmetric charge distributions)

EEE(rrr) =
ẑ̂ẑz

ϵ0

z∫
0

dz′ρ(z′) +EEE(0) . (1.26)

1.3 Discontinuity of the electric field at a surface charge

This is a useful result that follows most easily from the integrated forms of the electrostatic

laws.

Consider a surface S with a surface charge density σ(rrr). We will show that at a point

rrr ∈ S, the difference between the electric fields just above S, EEE+(rrr), and just below S,

EEE−(rrr), is

EEE+(rrr)−EEE−(rrr) =
σ(rrr)

ϵ0
n̂̂n̂n , (1.27)

where n̂̂n̂n is the unit normal vector to S pointing to the “above” (“+”) side. Even though there

is no symmetry in this problem, we can still use Gauss’ law in integrated form by choosing

the Gaussian surface to be an arbitrary pill box with surface S ′
and height ε centered on a

point rrr ∈ S. Gauss’ law implies that∮
S′

daaa′ ·EEE(rrr′) =
1

ϵ0
Qencl. . (1.28)

We have ∮
S′

daaa′ ·EEE(rrr′) = An̂̂n̂n ·EEE+(rrr)− An̂̂n̂n ·EEE−(rrr) +O(ε) , (1.29)

1

ϵ0
Qencl. =

1

ϵ0
Aσ(rrr) +O(ε) . (1.30)

Taking the limit ε → 0, we find

n̂̂n̂n · (EEE+(rrr)−EEE−(rrr)) =
1

ϵ0
σ(rrr) . (1.31)

The integrated form of the curl equation is∮
C

dℓℓℓ′ ·EEE(rrr′) = 0 . (1.32)
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Choose C to be a small rectangular loop along n̂̂n̂n and a tangential direction t̂̂t̂t to S. Then∮
C

dℓℓℓ′ ·EEE(rrr′) = Lt̂̂t̂t ·EEE+(rrr)− Lt̂̂t̂t ·EEE−(rrr) +O(ε) . (1.33)

where L is the length of the loop (along the surface), and ε its height. Taking the limit ε → 0,

we find

t̂̂t̂t · (EEE+(rrr)−EEE−(rrr)) = 0 , (1.34)

for any t̂̂t̂t tangent to S.

This proves Eq. (1.27) since contracting Eq. (1.27) with n̂̂n̂n gives Eq. (1.31), and contracting

Eq. (1.27) with t̂̂t̂t gives Eq. (1.34) (using t̂̂t̂t · n̂̂n̂n = 0), and since {n̂̂n̂n, t̂̂t̂t, t̂̂t̂t′} form a basis at rrr for any

two linearly independent tangent vectors t̂̂t̂t, t̂̂t̂t′.

1.4 The electric potential

We have seen that the electrostatic equations imply the existence of an electrostatic potential.

Integrating Eq. (1.12) we obtain

V (rrr)− V (rrr0) = −
rrr∫

rrr0

EEE · dℓℓℓ , (1.35)

independent of the path from rrr0 to rrr. We can add any constant to V : if V ′(rrr) = V (rrr) + C ,

then EEE = −∇∇∇V ′ = −∇∇∇V . This constant is arbitrary and unobservable. E.g., we can choose

it so that V (rrr0) = 0 at any point rrr0. If the charge density does not extend to infinity, then a

common convention is to choose

V (∞) = 0 . (1.36)

The potential has the unit V (Volts). We have N/C = [EEE] = [∇∇∇V ] = V/m, so V = Nm/C = J/C

(Joule per Coulomb). We can rewrite Eq. (1.14) in terms of the potential:

ρ(rrr)

ϵ0
=∇∇∇ ·EEE = −∇∇∇ · (∇∇∇V ) = −∇2V , (1.37)

so

∇2V = −ρ(rrr)

ϵ0
. (1.38)

This is the Poisson equation (called the Laplace equation if the right side is zero). ∇2
is

called the Laplacian. This is a key equation of physics.

We can also rewrite Coulomb’s equation in terms of the potential:

V (rrr) = −
rrr∫

∞

dℓℓℓ′′ ·EEE(rrr′′) = − 1

4πϵ0

rrr∫
∞

dℓℓℓ′′ ·
(∫

d3r′ ρ(rrr′)
rrr − rrr′

|rrr − rrr′|3
)

= − 1

4πϵ0

∫
d3r′ ρ(rrr′)

rrr∫
∞

dℓℓℓ′′ · (rrr − rrr′)

|rrr − rrr′|3 .

(1.39)
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To do the integral over the dℓℓℓ′′, we can choose any path and any coordinate system:

rrr∫
∞

dℓℓℓ′′ · (rrr − rrr′)

|rrr − rrr′|3 =

r=|rrr−rrr′|∫
r=∞

. (1.40)

So

V (rrr) =
1

4πϵ0

∫
d3r′

ρ(rrr′)

|rrr − rrr′| . (1.41)

Note: since we chose V (∞) = 0 in deriving it, this formula does not apply if ρ(rrr) extends to

infinity (it diverges).

1.5 Work and energy in electrostatics

The work required to move a charge Q in a fixed EEE field is

W =

rrr∫
rrr0

dℓℓℓ ·FFF =

rrr∫
rrr0

dℓℓℓ · (−QEEE) = Q
(
V (rrr)− V (rrr0)

)
, (1.42)

independent of the path. This is the energy change in moving Q from rrr0 to rrr. If rrr0 = ∞ and

we set V (∞) = 0, then we have

W = QV (rrr) . (1.43)

This is the potential energy of the charge Q in the given electric field EEE.

What is the energy of a point charge distribution? Say we have charges qi at positions rrri,
i = 1, . . . , n. Can can imagine assmbling them by bringing them together from infinity one

at a time. The work to bring in q1 is W1 = 0, since EEE = 0. For the second charge,

W2 = q2V1(rrr2) =
q2

4πϵ0

q1
|rrr2 − rrr1|

. (1.44)

For the third charge,

W3 = q2
(
V1(rrr3) + V2(rrr3)

)
=

q3
4πϵ0

(
q1

|rrr3 − rrr1|
+

q2
|rrr3 − rrr2|

)
. (1.45)

For n charges, we find

W =
n∑

i=1

Wi =
1

4πϵ0

{
0 +

(
q2q1

|rrr2 − rrr1|

)
+

(
q3q1

|rrr3 − rrr1|
+

q3q2
|rrr3 − rrr2|

)
+ . . .

}

=
1

4πϵ0

n∑
i=1

n∑
j=i+1

qiqj
|rrri − rrrj|

=
1

2

n∑
i=1

qi

(
n∑

j=1,j ̸=i

1

4πϵ0

qj
|rrri − rrrj|

)
.

(1.46)

The term in brackets in the last expression is the potential at rrri due to all other charges j ̸= i,
so

W =
1

2

n∑
i=1

qiV (rrri) . (1.47)
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If we included the potential due to qi at rrri, we would get

1

4πϵ0

qi
|rrri − rrri|

=
1

4πϵ0

qi
0
= ∞ . (1.48)

This is the infinite energy required to assemble a single point charge. We assume that point

charges are given to us “pre-assembled” by nature, so we do not need to do this work.

The energy of a continuous charge distribution can be obtained by taking the continuous

limit of Eq. (1.47):

W =
1

2

∫
d3r ρ(rrr)V (rrr) . (1.49)

Here, V (rrr) is the potential due to all charges ρ(rrr′) for rrr′ ̸= rrr, but

V (rrr) =
1

4πϵ0

∫
rrr′ ̸=rrr

d3r
ρ(rrr′)

|rrr − rrr′| =
1

4πϵ0

∫
d3r

ρ(rrr′)

|rrr − rrr′| , (1.50)

the last integration including the point rrr. They are the same since

lim
ε→0

1

4πϵ0

∫
Bε(rrr)

d3r
ρ(rrr′)

|rrr − rrr′| =
ρ(rrr)

4πϵ0
lim
ε→0

ε∫
0

r2dr

π∫
0

sin θdθ

2π∫
0

dϕ
1

r

=
ρ(rrr)

ϵ0
lim
ε→0

ε∫
0

rdr =
ρ(rrr)

ϵ0
lim
ε→0

ε2

2
= 0 ,

(1.51)

where Bε(rrr) is the ball centered on rrr with radius ε. So for continuous charge distributions

we make no mistake by including the point rrr in the integration.

We can rewrite Eq. (1.49) using Eq. (1.14),

W =
ϵ0
2

∫
d3r (∇∇∇ ·EEE)V =

ϵ0
2

∫
d3r
[
∇∇∇ · (EEEV )−EEE · ∇∇∇V

]
=

ϵ0
2

∮
S

daaa · (EEEV ) +
ϵ0
2

∫
d3r E2 .

(1.52)

Here, S is an arbitrarily large sphere. Assuming V (∞) = 0 (ρ has compact support), the first

integral in the last line vanishes and we have simply

W =
ϵ0
2

∫
d3r E2 . (1.53)

The electric field carries energy density
ϵ0
2
E2

. This interpretation becomes more convincing

in electrodynamics when radiation is considered.

Note that EEE = EEE1 +EEE2 does not imply W = W1 +W2:

W =
ϵ0
2

∫
d3r E2 =

ϵ0
2

∫
d3r (EEE1 +EEE2)

2

=
ϵ0
2

∫
d3r (E2

1 + 2EEE1 ·EEE2 + E2
2) = W1 +W2 + ϵ0

∫
d3rEEE1 ·EEE2 .

(1.54)
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1.6 Conductors

All
3
normal matter

4
in nature is made up of positively and negatively charged particles.

Insulators are materials (collections of normal matter held together somehow) inside of

which charges do not move in repsonse to an arbitrarily small applied electric field.

Conductors are materials inside of which charges are free to move. The mobile charges are

called the conduction charges. The main example are solid metals, in which the conductions

charges are electrons, though there are other examples as well. “Free to move” means that

if you apply an arbitrarily small electric field, charges will move in response in the interior

of the material. The charges are confined to the material. This assumes nothing about how

quickly the charges respond (measured by the resistivity of the material). In practice, if the

applied electric field is large enough, a couple of things can happen: (i) the conductor can

run out of mobile charges, in which case it becomes an insulator, and/or (ii) the conduction

charges can be pulled out of the material entirely. (Likewise, if the applied electric field

in an insulator is large enough, some charges in its interior can be pulled free to become

conduction charges.)

In static (time-independent) situations, the charges must move inside the conductor in such

a way as to make the total electric field zero in the interior of the conductor. If this wasn’t the

case, then there would be a non-zero electric field inside the conductor, and charges would

move, so it wouldn’t be static. It follows that ρ = 0 inside (static) conductors, because of

Eq. (1.14). The only net charge can be on the surface of the conductor. It follows that the

potential is constant inside the conductor, because

V (bbb)− V (aaa) = −
bbb∫

aaa

EEE · dℓℓℓ = 0 (1.55)

as long as there is a path connecting aaa and bbb inside the conductor. If the conductor is in a

region (volume) R with surface S = ∂R with unit normal n̂̂n̂n, then just outside S the electric

field is perpendicular to S, because if the electric field has any component tangent to S, then

it will cause conduction charges to move along S inside the conductor to cancel it.

We always assume the net charge of the conductor is zero. Note that since charge move to

the surface of the conductor, there will be a separation of positive and negative charges. If the

applied electric field is non-uniform, this will mean that there is a net force on the conductor.

We assume that something (e.g. some insulators) is holding the conductor in place.

Cavities are empty volumes in the interior of the conductor – i.e., completely surrounded

by conductor. If there are no charges inside the cavity, then ∇∇∇ ·EEE = 0 there, so the electric

field lines (flux along tiny cylinders) must reach across the cavity. But then

∮
C
EEE · dℓℓℓ > 0,

which is a contradiction. We conclude that the electric field must vanish inside an empty

cavity and there are no surface charges on the cavity surface, and the potential is constant

inside the cavity.

3
Except: neutronium, found in neutron stars, and relativistic matter made up of photons (light, or electromag-

netic radiation) and neutrinos

4
The universe consists of about 5% normal matter, 27% dark matter, and 68% dark energy.
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If there are charges inside the cavity, then ∇∇∇ ·EEE ̸= 0 inside and the above argument fails:

we can get

∮
C
EEE · dℓℓℓ = 0. We can choose any closed surface Σ inside the conductor and

surrounding the cavity. Then ∮
Σ

EEE · daaa = 0 =
1

ϵ0
Qencl. . (1.56)

But the enclosed charge is the sum of the surface charge and the charge inside the cavity,

so the total charge induced on the surface of the cavity equals minus the total charge inside the

cavity.

We can use the boundary condition (1.27) to relate the surface charge and the potential.

At the surface of the conductor, take n̂̂n̂n to point out of the conductor. Then EEE− = 0, since

the electric field vanishes inside the conductor. Thus, at the surface of a conductor the field

outside is

EEE =
σ

ϵ0
n̂̂n̂n . (1.57)

Using EEE = −∇∇∇V this implies ∂V/∂n = n̂̂n̂n · ∇∇∇V = −σ/ϵ0, or

σ = −ϵ0
∂V

∂n
. (1.58)

These will be useful formulas for determining the surface charge σ induced on conductors.

Recalling that FFF = qEEE, we get that the pressure (the force per area) on a surface charge is

fff = σEEE. But since there is a discontinuity in the electric field at a surface charge one has to

be a bit careful. The right answer is

fff =
σ

2

(
EEE+ +EEE−

)
, (1.59)

i.e., the average of the fields above and below the surface. (See Griffiths for the argument.)

For conductor, since EEE− = 0, we get that the pressure on a conductor is

fff =
σ

2
EEE =

σ2

2ϵ0
n̂̂n̂n =

ϵ0
2
E2n̂̂n̂n . (1.60)

This is an outward-pointing electrostatic pressure on the surface of the conductor. The net

force on a conductor in an electric field (assuming this pressure does not rip the conductor

apart) is

FFF =

∮
S

daaafff =
1

2ϵ0

∮
S

daaa σ2 =
ϵ0
2

∮
S

daaaE2 . (1.61)

To find this, we need to solve for σ or EEE everywhere at the surface S of the conductor.

Finally, we discuss capacitors. Consider two conductors, given equal and opposite excess

charges ±Q. Then each capacitor will be at some constant potential, call them V±. The

capacitance is defined as

C ≡ Q

V
, (1.62)
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where V = V+ − V− (only potential differences have any meaning, anyway), and with units

F = C/V (“Farad” = “Coulomb per Volt”). Capacitance is an interesting quantity because it is

independent of Q – if you double Q, you double V – so it depends only on the geometry of

the two conductors.

The electrostatic energy stored in a capacitor holding charge Q can be computed by build-

ing up Q gradually by moving a small charge dq from one conductor to the other. The work

done in this step is dW = V dq = (q/C) dq. So the total work (energy) is

W =

Q∫
0

dq
q

C
=

1

2

Q2

C
, (1.63)

using that C is constant (independent of q).

1.7 Laplace’s equation

The potential satisfies Poisson’s equation (1.38). If we know ρ(rrr), a solution is

V (rrr) =
1

4πϵ0

∫
d3r′

ρ(rrr′)

|rrr − rrr′| , (1.64)

with V (∞) = 0. We want to show that this is the only solution (with V (∞) = 0). The key

is to first consider the equation without charges (Laplace’s equation):

∇2V (rrr) = 0 . (1.65)

Then the above solution is simply V = 0. We want to show that this is the only solution

with V (∞) = 0. We will prove first that V (rrr) is the average of its values over any sphere

SR(rrr) of radius R centered on rrr:

V (rrr) =
1

4πR2

∮
SR(rrr)

V da . (1.66)

To show this, we choose rrr to be the origin of a spherical coordinate system (r′, θ′, ϕ′). Then,

by Eq. (1.65),

0 =

∫
BR

d3r′∇2V (rrr′) =

∫
BR

daaa′ · ∇∇∇′V (rrr′) =

∫
BR

da′r̂̂r̂r′ · ∇∇∇′V (rrr′)

=

∫ ∫
R2 sin θ′dθ′dϕ′∂V

∂r
V (rrr′)

∣∣∣∣
r′=R

= R2 ∂

∂R

(∫ ∫
sin θ′dθ′dϕ′V (Rr̂̂r̂r′)

)

= 4πR2 ∂

∂R

[
R2
∫ ∫

sin θ′dθ′dϕ′V (Rr̂̂r̂r′)

4πR2

]
= 4πR2 ∂

∂R

[∮
SR

da′V

4πR2

] (1.67)
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where BR is a ball with radius R at the origin, SR = ∂BR, and we used the divergence

theorem in the second step. It follows that the expression in square brackets is independent

of R. In the limit R → 0, by Taylor expansion, V (rrr′) = V (0) +O(R), so

lim
R→0

∮
SR

da′V

4πR2
= lim

R→0

4πR2[V (0) +O(R)]

4πR2
= V (0) , (1.68)

and so ∮
SR

da′V

4πR2
= V (0) . (1.69)

This means that V (rrr) can have no local maxima or minima. Therefore, the extreme values

of V (rrr) must occur on the boundaries.

Next, we prove the first uniqueness theorem: The solution to Laplace’s equation in some

volume R is uniquely determind if V is specified on the boundary surface S = ∂R. Here

is the proof: assume that there are two solutions V1 and V2 with the same boundary values.

Then ∇2V1 = ∇2V2 = 0, so ∇2(V1 − V2) = 0, and V1 − V2 satisfies Laplace’s equation.

So V1 − V2 cannot have local maxima or minima except on S . But V1 − V2 vanishes on the

surface, so we must have V1 = V2.

In particular, if R is all space, then S the “sphere at infinity”, and if V (∞) = 0, then V
must vanish everywhere.

Now consider putting in charges ρ(rrr), so the potential satisfies Eq. (1.38). We fix ρ(rrr) and

the boundary values V |S . Then V is unique. Here is the proof: assume V1 ̸= V2 are two

solutions. Then V1 − V2 satisfies Laplace’s equation, so we can use the first uniqueness

theorem to find V1 = V2.

Now we prove the second uniqueness theorem: in a region R surrounded by conductors

with specified total charges, Qi, on each conductor, and with a specified additional fixed

charge density ρ(rrr), the electric field is uniquely determined. Here is the proof: suppose

there are two solution EEE1, EEE2 in R:

∇∇∇ ·EEE1 =
ρ

ϵ0
, ∇∇∇ ·EEE2 =

ρ

ϵ0
. (1.70)

If Si are surfaces enclosing only the charges Qi, and S0 a surface enclosing all charges, the

Gauss’ theorem tells us that∮
Si

EEE1 · daaa =
Qi

ϵ0
,

∮
Si

EEE2 · daaa =
Qi

ϵ0
, (1.71)

∮
S0

EEE1 · daaa =
Qtotal

ϵ0
,

∮
S0

EEE2 · daaa =
Qtotal

ϵ0
. (1.72)

Consider EEE = EEE1 −EEE2. Then ∇∇∇ ·EEE = 0 and

∮
Si
EEE · daaa = 0 for all i. On Si, V1 and V2 are

constants, so

V |Si
= (V2 − V1)|Si

= V (i)
(1.73)
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is constant. It follows that

0 =
∑
i

V (i)

∮
Si

EEE · daaa =

∮
S0

VEEE · daaa =

∫
R

d3r∇∇∇ · (VEEE)

=

∫
R

d3r
(
∇∇∇V ·EEE + V∇∇∇ ·EEE

)
= −

∫
R

d3r E2 .

(1.74)

But E2 ≥ 0 everywhere, so the last integral being zero implies that EEE = 0 in R.

1.8 Method of images

The above uniqueness theorems tell us that if we can just find one solution, then we are done.

They do not tell us how to find a solution. If we are given a fixed charge distribution, ρ(rrr),
then the solution (with V (∞) = 0) is given by Eq. (1.64). But in a problem with conductors,

we only know the total charges Qi on the conductors, and not the static surface charge dis-

tributions σ(rrr) on each conductor. The second uniqueness theorem then tells us there is a

unique answer. How to find it?

In a very few special cases there is a trick, the “method of images”, that allows us to get the

solution. Two cases where it works are for an infinite conducting plane and for a conducting

sphere. We will only discuss the plane here, and will leave the sphere for the problem set.

So consider a conductor filling z ≤ 0, with a charge q a distance d above. What is the

induced charge σ(rrr) on the surface (z = 0) and V (rrr) above the surface? We know that

the potential is constant on the conductor and, since the overall additive constant in V is

undetermined, we can choose Vz=0 = 0. Then, also, V → 0 at infinity. So we want to solve

for V in the region R = {z > 0} with V = 0 on ∂R, and with a point charge at rrr = dẑ̂ẑz. The

uniqueness theorem implies the solution is unique, so if we can find any V satisfying these

boundary conditions, then we are done.

Trick: put an “imaginary charge” −q at rrr = −dẑ̂ẑz. The image charge is not real: we have re-

moved the conductor and put this fictitious charge in its place. Since these fictitious changes

are not in R, we have not messed up the problem there.

From the reflection symmetry z → −z it should be clear that the potential of the image

charge, −q, will be equal and opposite to that of q on z = 0:

V (rrr) =
1

4πϵ0

(
q

|rrr − dẑ̂ẑz| +
−q

|rrr + dẑ̂ẑz|

)
=

q

4πϵ0

(
1

|xx̂̂x̂x+ yŷ̂ŷy + (z − d)ẑ̂ẑz| −
1

|xx̂̂x̂x+ yŷ̂ŷy + (z + d)ẑ̂ẑz|

)
,

(1.75)

and so

V (x, y, z = 0) =
q

4πϵ0

(
1√

x2 + y2 + d2
− 1√

x2 + y2 + d2

)
= 0 . (1.76)

So we have found our solution! The induced surface charge is

σ = −ϵ0
∂V

∂n
= −ϵ0

∂V

∂z

∣∣∣∣
z=0

= . . . =
−qd

2π(x2 + y2 + d2)3/2
. (1.77)
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The total induced charge is

Q =

∫
da σ =

−qd

2π

∫
dx dy

2π(x2 + y2 + d2)3/2
= . . . = −q . (1.78)

The electric field is

EEE =

 q
4πϵ0

(
rrr−dẑ̂ẑz

|rrr−dẑ̂ẑz|3 − rrr+dẑ̂ẑz
|rrr+dẑ̂ẑz|3

)
z > 0 ,

0 z < 0 .
(1.79)

Note that the electric field for z < 0 is not the same as for the “image problem”! The force

on q is

fff = qEEE(dẑ̂ẑz) = q
−q

4πϵ0

ẑ̂ẑz

(2d)2
=

−q2ẑ

16πϵ0d2
. (1.80)

The energy stored is

W =
ϵ0
2

∫
d3r E2 =

ϵ0
2

∫
z>0

d3r E2 . (1.81)

But, by symmetry, q and −q gives |EEE(x, y,−z)| = |EEE(x, y, z)|, so

W =
ϵ0
2

(
1

2

∫
z>0

d3r E2
imag.

)
=

1

2
Wimage problem =

1

2

( −1

4πϵ0

q2

2d

)
=

−q2

16πϵ0d
. (1.82)

1.9 Multipole expansion

2 Electric fields in matter

3 Magnetostatics

The magnetic field BBB(rrr) is defined by noticing that a charge Q at rrr moving with velocity vvv
experiences a force

FFF = Q
(
EEE + vvv ×BBB

)
. (3.1)

This is the Lorentz force law; it defines both EEE and BBB.

It implies that magentic forces do no work on charged particles because the force is per-

pendicular to the velocity of the particle:

dWmag. = FFFmag. · dℓℓℓ = Q(vvv ×BBB) · (vvvdt) = 0 . (3.2)

FFFmag. still accelerates particles, but only by changing direction, not speeding up or slowing

down. So motion in magnetic fields tends to be in circles.
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v

da⊥

ρ

Figure 1: Flow of charge through a surface.

3.1 Currents and current densities

If some charges with density ρ(rrr, t) are moving with velocities vvv(rrr, t), then the charge current

density is

JJJ(rrr, t) = ρ(rrr, t)vvv(rrr, t) . (3.3)

It has dimension (charge per volume) times (length per time), so charge per area per time,

with units (C/s/m
2
). The units of the current (charge per time) C/s = A is called “Ampère”.

In materials, we can have different types of charges moving at different velocities simulta-

neously. E.g. electrons with ρe(rrr, t), vvve(rrr, t) and ions (nuclei) with ρi(rrr, t), vvvi(rrr, t). Then the

total charge and current densities are ρ = ρe + ρi and JJJ = ρevvve + ρivvvi, respectively. So, in

general JJJ ̸= ρvvv! E.g. in a metal ρe = −ρi, so ρ = 0, but vvve ̸= 0 (electrons move) and vvvi = 0
(nuclei don’t move), so JJJ = ρevvve.

VS = ∂V

n̂

Figure 2: A volume and its boundary.

Charge is conserved: any net charge that flows in to / out of a volume V will increase /

decrease the charge inside. The net charge flowing out of V per unit time is (S = ∂V) is∮
S

JJJ · n̂̂n̂n da =

∮
S

JJJ · daaa . (3.4)

The decrease in net charge inside V per unit time is

d

dt

∫
V

ρ d3r = −
∫
V

∂ρ

∂t
d3r . (3.5)

Charge conservation then means

−
∫
V

∂ρ

∂t
d3r =

∮
S

JJJ · daaa =

∫
V

d3r (∇∇∇ · JJJ) . (3.6)
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Since this is valid for all volumes V , we can also write the conservation equation in differen-

tial form:

−∂ρ

∂t
=∇∇∇ · JJJ . (3.7)

For a continous, steady stream of moving charged particles we have vvv(rrr, t) = vvv(rrr) and

ρ(rrr, t) = ρ(rrr). This leads to “steady” or “stationary” currents JJJ(rrr, t) = JJJ(rrr) and static

charge densities. So for steady currents and static charge densities we have ∂tJJJ = ∂tρ = 0,

and charge conservation becomes

∇∇∇ · JJJ = 0 . (3.8)

So we cannot choose steady current densities arbitrarily.

K

n(r)

ℓ̂1

ℓ̂2
S = {n(r) = 0}

Figure 3: Surface current density.

If moving charges are confined to a surface S, then JJJ(rrr, t) =KKK(rrr, t)δ(n), where the delta

function restricts the current to the surface S, i.e., S = {n(rrr) = 0}. KKK(rrr, t) is a surface

current density, with dimensions (charge per length per time) and units A/m.

I

n2(r)

ℓ̂
C = {n1(r) = n2(r) = 0}

n1(r)

Figure 4: Line current density.

If moving charges are confined to a curve C , then JJJ(rrr, t) = III(rrr, t)δ(n1)δ(n2), where the

delta functions restrict the current to the curve C , i.e., C = {n1(rrr) = n2(rrr) = 0}. III(rrr, t) is

a line current density or simply current, with dimensions (charge per time) and units A.

For these to make sense (charge conservation) the charges must flow along (tangential to)

the surface S (KKK · n̂̂n̂n = 0 ⇒KKK = k1ℓℓℓ1 + k2ℓℓℓ2) or the curve C (III · n̂̂n̂n1 = III · n̂̂n̂n2 = 0 ⇒ III = Iℓℓℓ).
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Steady-current conservation, ∇∇∇ · JJJ = 0, implies

0 =∇∇∇∥ ·KKK = ∂ℓ1K1 + ∂ℓ2K2 , (3.9)

0 =∇∇∇∥ · III = ∂ℓI . (3.10)

In particular, it follows that I is constant. Steady line currents, namely constant currents

down wires, are the main experimental realization.

For a moving point charge q at rrr = rrr0(t), the current density is JJJ(rrr, t) = qvvv(rrr, t)δ(rrr −
rrr0(t)). Even if the velocity of the particle is constant, vvv(rrr, t) = vvv(rrr), we cannot have

∂tJJJ(rrr, t) = 0! So there is no such thing as a steady current of a single particle.

We can summarize this as follows. For charges:∑
i

(·)qi ∼
∫
C

(·)λ dℓ ∼
∫
S

(·)σ da ∼
∫
V

(·)ρ d3r , (3.11)

and for currents: ∑
i

(·)qivvvi ∼
∫
C

(·)III dℓ ∼
∫
S

(·)KKK da ∼
∫
V

(·)JJJ d3r . (3.12)

Note that ∫
C

(·)III dℓ =
∫
C

(·)I dℓℓℓ , (3.13)

but ∫
S

(·)KKK da ̸=
∫
S

(·)K daaa . (3.14)

3.2 Magnetic force on a current-carrying wire

Assume a wire is carrying a steady current III = λvvv = Iℓ̂̂ℓ̂ℓ. The magnetic force on a small

section of the wire with charge dq = λdℓ is

FFFmag =

∫
C

(vvv ×BBB)dq =

∫
C

(λvvv ×BBB)dℓ =

∫
C

(III ×BBB)dℓ = I

∫
C

(dℓℓℓ×BBB) . (3.15)

It is found experimentally that a steadily moving q at position rrr′ with velocity vvv creates a

magnetic field at the point rrr. This is the Biot-Savart law:

BBB(rrr, t) =
µ0

4π

qvvv × (rrr − rrr′)

|rrr − rrr′|3 . (3.16)

This law is only approximately true: rrr′ = rrr0 + vvvt, with constant velocity vvv that is small

compared to the speed of light. It becomes exact if rrr′(t) → rrr′(tr) where tr is the “retarded

time” given implictly by tr = t − |rrr − rrr′(tr)|/c. In the limit c → ∞, tr = t. One can
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compare this to Coulomb’s law (1.13) which also only applies if the particle’s velocity is

small compared to the speed of light.

Here, the permeability of free space is defined as µ0 ≡ 4π × 10−7
NA

−2
exactly. (It defines

the relation between A and C). The unit of the magnetic field is Tesla T = N/(Am) or Gauss (1

Gauss = 10−4
T). Also: µ0ϵ0 = c−2

(exactly) and c ≡ 299, 792, 458m/s (exactly; this defines

the meter).

Note that

qvvv × (rrr − rrr′)

|rrr − rrr′|3 =

∫
d3r′

qvvv(rrr′)δ(rrr′ − rrr0(t))× (rrr − rrr′)

|rrr − rrr′|3 =

∫
d3r′

JJJ(rrr′)× (rrr − rrr′)

|rrr − rrr′|3 , (3.17)

so the Biot-Savart law for a general current density is

BBB(rrr, t) =
µ0

4π

∫
d3r′

JJJ(rrr′)× (rrr − rrr′)

|rrr − rrr′|3 . (3.18)

This is exact for steady currents (no time dependence). For a steady line current, III = Idℓℓℓ,
we have

BBB(rrr, t) =
µ0

4π
I

∫
dℓℓℓ′ × (rrr − rrr′)

|rrr − rrr′|3 . (3.19)

There is something funny going on here: moving charges create a BBB field, but motion is

relative: one can go to an inertial frame where the charge is stationary. Does the BBB field

go away? Yes! Electric and magnetic fields are frame dependent: different inertial observers

will see different values ofEEE andBBB! (It turns out (special relativity) thatEEE ·BBB and E2−c2B2

are frame-independent.)

3.3 Differential equations satisfied by the magnetic field

Starting from the Biot-Savart law for currents, Eq. (3.18), we find

∇∇∇ ·BBB =
µ0

4π

∫
d3r∇∇∇rrr ·

JJJ(rrr′)× (rrr − rrr′)

|rrr − rrr′|3 = 0 . (3.20)

Now we use this to calculate

∇∇∇×BBB =
µ0

4π

∫
d3r∇∇∇rrr ×

JJJ(rrr′)× (rrr − rrr′)

|rrr − rrr′|3

=
µ0

4π

∫
d3r

{
JJJ(rrr′)

(
∇∇∇rrr ·

rrr − rrr′

|rrr − rrr′|3
)
− rrr − rrr′

|rrr − rrr′|3
(
∇∇∇rrr · JJJ(rrr′)

)
+

(
rrr − rrr′

|rrr − rrr′|3 · ∇∇∇rrr

)
JJJ(rrr′)−

(
JJJ(rrr′) · ∇∇∇rrr

) rrr − rrr′

|rrr − rrr′|3
}
.

(3.21)

In the first term of the last expression, we have

∇∇∇rrr ·
rrr − rrr′

|rrr − rrr′|3 = 4πδ(rrr − rrr′) . (3.22)
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The second and third terms vanish, and also the last term is zero, since

−
(
JJJ(rrr′) · ∇∇∇rrr

) rrr − rrr′

|rrr − rrr′|3 = +
(
JJJ(rrr′) · ∇∇∇rrr′

) rrr − rrr′

|rrr − rrr′|3

= +
(
JJJ(rrr′) · ∇∇∇rrr′

) x− x′

|rrr − rrr′|3 x̂̂x̂x+ . . .

= +∇∇∇rrr′ ·
[

x− x′

|rrr − rrr′|3JJJ(rrr
′)

]
x̂̂x̂x− x− x′

|rrr − rrr′|3 x̂̂x̂x∇∇∇rrr′ · JJJ(rrr′) + . . . .

(3.23)

The second term vanishes due to current conservation, and integrating over all space we

have ∫
d3r′

(
− JJJ(rrr′) · ∇∇∇rrr

) rrr − rrr′

|rrr − rrr′|3 =

∫
S∞

[
daaa · x− x′

|rrr − rrr′|3JJJ(rrr
′)

]
x̂̂x̂x+ . . . = 0 ,

(3.24)

where we used the divergence theorem and integrated over a sphere with very large radius

where the integrand vanishes (similar for the terms proportional to ŷ̂ŷy and ẑ̂ẑz). In total, we find

Ampère’s law:

∇∇∇×BBB = µ0JJJ . (3.25)

Integrating over an arbitrary open surface S and using Stokes’ theorem, we find∮
C

BBB · dℓℓℓ = µ0

∫
S

JJJ · daaa ≡ µ0Iencl. , (3.26)

for anyC and anyS such thatC = ∂S, and Iencl. is the total current passing throughS. Just as

with the integral form of Gauss’ law (1.9), the integral form of Ampère’s law is useful when

the problem has a lot of symmetry, such as infinite straight lines, infinite planes, infinite

solenoids, circular solenoids (“toroids”).

3.4 The vector potential

Reminder: We have seen that since the electric field satisfies ∇∇∇ ×EEE = 0, we could find an

electric potential V such that

EEE = −∇∇∇V . (3.27)

The potential is not unique: any V ′ = V + c, where c is a constant scalar field, gives the

same electric fieldEEE. If we use Eq. (3.27) in Gauss’ law,∇∇∇·EEE = ρ/ϵ0, we obtain the Poisson

equation, ∇2ρ = −ρ/ϵ0.
A similar procedure works for magnetic fields as follows. Since the divergence of the

magnetic field vanishes, ∇∇∇ ·BBB = 0, we can find a magnetic vector potentialAAA such that

BBB =∇∇∇×AAA . (3.28)

The vector potential is also not unique. Adding to AAA the gradient of any scalar field,

AAA′ = AAA+∇∇∇λ(rrr) (3.29)
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gives the same magnetic field: ∇∇∇×AAA′ =∇∇∇×AAA+∇∇∇×∇∇∇λ(rrr) = BBB.

Ampère’s law, expressed in terms of the vector potential, becomes µ0JJJ = ∇∇∇ × BBB =
∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA) −∇2AAA. This can be simplified using the “gauge freedom” (3.29)

to choose the vector potential such that ∇∇∇ ·AAA = 0 (this is called Coulomb gauge).

(That this is always possible can be seen as follows. If∇∇∇·AAA ̸= 0, we defineAAA′ = AAA+∇∇∇λ(rrr),
with λ chosen such that ∇2λ = −∇∇∇ ·AAA. This is just Poisson’s equation, with source term

∇∇∇ ·AAA. Then we have ∇∇∇ ·AAA′ =∇∇∇ ·AAA+∇2λ =∇∇∇ ·AAA−∇∇∇ ·AAA = 0.)

In Coulomb gauge, Ampère’s law becomes simply

∇2AAA = −µ0JJJ . (3.30)

This is, component by component, just a version of Poisson’s equation. Taking over the

general form of the solution, we find the vector potential in terms of the current densities,
5

AAA(rrr) =
µ0

4π

∫
d3r′

JJJ(rrr′)

|rrr − rrr′| . (3.31)

This is not as useful as the electric potential (one reason being that it is still a vector), but

the vector potential is useful when formulating electrodynamics in a Lorentz-invariant way,

and it is essential in the quantization of electrodynamics.

One of the main applications is the multipole expansion.

3.4.1 Multipole expansion of the vector potential

We can derive the multipole expansion by using the identity

1

|rrr − rrr′| =
1√

r2 + (r′)2 − 2rr′ cos θ′
=

1

r

∞∑
ℓ=0

(
r′

r

)ℓ

Pℓ(cos θ
′) (3.32)

in Eq. (3.31). Here, Pℓ are the Legendre polynomials, and cos θ′ ≡ r̂̂r̂r · r̂̂r̂r′. We obtain

AAA(rrr) =
µ0

4π

∞∑
ℓ=0

1

rℓ+1
MMM ℓ(r̂̂r̂r) , (3.33)

where

MMM ℓ(r̂̂r̂r) ≡
µ0

4π

∫
d3r′(r′)ℓJJJ(rrr′)Pℓ(cos θ

′) (3.34)

is the ℓth magnetic multipole.

There are no magnetic charges (as far as we know), so the magnetic monopole always

vanishes:

MMM0(r̂̂r̂r) =
µ0

4π

∫
d3r′JJJ(rrr′) = 0 . (3.35)

(This can be shown as follows. For steady currents we have ∇∇∇ · JJJ = 0. Let’s consider

the volume integral over the divergence of the current density times an arbitrary function

5
When using this expression, we will always tacitly assume that the currently densities vanish sufficiently

rapidly at infinity, such that the integral exists.
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f . Since the current is localized, using the divergence theorem and choosing the boundary

sufficiently far from the current density, we see that the integral must be zero:

0 =

∫
d3r′ ∇∇∇′ · (fJJJ) =

∫
d3r′ (f∇∇∇′ · JJJ + JJJ · ∇∇∇′f) . (3.36)

It follows, since ∇∇∇′ · JJJ = 0, that

0 =

∫
d3r′ JJJ · ∇∇∇′f , (3.37)

for any function f(rrr′). Now we choose f = x′
i, i = 1, 2, 3, so that ∇∇∇′f = r̂̂r̂ri, the unit vector

in i-direction. We find that

0 =

∫
d3r′ Ji , (3.38)

and so MMM0(r̂̂r̂r) = 0.)

For the special case of a current loop, we can write the volume integral as a line integral

over the current loop, and the absence of a magnetic monopole implies

0 =

∫
d3r′ JJJ(rrr′) =

∮
C

III · dℓℓℓ′ (3.39)

and so, since this is valied for any current,∮
C

dℓℓℓ′ = 0 . (3.40)

We will now consider the next term in the expansion, the magnetic dipole:

MMM1(rrr) =

∫
d3r′ r′P1(cos θ

′)JJJ(rrr′) =

∫
d3r′ r′ cos θ′JJJ(rrr′) =

∫
d3r′ r′(r̂̂r̂r · r̂̂r̂r′)JJJ(rrr′)

=

∫
d3r′ (r̂̂r̂r · rrr′)JJJ(rrr′) .

(3.41)

Let’s consider the ith Cartesian component of this equation:

(M1)i = r̂̂r̂r ·
∫

d3r′ rrr′Ji(rrr
′) =

1

r

3∑
j=1

xj

∫
d3r′ x′

jJi(rrr
′) . (3.42)

Now we use Eq. (3.37) with f = x′
ix

′
j to find

0 =

∫
d3r′ JJJ(rrr′) · ∇∇∇(x′

ix
′
j) =

∫
d3r′ JJJ(rrr′) · (x′

ir̂̂r̂r
′
j + x′

jr̂̂r̂r
′
i)

=

∫
d3r′

[
x′
iJj(rrr

′) + x′
jJi(rrr

′)
]
.

(3.43)
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We can use this to write∫
d3r′ x′

jJi(rrr
′) =

1

2

∫
d3r′

[
x′
jJi(rrr

′)− x′
iJj(rrr

′)
]
. (3.44)

Inserting this into the expression for (M1)i, Eq. (3.42), gives

(M1)i = − 1

2r

3∑
j=1

xj

∫
d3r′

[
x′
iJj(rrr

′)− x′
jJi(rrr

′)
]
= − 1

2r

3∑
j=1

xjϵijk

∫
d3r′

(
rrr′ × JJJ(rrr′)

)
k

= − 1

2r

[
rrr ×

∫
d3r′

(
rrr′ × JJJ(rrr′)

)]
i

,

(3.45)

and, hence,

MMM1 = −1

2
r̂̂r̂r ×

∫
d3r′

(
rrr′ × JJJ(rrr′)

)
. (3.46)

It is conventional to define the magnetic moment density

MMM(rrr′) ≡ 1

2
rrr′ × JJJ(rrr′) , (3.47)

and the magnetic moment

mmm ≡ 1

2

∫
d3r′

(
rrr′ × JJJ(rrr′)

)
, (3.48)

such that MMM1 = −r̂̂r̂r ×mmm. (This is the analog of the electric dipole moment ppp.)

For a current loop C we have

MMM1 = −1

2
r̂̂r̂r ×

(
I

∮
C

rrr′ × dℓℓℓ′
)

=
I

2
r̂̂r̂r ×

(∮
C

dℓℓℓ′ × rrr′
)

(3.49)

and

mmm =
I

2

∮
C

rrr′ × dℓℓℓ′ ≡ I

∫
S

daaa , (3.50)

where S is any surface with ∂S = C .

A “pure” dipole can be obtained in the limits

∫
S
daaa → 0 and I → ∞.

If the magnetic dipole is aligned with the z direction, mmm = mẑ̂ẑz = m(cos θr̂̂r̂r− sin θθ̂̂θ̂θ), then

AAAdipole(rrr) =
µ0

4π

m sin θ

r2
φ̂̂φ̂φ , (3.51)

and using Eq. (B.6),

BBBdipole(rrr) =∇∇∇×AAAdipole(rrr) =
µ0m

4πr3
(
2 cos θ r̂̂r̂r + sin θ θ̂̂θ̂θ

)
=

µ0

4πr3
[
3(mmm · r̂̂r̂r)r̂̂r̂r −mmm

]
. (3.52)
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Figure 5:The field of a magnetic dipole. [Image credit: Geek3 - Own work, CC BY-SA 3.0 ]

C

S

Figure 6: Boundary conditions on the magnetic field and vector potential.

3.5 Boundary conditions onB and A

We consider a surface current density kkk. We must have ∇∇∇ ·BBB = 0, and hence∫
S

BBB · daaa = 0 . (3.53)

Taking the limit of a very small surface, we see that the orthogonal components of the mag-

netic field above and below the surface must cancel each other:

BBB⊥
above

= BBB⊥
below

. (3.54)

Similarly, we must have ∇∇∇×BBB = µ0JJJ , and hence∮
C

BBB · dℓℓℓ = Iencl. , (3.55)

where Iencl. denotes the current flowing through the loop. Taking the limit of a very small

loop, we see that the difference of the parallel components of the magnetic field above and
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below the surface must add up to µ0KKK :

BBB
∥
above

−BBB
∥
below

= µ0KKK . (3.56)

These two conditions can be combined into the single equality

BBBabove −BBBbelow = µ0

(
KKK × n̂̂n̂n

)
, (3.57)

where n̂̂n̂n is a normal vector orthogonal to the surface. For the vector potential, this implies

∂

∂n
AAAabove −

∂

∂n
AAAbelow = −µ0KKK . (3.58)

(We can compare this to the case of the electric field. For a discontinuity at a surface

charge, we had

EEEabove −EEEbelow =
σ

ϵ0
n̂̂n̂n , (3.59)

∂V

∂n
EEEabove −

∂V

∂n
EEEbelow = − σ

ϵ0
.) (3.60)

4 Magnetic fields in matter

Magnetism of matter is ultimately a quantum-mechanical phenomenon. We can gain some

understanding from a classical description. In this picture, atoms or molecules of matter can

be approximated as “point dipoles”mmm. Without applied magnetic field, some material’s atoms

have no dipole moment (this happens mostly in atoms with even numbers of electrons), but

most have “permanent magentic dipole moments”. We can think of these dipole moments

as due to electrons orbiting the nuclei, forming somthing like small current loops, or due

to the electron spins (intrinsic angular momentum of electrons). Both really need quantum

mechanics and relativity to understand.

Diamagnetism Diamagnetic material has mmm = 0 when BBB = 0. An applied magnetic field

induces mmm ∝ −BBB (pointing opposite to B).

Paramagnetism Paramagnetic material has atoms with permanent dipoles mmm ̸= 0 when

BBB = 0. They are aligned (or randomly distributed) such that the net (average) dipole moment

vanishes for external field BBB = 0. The force and torque on a dipole iin an applied magnetic

field BBB are given by FFF = (mmm · ∇∇∇)BBB and NNN = mmm × BBB, respectively. NNN tends to rotate mmm
to be parallel to BBB, and the average magnetic dipole moment is now nonzero, ⟨mmm⟩ ̸= 0. So

paramagnetic material tends to develop a net dipole momentmmm ∝ +BBB (aligning with applied

BBB). Paramagnetism tends to be much stronger than diamagnetism.
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Ferromagnetism Ferromagnetic material has permanent dipoles that do not cancel or av-

erage; ⟨mmm⟩ ̸= 0 even if BBB = 0. Many ferromagnetic solids look paramagnetic at large scales

because ferromagnetic domains are randomly misaligned, so average ⟨mmm⟩ = 0. Applying

BBB leads to paramagnetic response as mmms tend to align. Sufficiently strong external mag-

netic fields can move or merge domains so they are mostly aligned. Then, when the external

field turns off, the material remains feromagnetic (“hysteresis” = history dependence). The

reason that permanent magnets (ferromagnetism) occurs is that it is energetically favorable

for neighbouring dipoles to align: E(↑↑) < E(↑↓). The reason is essentially quantum me-

chanical. There are situations in which the reverse is true and dipoles tend to “anti-align”:

↑↓↑↓↑↓↑↓. Then ⟨mmm⟩ = 0 if BBB = 0 and the material looks paramagnetic. This is called

anti-ferromagnetism.

At high temperatures, thermal motion tends to randomize dipoles overcoming the ferro-

magnetic alignment.

4.1 Linear media

Here, we consider diamagnetic and paramagnetic materials with small applied external mag-

netic fields. Then we expect a linear response: ⟨mmm⟩ ∝ BBB, just as with dielectrics.

We define the magnetization

MMM = ⟨mmm⟩/unit volume . (4.1)

For a dipole,

AAA(rrr) =
µ0

4π

mmm× rrr

|rrr|3 . (4.2)

Averaging over many dipoles, we find

AAA(rrr) =
µ0

4π

∫
d3r′

MMM(rrr′)× (rrr − rrr′)

|rrr − rrr′|3 . (4.3)

Using the identity

∇∇∇′ 1

|rrr − rrr′| =
rrr − rrr′

|rrr − rrr′|3 (4.4)

we can write Eq. (4.3) as

AAA(rrr) =
µ0

4π

∫
d3r′

[
MMM(rrr′)×∇∇∇′ 1

|rrr − rrr′|

]
. (4.5)

Integrating by parts then gives

AAA(rrr) =
µ0

4π

{∫
d3r′

1

|rrr − rrr′|
(
∇∇∇′ ×MMM(rrr′)

)
−
∫

d3r′∇∇∇′ × MMM(rrr′)

|rrr − rrr′|

}
. (4.6)
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The second term can be written as a surface integral,
6

and we find

AAA(rrr) =
µ0

4π

∫
d3r′

1

|rrr − rrr′|
[
∇∇∇′ ×MMM(rrr′)

]
+

µ0

4π

∫
MMM(rrr′)× daaa′

|rrr − rrr′| . (4.9)

This expression motivates the definition of the bound current density

JJJ b ≡∇∇∇×MMM , (4.10)

(note that ∇∇∇ · JJJ b = 0), and the bound surface current

KKKb =MMM × n̂̂n̂n . (4.11)

With these definitions, the vector potential becomes

AAA(rrr) =
µ0

4π

∫
d3r′

JJJ b(rrr
′)

|rrr − rrr′| +
µ0

4π

∫
da

KKKb(rrr
′)

|rrr − rrr′| . (4.12)

The potential of the material is the same as that produced by the current density inside the

volume, and the surface current density at the surface of the material, where the magnetiza-

tion goes to zero discontinuously.

If we subject some magnetic material to an external magnetic field produced by some

“free current” JJJf (which may flow inside the material), the total current is the sum of the

free current and the induced current JJJ b,

JJJ = JJJf + JJJ b . (4.13)

Ampère’s law tells us that

1

µ0

(
∇∇∇×BBB

)
= JJJ = JJJf + JJJ b = JJJf +∇∇∇×MMM . (4.14)

We can then define a field

HHH ≡ 1

µ0

BBB −MMM , (4.15)

such that Ampère’s law becomes

∇∇∇×HHH = JJJf . (4.16)

6
The divergence theorem, applied to AAA× ccc with ccc an arbitrary constant, gives∫

V

∇∇∇ · (AAA× ccc) =

∫
V

ccc · (∇∇∇×AAA) =

∮
S

(AAA× ccc) · daaa = −
∮
S

ccc · (AAA× daaa) , (4.7)

and so ∫
V

∇∇∇×AAA = −
∮
S

AAA× daaa . (4.8)
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Note that, while ∇∇∇ ·BBB = 0, the divergence of HHH does not, in general, vanish: instead, we

have ∇∇∇ ·HHH = −∇∇∇ ·MMM . This implies the boundary conditions

H⊥
above

−H⊥
below

= −
(
M⊥

above
−M⊥

below

)
. (4.17)

Eq. (4.16) implies

HHH
∥
above

−HHH
∥
below

=KKKb × n̂̂n̂n . (4.18)

For linear (isotropic, homogeneous) media, we have

MMM = χmHHH , (4.19)

where the constant χm is called the magnetic susceptibility of the material. The material is

diamagnetic for χm < 0, and paramagnetic for χm > 0. We can also write

BBB = µHHH , (4.20)

with the permeability µ ≡ µ0(1 + χm).
Let’s compare electrostatics in an insulator and magnetostatics in a magnetic material:

insulators magnetic materials

∇∇∇ ·DDD = ρf ∇∇∇ ·BBB = ρf
∇∇∇×EEE = 0 ∇∇∇×HHH = JJJf

DDD ≡ ϵ0EEE +PPP HHH ≡ 1
µ0
BBB −MMM

∆D⊥ = σf (@ boundary) ∆B⊥ = 0 (@ boundary)

∆E∥ = 0 (@ boundary) ∆H∥ =KKKf × n̂̂n̂n (@ boundary)

PPP = ϵ0χeEEE MMM = χmHHH
DDD = ϵEEE BBB = µHHH
ϵ = ϵ0(1 + χe) µ = µ0(1 + χm)

The last three lines apply for

linear materials.

4.2 Conductors

Recall that for electrostatics, in a conductor: (a) EEE = ρ = 0 in interior (V =constant); (b)

E
∥
out

= 0 at the boundary, and (c) E⊥
out

= σ at the boundary; and therefore, EEEout =
σ
ϵ0
n̂̂n̂n at the

boundary. The potential V is continuous across the boundary, but ∂V/∂n = σ/ϵ0. Here, σ
is the induced surface charge on the boundary.

E

V0 V1>

Figure 7: Electric field inside a conductor in the presence of a potential difference.
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But we can also have steady currents in conductors, giving sources for magnetostatic fields.

Currents are a response of conductions charges (electrons) to applied EEE field inside the con-

ductor. If one can add / subtract charges at the ends of the wire, so as to keep the potential

difference V0 − V1 constant (e.g., use a battery), then we keep a steady EEE ̸= 0 inside the

metal! This EEE accelerates conduction electrons, forming currents.

In conductors there are frictional forces on the conduction electrons (e.g. scattering off

impurities. . . ) which slow them down (dissipating their energy as heat). A given EEE then

accelerates electrons to a steady velocity v at which the frictional force counterbalances eEEE.

Then we get a steady current JJJ = ρevvv.

What is the relation JJJ = JJJ(EEE)? In linear (sufficiently small applied EEE), homogeneous,

isotropic conductor we have Ohm’s law, JJJ = σEEE. Here, the constant σ is the conductivity

(not the surface charge!). Its inverse, 1/σ, is the resistivity. (If the conductor moves with a

steady velocity in a magnetic field BBB, then JJJ = σ(EEE + vvv ×BBB).)

J

V0 V1L

ẑ
A

Figure 8: Ohm’s law applied to a wire.

Applying this to a wire, we obtain the more familiar version of Ohm’s law. Aligning the

wire (with cross sectional area A) in the z direction, we have

AJẑ̂ẑz = AJJJ = AσEEE = Aσ
V2 − V1

L
ẑ̂ẑz , (4.21)

so

AJ︸︷︷︸
current I

=
Aσ

L︸︷︷︸
1/R

(V2 − V1)︸ ︷︷ ︸
V voltage difference

, (4.22)

or V = RI .

Conductivities can vary between 0 (insulator) and ∞ (superconductor). Conductors can

be diamagnetic (e.g. Ag), paramagnetic (e.g. Al), or ferromagnetic (e.g. Fe).

4.3 Superconductors

Can think of superconductors as the σ → ∞ limit of conductors. There is no friction: an

applied EEE ̸= 0 in conductor accelerates charges without limit, EEE ∝ ∂JJJ/∂t, so there is

no Ohm’s law. What about the magnetic response of superconductors? They still satisfy

∇∇∇ ·BBB = 0, ∇∇∇×BBB = µ0JJJ for steady currents (they can have a steady current ifEEE = 0 inside

the superconductor).
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4.3.1 London equations

Inside the superconductor, we have the London equations:

µ0
∂JJJ

∂t
=

1

λ2
EEE , (4.23)

µ0∇∇∇× JJJ = − 1

λ2
BBB . (4.24)

The London penetration depth λ has dimensions of length. For typical superconductors,

50 nm ≲ λ ≲ 500 nm. (Recall that the typical size of an atom is of the order of 0.1 nm.)

These two equations can only be derived using quantum mechanics. However, Eq. (4.23)

is intuitive using the Lorentz force law:

FFF = mev̇vv = −eEEE , (4.25)

so

J̇JJ = −neev̇vv =
nee

2

me

EEE , (4.26)

where ne is the electron number density. Now we can calculate∇∇∇× Eq. (4.23) and use Fara-

day’s law, ∇∇∇×EEE = −∂BBB/∂t, to find

0 = µ0∇∇∇× ∂JJJ

∂t
− 1

λ2
∇∇∇×EEE = µ0∇∇∇× ∂JJJ

∂t
+

1

λ2

∂BBB

∂t
, (4.27)

or

0 =
∂

∂t

(
µ0∇∇∇× JJJ +

1

λ2
BBB

)
. (4.28)

Eq. (4.24) is consistent with this result.

4.3.2 London penetration and Meissner effect

Now let’s apply Ampère’s law, µ0JJJ =∇∇∇×BBB, to the second London equation (4.24):

0 =∇∇∇×
(
∇∇∇×BBB

)
+

1

λ2
BBB =∇∇∇

(
∇∇∇ ·BBB

)
−∇2BBB +

1

λ2
BBB . (4.29)

Using ∇∇∇ ·BBB = 0, we obtain

∇2BBB =
1

λ2
BBB . (4.30)

This equation leads to the Meissner-Ochsenfeld effect, the expulsion of magnetic fields

from the superconductor. To illustrate this in a simple setting, we consider a large, planar

superconductor, and apply an external magnetic field. Because of the setup, we expect the

magnetic field to depend only on the direction orthognal to the surface of the superconductor,

which we take to be the z direction. For definiteness, we choose the direction of the applied,

constant external magnetic field in the x direction, BBB = B0x̂̂x̂x (for z ≧ 0). Then Eq. (4.30)

becomes

∇2BBB(z) =
∂2

∂z2
B(z)x̂̂x̂x =

1

λ2
B(z)x̂̂x̂x , (4.31)

31



or

B′′(z) =
1

λ2
B(z) . (4.32)

The general solution to this equation is

B(z) = αez/λ + βe−z/λ . (4.33)

We determine the coefficients α and β by the boundary conditions. For z → ∞, the second

term would blow up, so β = 0. For z = 0, we must have B(z) = B0, so α = B0. This gives

the solution

B(z) = B0e
z/λ . (4.34)

The solution implies that BBB → 0 exponentially fast inside the superconductor: this is the

Meissner-Ochsenfeld effect. The current is restricted to within the London penetration

depth of the surface of the superconductor.

Superconductors expel magnetic fields, this leads to “magnetic levitation”. Another (prob-

ably more relevant) techonological application are superconducting electromagnets. Inside

the superconductor, we can have steady currents without applied electric fields, without en-

ergy loss due to heating.

5 Maxwell’s equations

5.1 Overview

We start with a review of the laws of electro- and magnetostatics.

Newton’s law:

FFF = m
d2rrr

dt2
. (5.1)

Lorentz force:

FFF = q(EEE + vvv ×BBB) . (5.2)

Equivalently, the force density f on the charge density ρ and the current density JJJ , due to

EEE and BBB, is given by fff = ρ(EEE + JJJ ×BBB).
Charge conservation:

∇∇∇ · JJJ = −dρ

dt
. (5.3)

In electro-/magnetostatics, dρ/dt = dJJJ/dt = 0, so ∇∇∇ · JJJ = 0.

The field equations determine EEE and BBB due to ρ and JJJ . For the electric field, we have

∇∇∇ ·EEE =
1

ϵ0
ρ Gauss , (5.4)

∇∇∇×EEE = 0 . (5.5)

These two laws together imply Coulomb’s law:

EEE(rrr) =
1

4πϵ0

∫
d3r′

ρ(rrr′)

|rrr − rrr′|(rrr − rrr′) . (5.6)

32



For the magnetic field, we have

∇∇∇ ·BBB = 0 , (5.7)

∇∇∇×BBB = µ0JJJ Ampère . (5.8)

These two laws together imply the Biot-Savart law:

BBB(rrr) =
µ0

4π

∫
d3r′

JJJ(rrr′)× (rrr − rrr′)

|rrr − rrr′| . (5.9)

These laws apply only in static situations! In non-static situations (“electrodynamics”), the

following laws will need to be corrected:

∇∇∇×EEE = 0 =⇒ ∇∇∇×EEE +
∂BBB

∂t
= 0 Faraday , (5.10)

∇∇∇×BBB = µ0JJJ =⇒ ∇∇∇×BBB − µ0ϵ0
∂EEE

∂t
= µ0JJJ Maxwell . (5.11)

Also the right side of Eq. (5.1) needs to be corrected (Einstein).

5.2 Faraday’s law on electromagnetic induction

In a conducting wire, we have Ohm’s law:

E = I R , (5.12)

where I is the current, R is the resistance, and E is the electromotive force (“EMF” – work per

charge):

E ≡ −
b∫

a

dℓℓℓ ·EEE . (5.13)

On the other hand, if you move a wire through a magnetic field, the conduction electrons

will feel a force by the Lorentz force law, FFF = −e(vvv×BBB), performing the work per charge

Emag ≡
∮
C

dℓℓℓ · (vvv ×BBB) = −
∮
C

BBB · (vvv × dℓℓℓ) . (5.14)

The change in surface spanning C in time dt is∫
dS

da = S(t+ dt)− S(t) , (5.15)

so

Emagdt = −
∫
dS

BBB · daaa ≡ −dΦ , (5.16)
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C(t)

C(t + dt)

vdt

dl

S(t)

S(t + dt)

da = |vdt× dl|

Figure 9:The change in surface spanning C in time dt

or

Emagdt = −dΦ

dt
, (5.17)

where

Φ ≡
∫
S

BBB · daaa (5.18)

is the magnetic flux through surface S. But the EMF developed in this way, Emag, must equal

the electric EMF, E , so

E =

∮
C

dℓℓℓ ·EEE = −dΦ

dt
= − d

dt

∫
S

BBB · daaa . (5.19)

By the equivalence of inertial frames, we expect it should not depend on whether wire is

moving or BBB is changing:

v

v

C

B

C

B

Figure 10: Moving loop in magnetic field.

So if we choose C and S fixed, then we expect∮
C

dℓℓℓ ·EEE = −
∫
S

∂BBB

∂t
· daaa , (5.20)

or, by Stokes’ theorem,

∇∇∇×EEE = −∂BBB

∂t
. (5.21)

This is Faraday’s law: a changing BBB field induces an EEE field, and so induces a current I to

flow in a wire by E = I R. By Ampère’s law, this induced I will source a magnetic field BBB′
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and thus a contribution to the magnetic flux Φ′
. The induced current I will flow in a direction

such that the induced flux Φ′
opposes the change in flux, ∂Φ/∂t, that induced it (Lenz’s rule).

Note the formal similarity:∮
C

dℓℓℓ ·EEE = −∂Φ

∂t
= −

∫
S

∂BBB

∂t
· daaa Faraday , (5.22)

∮
C

dℓℓℓ ·BBB = µ0Iencl. =

∫
S

µ0JJJ · daaa Ampère . (5.23)

So we can use the same kind of symmetry arguments to determine the induced EEE for a

given −∂BBB/∂t. But the induced EEE causes a current, and the current sources a BBB field, and

the changing BBB induces EEE, which causes a current. . . So in general we have to solve self-

consistently or in a “quasi-static” approximation which ignores the change in current due to

the induced EEE.

A closed current I(t) sourcesBBB ∝ I(t) and hence Φ(t) ∝ I(t), where Φ is the flux through

the circuit. We writeΦ(t) = L I(t), whereL is a constant, the inductance, which is a property

of the geometry of the circuit. Then

E = −dΦ

dt
= −L

dI

dt
. (5.24)

So, for circuits, we have resistors, E = IR; inductors, E = −LdI/dt; and capacitors, EC = q,

so dE/dtC = I . Charge conservation implies I = I1 + I2. These give a set of coupled differ-

ential equations which determine E(t), I(t) in circuits. See Griffiths for a detailed discussion

with many examples.

5.3 Energy in electric and magnetic fields

We calculate the work, W , required to assemble a charge configuration ρ, and current JJJ . We

build it up by moving charges q = ρ dV from infinity:

dW

dt
= − d

dt
(Eq) = −q

dE
dt

− E dq
dt

= q
dV

dt
− EI = q

d

dt

(
q

C

)
− IL

dI

dt

=
d

dt

(
q2

2C
+

LI2

2

)
,

(5.25)

and so

W =
q2

2C
+

LI2

2
=

1

2
qV +

1

2
IΦ . (5.26)

We can rewrite this for continuous charge and current distributions, q → ρ dV and Idℓℓℓ →
JJJdV , so

1

2
qV → 1

2

∫
d3r ρV , (5.27)
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I

2
Φ =

I

2

∫
S

BBB · daaa =
I

2

∫
S

(
∇∇∇×AAA

)
· daaa =

I

2

∫
C

AAA · dℓℓℓ → 1

2

∫
d3r JJJ ·AAA , (5.28)

and so the work is

W =
1

2

∫
d3r

(
ρV + JJJ ·AAA

)
. (5.29)

We can rewrite this in terms of the electric and magnetic fields:∫
d3r ρV = ϵ0

∫
d3r (∇∇∇ ·EEE)V = −ϵ0

∫
d3rEEE · ∇∇∇V = ϵ0

∫
d3rEEE ·EEE , (5.30)∫

d3r JJJ ·AAA =
1

µ0

∫
d3r (∇∇∇×BBB) ·AAA =

1

µ0

∫
d3rBBB · (∇∇∇×AAA) =

1

µ0

∫
d3rBBB ·BBB . (5.31)

(Here, we used Eq. (A.15) in the second equality.) It follows that

W =
1

2

∫
d3r

(
ϵ0E

2 +
1

µ0

B2

)
. (5.32)

5.4 Maxwell’s equations

Together with Faraday’s law, the field equations become

ρ

ϵ0
=∇∇∇ ·EEE , 0 =∇∇∇ ·BBB , (5.33)

0 =∇∇∇×EEE +
∂BBB

∂t
, µ0JJJ =∇∇∇×BBB . (5.34)

Are these compatible with charge conservation, ∇∇∇ · JJJ = −∂ρ/∂t? Taking the divergence of

Ampère’s law gives

∇∇∇ · JJJ =
1

µ0

∇∇∇ · (∇∇∇×BBB) = 0 . (5.35)

We want on the right side

−∂ρ

∂t
= − ∂

∂t
(ϵ0∇∇∇ ·EEE) =∇∇∇ · (−ϵ0

∂EEE

∂t
) . (5.36)

We replace the right side of Ampère’s law: ∇∇∇×BBB →∇∇∇×BBB − µ0ϵ0∂EEE/∂t, so that

∇∇∇ · JJJ =
1

µ0

∇∇∇ ·
(
∇∇∇×BBB − µ0ϵ0

∂EEE

∂t

)
= 0− ϵ0∇∇∇ · ∂EEE

∂t
= −∂ρ

∂t
. (5.37)

In this way, we get a consistent set of field equations:

∇∇∇ · JJJ = −∂ρ

∂t
, (5.38)

FFF = q(EEE + vvv ×BBB) , (5.39)
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ρ

ϵ0
=∇∇∇ ·EEE , 0 =∇∇∇ ·BBB , (5.40)

0 =∇∇∇×EEE +
∂BBB

∂t
, µ0JJJ =∇∇∇×BBB − µ0ϵ0

∂EEE

∂t
. (5.41)

Maxwell’s new term implies that a changing electric field induces a magnetic field.

We can make the physical content more obvious by defining units intelligently. So far, we

have introduced separate and arbitrary units for charge, electric, and magnetic fields. Say

we redefine them as 
q 7→ αq ⇒ ρ 7→ αρ ,JJJ 7→ αJJJ

EEE 7→ βEEE

BBB 7→ γBBB

(5.42)

for some constant α, β, γ. Then our equations become

∇∇∇ · JJJ = −∂ρ

∂t
, FFF = q(αβEEE + αγvvv ×BBB) , (5.43)

αρ

βϵ0
=∇∇∇ ·EEE , 0 =∇∇∇ ·BBB , (5.44)

0 =∇∇∇×EEE +
γ

β

∂BBB

∂t
, αµ0JJJ = γ∇∇∇×BBB − βµ0ϵ0

∂EEE

∂t
. (5.45)

We choose αβ = 1 to keep FFF = qEEE. Then we choose α/(βϵ0) = 4π to make Gauss’ law

simple. It follows that α =
√
4πϵ0 and β = 1/

√
4πϵ0. Finally, we choose γ =

√
µ0/(4π).

Then the equations become

∇∇∇ · JJJ = −∂ρ

∂t
, FFF = q

(
EEE +

1

c
vvv ×BBB

)
, (5.46)

4πρ =∇∇∇ ·EEE , 0 =∇∇∇ ·BBB , (5.47)

0 =∇∇∇×EEE +
1

c

∂BBB

∂t
,

4π

c
JJJ =∇∇∇×BBB − 1

c

∂EEE

∂t
, (5.48)

where

c ≡ 1√
µ0ϵ0

(5.49)

with units of velocity. This makes it clear that the only fundamental constant in EM is the

speed of light,

c ≈ 3× 108m/s . (5.50)

In “cgs” units, [E] = [B] = force/charge. The quasi-static limit corresponds to v ≪ c.
Finally, we discuss one more “versions” of Maxwell’s equations. In linear, homogeneous,

isotropic and dispersionless matter (dielectrics, and para- or diamagnetics), we have

ρf =∇∇∇ ·DDD , 0 =∇∇∇ ·BBB , (5.51)

0 =∇∇∇×EEE +
∂BBB

∂t
, JJJf =∇∇∇×HHH − ∂DDD

∂t
, (5.52)
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where DDD = ϵEEE, HHH = BBB/µ, and ϵ = ϵ0(1 + χe), µ = µ0(1 + χm) are constants. More general

matter has DDD = ϵEEE +PPP , HHH = BBB/µ−MMM , and

Pi =
3∑

i=1

ϵ0[χe(ω,rrr)]
j
iEj +O(E2) , (5.53)

Mi =
3∑

i=1

[χm(ω,rrr)]
j
iHj +O(H2) . (5.54)

Here, the ω dependence parameterizes time-dependent effects (dispersion), the rrr dependence

represents inhomogeneities, the tensor indices indicate anisotropies, and the the higher-

order terms parameterize non-linearities.

Maxwell’s equations, as differential equations, must be supplemented by boundary con-

ditions at the edges of the system in question in order to have a unique solution. In the limit

where continuous charge and current distributions become discontinuous (e.g. at sharp sur-

faces, etc.), boundary (or “matching”) conditions can be deduced from Maxwell’s equations.

Easiest from the integral form of the equations:∮
S

EEE · daaa =
1

ϵ0
Qencl. ,

∮
S

BBB · daaa = 0 , (5.55)

∮
C

EEE · dℓℓℓ = − ∂

∂t

∮
S

BBB · daaa ,
∮
C

BBB · dℓℓℓ = µ0Iencl. + µ0ϵ0
∂

∂t

∮
S

EEE · daaa . (5.56)

It follows that

ϵ0E
⊥
in
− ϵ0E

⊥
out

= σ , B⊥
in
−B⊥

out
= 0 , (5.57)

EEE
∥
in
−EEE

∥
out

= 000 ,
1

µ0

BBB
∥
in
− 1

µ0

BBB
∥
out

=KKK × n̂̂n̂n , (5.58)

just as in electro- and magnetostatics.

6 Conservation laws

Charge conservation means that no (net) charge is destroyed or created – it just moves

around:

∂ρ

∂t
= −∇∇∇ · JJJ . (6.1)

The first term represents the change in charge density per time, the second term the rate of

flow (current) out of the volume. Integrating over all space, we find the total charge∫
d3r ρ ≡ Q , (6.2)
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and

−
∫

d3r∇∇∇ · JJJ =

∮
∞

JJJ · daaa = 0 . (6.3)

It follows that

dQ

dt
= 0 , (6.4)

the total charge is conserved.

We will find analogous descriptions of energy, momentum, and angular momentum carried

by the elecromagnetic fields: they are not created or destroyed, they just move around.

6.1 Energy

We have seen (Eq. (5.32)) that the total energy carried by the electromagnetic field is

U =
1

2

∫
d3r

(
ϵ0E

2 +
1

µ0

B2

)
. (6.5)

We can write this in terms of the energy density

ρU =
ϵ0
2
E2 +

1

2µ0

B2 , (6.6)

so that

U =

∫
d3r ρU . (6.7)

Maxwell’s equations in vacuum impliy the local conservation of energy:

−∂ρU
∂t

=∇∇∇ ·SSS , (6.8)

where

SSS ≡ 1

µ0

EEE ×BBB (6.9)

is the Poynting vector (the energy current density).

Here is the proof:

∇∇∇ ·SSS =
1

µ0

∇∇∇ · (EEE ×BBB) =
1

µ0

BBB · (∇∇∇×EEE)− 1

µ0

EEE · (∇∇∇×BBB)

=
1

µ0

BBB ·
(
∂BBB

∂t

)
− 1

µ0

EEE ·
(
∂EEE

∂t

)
= −∂ρU

∂t
.

(6.10)

If we include sources (charges) in Maxwell’s equations, the same argument gives instead

−∂ρU
∂t

=∇∇∇ ·SSS +EEE · JJJ , (6.11)

where the last term represents the work per volume per time done on the charges. In other

words, the energy of the electromagnetic field is conserved: it only changes by moving

around (∇∇∇ ·SSS) or adding kinetic energy to charges (EEE · JJJ ).
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6.2 Momentum

The same applies to the mmentum carried by the electromagnetic field. Let ppp(rrr, t) be the

momentum density of the electromagnetic field. Each component pi, i = 1, 2, 3, should be

conserved, so we expect conservation equation of the form

−∂pi
∂t

=∇∇∇ · TTT i , (6.12)

for some momentum current density vectorsTTT i. If we write these vectors in components (with

unit basis vectors ê̂êei),

TTT i =
3∑

j=1

Tijê̂êej , (6.13)

then

−∂pi
∂t

=
3∑

j=1

∂Tij

∂xj

. (6.14)

Tij(rrr, t) is called the electromagnetic stress tensor. Tij represents the jth component of the

momentum per unit time per unit area moving in ith direction. If i = j then dpi/dt per area

is parallel to ê̂êei. But dpi/dt = Fi is the force, so Tii is the force per area or the pressure in ith
direction.

If there is charged matter present, the momentum carried by the electromagnetic field can

change by accelerating the particles:

−∂pi
∂t

=
∂p(particles)

i

∂t
+

3∑
j=1

∂Tji

∂xj

. (6.15)

But

∂p(particles)

i

∂t
= fi , (6.16)

the electromagnetic force density on the particles,

fff = ρEEE + JJJ ×BBB . (6.17)

So, if we can find pi and Tji as functions of the electric and magnetic fields, such that

−∂pi
∂t

= fi +
3∑

j=1

∂Tji

∂xj

, (6.18)

by virtue of Maxwell’s equations, then pi is the momentum density of the electromagnetic

field, and Tji is the electromagnetic stress tensor. We find that

ppp = µ0ϵ0SSS = ϵ0EEE ×BBB , (6.19)

Tji = Tij = ϵ0
(
EiEj − 1

2
δijE

2
)
+

1

µ0

(
BiBj − 1

2
δijB

2
)
. (6.20)
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Here is the proof:

fff = ρEEE + JJJ ×BBB = (ϵ0∇∇∇ ·EEE)EEE +

(
1

µ0

∇∇∇×BBB − ϵ0
∂EEE

∂t

)
×BBB

= (ϵ0∇∇∇ ·EEE)EEE +
1

µ0

(∇∇∇ ·BBB)BBB − 1

µ0

BBB × (∇∇∇×BBB)− ϵ0
∂

∂t
(EEE ×BBB) + ϵ0EEE × ∂BBB

∂t

= (ϵ0∇∇∇ ·EEE)EEE +
1

µ0

(∇∇∇ ·BBB)BBB − 1

µ0

BBB × (∇∇∇×BBB)− ∂ppp

∂t
+ ϵ0EEE × (∇∇∇×EEE) .

(6.21)

Now we use the identity (A.23) to find

fff = −∂ppp

∂t
+ ϵ0

{
(∇∇∇ ·EEE)EEE + (EEE · ∇∇∇)EEE − 1

2
∇∇∇(EEE2)

}
+

1

µ0

{
(∇∇∇ ·BBB)BBB + (BBB · ∇∇∇)BBB − 1

2
∇∇∇(BBB2)

}
= −∂ppp

∂t
+∇∇∇ · TTT .

(6.22)

6.3 Angular momentum

We define the angular momentum density of the electromagnetic field as

ℓℓℓ ≡ rrr × ppp(rrr) = ϵ0rrr × (EEE ×BBB) . (6.23)

So even static electric and magnetic fields can carry angular momentum!

Angular momentum is also locally conserved: there is an angular momentum current den-

sity tensor LLLi ≡ rrr × TTT i, and

−∂ℓi
∂t

=∇∇∇×LLLi . (6.24)

Or, in component notation,

ℓi =
3∑

j,k=1

ϵijkxjpk , Lij =
3∑

k,l=1

ϵiklxkTlj . (6.25)

In conclusion, electromagnetic fields carry energy, momentum, and angular momentum,

just as does matter.

7 Electromagnetic waves

7.1 General comments

Waves are, vaguely, any disturbance of a continuous system which can carry energy from one

place to another. An example of a continuous system are electric and magnetic fields,EEE(rrr, t)
and BBB(rrr, t). More generally, continuous systems are described by fields f(rrr, t), satisfying

some equations of motion.
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We generally expect equations of motion to be local: the values of the field are determined

by the values of the field infinitesimally close by. It follows that the equations of motion can

be written as differential equations (like Maxwell’s equations).

If we assume that the size of the disturbance is small enough, then we can approximate

the equations of motion as linear differential equations (like Maxwell’s equations),

D(rrr, t,∇∇∇, ∂/∂t)f(rrr, t) = 0 , (7.1)

where D is some differential operator.

If we assume that the system is homogeneous (translation invariant in space and time),

then the equations of motion cannot depend explicitly on rrr, t, and we have

D(∇∇∇, ∂/∂t)f(rrr, t) = 0 , (7.2)

like Maxwell’s equations in vacuum.

We assume the equations of motion are at most second order in derivatives: in t because

of Newtonian mechanics (accelerations are functions of positions and velocities), and in rrr to

have invariance under change of inertial frame rrr → rrr + vvvt, i.e. “relativity”:[
Aij

∂2

∂xi∂xj

+Bi
∂2

∂xi∂t
+ C

∂2

∂t2
+Di

∂

∂xi

+ E
∂

∂t
+ F

]
f(rrr, t) = 0 . (7.3)

(This is unlike Maxwell’s equations which are first order. But we will see that by solving for

some fields, we can recast a system of first-order linear differential equations as second-order

differential equations.)

If we assume isotropy (rotational invariance) and time reversal invariance, then Aij = Aδij ,
and Bi = Di = E = 0, so [

A∇∇∇2 + C
∂2

∂t2
+ F

]
f(rrr, t) = 0 . (7.4)

Energy conservation follows from the above assumptions: the equations of motion imply

there exists an energy density ρU and an energy density current SSS such that

−∂ρU
∂t

=∇∇∇ ·SSS . (7.5)

They are (check this!)

ρU = − C

2A

(
∂f

∂t

)2

+ 1
2
(∇∇∇f) · (∇∇∇f)− F

2A
f 2 , (7.6)

SSS =
∂f

∂t
∇∇∇f . (7.7)

(Momentum conservation also follows, so there is a conserved momentum density ppp and

stress tensor Tij , just as with Maxwell’s equations.)
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We assume stability of the system: small disturbances of the system do not grow with time.

This means that all the terms in the energy density, ρU , are positive. Then energy conserva-

tion means that they cannot grow without bound. Thus rename A/C ≡ −v2, A/F ≡ −ℓ2:[
∇∇∇2 − 1

v2
∂2

∂t2
− 1

ℓ2

]
f(rrr, t) = 0 . (7.8)

This is the dispersive wave equation, with v the wave velocity and ℓ the dispersion length.

Thus, small disturbances of practically any stable continuous system will have waves

which will satisfy (to some approximation) the above wave equation (7.8).

The combination

∇∇∇2 − 1

v2
∂2

∂t2
≡ □ (7.9)

is called the d’Alembertian.

Electromagnetic waves in vacuum are dispersionless, ℓ = ∞, and travel with speed of light,

v = c. But electromagnetic waves in matter have ℓ < ∞, v ̸= c.

7.2 Dispersionless waves in one dimension

We have 1/ℓ = 0 and ∇∇∇ → d/dz, so the wave equation becomes

0 =
d2f

dz2
− 1

v2
d2f

dt2
=

(
d

dz
− 1

v

d

dt

)(
d

dz
+

1

v

d

dt

)
f . (7.10)

We change variables to u = z − vt, w = z + vt, so

z = 1
2
(w + u) , t = 1

2v
(w − u) , (7.11)

and

∂

∂u
=

∂z

∂u

∂

∂z
+

∂t

∂u

∂

∂t
=

1

2

(
∂

∂z
− 1

v

∂

∂t

)
, (7.12)

∂

∂w
=

∂z

∂w

∂

∂z
+

∂t

∂w

∂

∂t
= −1

2

(
∂

∂z
+

1

v

∂

∂t

)
, (7.13)

so the wave equation becomes simply

∂2f

∂u∂w
= 0 . (7.14)

The general solution is f(u,w) = g(u) + h(w), so

f(z, t) = g(z − vt) + h(z + vt) , (7.15)

for arbitrary g, h. This is a superposition of a right-moving and a left-moving wave.
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We can Fourier transform an arbitrary function:

φ(z) =

∞∫
−∞

dk Ã(k)eikz ⇔ Ã(k) =
1

2π

∞∫
−∞

dz φ(z)e−ikz . (7.16)

In other words, we can decompose it into a sum of sinusoidal functions eikz = cos(kz) +
i sin(kz). Here, k is the wave number,

k ≡ 2π

λ
, (7.17)

where λ ≥ 0 is the wave length.

Fourier transforms relate complex functions. If φ is real, then Ã is complex, but satisfies

φ(z) ∈ R ⇔ Ã(k)∗ = Ã(−k) . (7.18)

Let’s apply this to g(z − vt) and h(z + vt):

g(z − vt) =

∞∫
−∞

dk B̃(k)eik(z−vt) , (7.19)

h(z + vt) =

∞∫
−∞

dk C̃(k)eik(z+vt) , (7.20)

with

B̃(k)∗ = B̃(−k) , C̃(k)∗ = C̃(−k) . (7.21)

Then the general solution is

f(z, t) =

∞∫
−∞

dk
[
B̃(k)eik(z−vt) + C̃(k)eik(z+vt)

]
. (7.22)

Defining the (angular) frequency

ω ≡ v|k| ≥ 0 , (7.23)
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we obtain

f(z, t) =

∞∫
0

dk
[
B̃(k)ei(kz−ωt) + C̃(k)ei(kz+ωt)

]

+

0∫
−∞

dk
[
B̃(k)ei(kz+ωt) + C̃(k)ei(kz−ωt)

]

=

∞∫
0

dk
[
B̃(k)ei(kz−ωt) + C̃(−k)∗ei(kz+ωt)

]

+

0∫
−∞

dk
[
B̃(−k)∗ei(kz+ωt) + C̃(k)ei(kz−ωt)

]

=

∞∫
0

dk B̃(k)ei(kz−ωt) +

0∫
−∞

dk C̃(k)ei(kz−ωt)
]

+

∞∫
0

dk B̃(k)∗e−i(kz−ωt) +

0∫
−∞

dk C̃(k)∗e−i(kz−ωt)
]
.

(7.24)

Now define

1
2
Ã(k) ≡

{
B̃(k) for k > 0 ,

C̃(k) for k < 0 .
(7.25)

Then we have

f(z, t) =
1

2

∞∫
−∞

dk Ã(k)ei(kz−ωt) + c.c. . (7.26)

Here, “c.c.” means the complex conjugate of the preceding expression. This packages left-

moving (k < 0) and right-moving (k > 0) waves together.

Griffiths defines the complex waveform

f̃(z, t) ≡
∞∫

−∞

dk Ã(k)ei(kz−ωt) , (7.27)

where Ã(k) is a complex amplitude, so that the real waveform is

f(z, t) = Re[f̃(z, t)] . (7.28)

This language and notation is universally used in physics and we will use it to describe elec-

tromagnetic waves below. The point is that since our wave equations are linear, we are free
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to work with complex solutions and just take the real part at the end. Explicitly, we have

f(z, t) = Re[f̃(z, t)] =

∞∫
−∞

dk Re[Ã(k)ei(kz−ωt)]

=

∞∫
−∞

dk

{
Re[Ã(k)]Re[ei(kz−ωt)]− Im[Ã(k)]Im[ei(kz−ωt)]

}

≡
∞∫

−∞

dk
{
R(k) cos(kz − ωt)− I(k) sin(kz − ωt)

}
.

(7.29)

If we define

A(k) ≡
√

R(k)2 + I(k)2 , δ(k) ≡ − arctan

(
I(k)

R(k)

)
, (7.30)

then

R(k) = A(k) cos(δ(k)) , I(k) = −A(k) sin(δ(k)) . (7.31)

This is equivalent to

Ã(k) = A(k)e−iδ(k)
(7.32)

and

f̃(z, t) =

∞∫
−∞

dk A(k) cos(kz − ωt− δ(k)) , (7.33)

with amplitude A(k) and phase shift δ(k).

7.3 Electromagnetic waves in vacuum

Maxwell’s equations in vacuum are (we use the notation ϵ0µ0 = 1/c2)

∇∇∇ ·EEE = 0 , ∇∇∇ ·BBB = 0 , (7.34)

∇∇∇×EEE = −∂BBB

∂t
, ∇∇∇×BBB = − 1

c2
∂EEE

∂t
. (7.35)

Taking the curl of the equation (7.35), and then using Eq. (A.22) and Eqs. (7.34), we find

∇∇∇2EEE − 1

c2
∂2EEE

∂t2
=∇∇∇2BBB − 1

c2
∂2BBB

∂t2
= 0 . (7.36)

All components of EEE and BBB satisfy the wave equation with velocity c.
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7.3.1 Plane-wave decomposition

We can decompose the solution into plane waves by Fourier transforming as in the one-

dimensional case above. The only changes are the wave vector k → kkk, the definition of the

wave number via k ≡ |kkk| = 2π/λ, and the direction of wave propagation, k̂̂k̂k ≡ kkk/k. The

angular frequency is again defined as ω = ck. The exponential factor becomes ei(kz−ωt) →
ei(kkk·rrr−ωt)

, the integration measure dk → d3k, and the amplitude function becomes Ã(k) →
Ẽ0(kkk)n̂̂n̂n(kkk), where E0 is a complex amplitude and n̂̂n̂n is the polarization vector (the direction

of theEEE field). It follows that the complex waveforms for the electric and magnetic fields are

ẼEE(rrr, t) =

∫
d3k Ẽ0(kkk)n̂̂n̂n(kkk)e

i(kkk·rrr−ωt) , (7.37)

B̃BB(rrr, t) =

∫
d3k B̃0(kkk)m̂̂m̂m(kkk)ei(kkk·rrr−ωt) . (7.38)

These satisfy the wave equation, but we still need to check Maxwell’s equation. For instance,

∇∇∇ · ẼEE(rrr, t) =

∫
d3k Ẽ0(kkk)(n̂̂n̂n(kkk) · ∇∇∇)ei(kkk·rrr−ωt)

= i

∫
d3k Ẽ0(kkk)(n̂̂n̂n(kkk) · kkk)ei(kkk·rrr−ωt) = 0 ,

(7.39)

so n̂̂n̂n(kkk) · kkk = 0 – the wave must be transverse. Similarly,

∇∇∇× ẼEE(rrr, t) = −
∫

d3k Ẽ0(kkk)(n̂̂n̂n×∇∇∇)ei(kkk·rrr−ωt)

= −i

∫
d3k Ẽ0(kkk)(n̂̂n̂n× kkk)ei(kkk·rrr−ωt) = 0 ,

(7.40)

and

∂B̃BB(rrr, t)

∂t
= −

∫
d3k B̃0(kkk)m̂̂m̂m

∂

∂t
ei(kkk·rrr−ωt)

= −i

∫
d3k B̃0(kkk)m̂̂m̂mωei(kkk·rrr−ωt) = 0 ,

(7.41)

so we must have

ωm̂̂m̂m(kkk)B̃0(kkk) = kkk × n̂̂n̂n(kkk)E0(kkk) . (7.42)

That means we must have m̂̂m̂m(kkk) = kkk × n̂̂n̂n(kkk) (the magnetic field is orthogonal to the electric

field) and B̃0(kkk) = Ẽ0(kkk)/c. One can check in a similar fashion that the other two Maxwell

equations are also satisfied. The net result is

ẼEE(rrr, t) =

∫
d3k Ẽ0(kkk)n̂̂n̂n(kkk)e

i(kkk·rrr−ωt) , (7.43)

B̃BB(rrr, t) =
1

c

∫
d3k Ẽ0(kkk)kkk × n̂̂n̂n(kkk)ei(kkk·rrr−ωt) , (7.44)

47



with ω = ck and kkk × n̂̂n̂n = 0. Electromagnetic waves can be written as a superposition of

plane waves.

To get real fields, we just take the real parts. Note that Ẽ0 and n̂̂n̂n can be complex, while kkk,

rrr, ω, t are real. So

EEE(rrr, t) =

∫
d3k Ẽkkk(rrr, t) , BBB(rrr, t) =

1

c

∫
d3k kkk × Ẽkkk(rrr, t) , (7.45)

where the electric field plane wave is

EEE(rrr, t) = E0(kkk)n̂̂n̂n(kkk) cos(kkk · rrr − ωt− δ(kkk)) , (7.46)

with E0 cos δ − iE0 sin δ = Ẽ0. (Here we have chosen n̂̂n̂n(kkk) to be real.)

7.3.2 Non-plane wave decomposition

Plane waves form a basis of solutions to the wave equation, but they are not the only such

basis. Just as in separation of variables in electrostatics we found that sinusoidal solu-

tions eikkk·rrr were convenient for rectilinear boundary conditions, but that spherical harmonics

rℓPℓ(cos θ), r
−ℓ−1Pℓ(cos θ) were convenient for spherical boundary conditions, the same is

true for waves. For example, (ignoring polarization) outgoing spherical waves:

Ẽ(r, θ, ϕ, t) ∼
∞∑
ℓ=0

ℓ∑
m=−ℓ

Ẽℓ,mhℓ(kr)Yℓ,m(θ, ϕ) , (7.47)

where the hℓ are Hankel functions and the Yℓ,m are spherical harmonics.

7.3.3 Beams of light

Light is an electromagnetic wave. Typically, light is a superposition of plane waves of many

different kkk and n̂̂n̂n(kkk) and amplitudes and phases. A collimated beam is one in which all kkk
point in the same direction. A polarized beam is one where all n̂̂n̂n point in the same direction.

A monochromatic beam is one in which all k = |kkk| = ω/c are the same. A coherent beam

is one in which all phases δ(kkk) are the same. A collimated, polarized, monochromatic, and

coherent beam is given by a single Fourier mode:

Ẽ̃ẼE(rrr, t) = Ẽ0n̂̂n̂ne
i(kkk·rrr−ωt) . (7.48)

7.3.4 Energy and momentum of electromagnetic waves

The energy density is

u =
ϵ0
2
E2 +

1

2µ0

B2 =
ϵ0
2

(
E2 + c2B2

)
. (7.49)

We have to be careful using complex waveforms because (ReẼ)2 ̸= Re(Ẽ2). For a single

plane-wave mode

u =
ϵ0
2

(
E2

0 cos
2(kkk·rrr−ωt−δ)+c2

1

c2
E2

0 cos
2(kkk·rrr−ωt−δ)

)
= ϵ0E

2
0 cos

2(kkk·rrr−ωt−δ) . (7.50)
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Similarly, we find the energy density current (Poynting vector)

SSS = c uk̂̂k̂k . (7.51)

This is an energy density times a velocity, so electromagnetic waves can carry energy at the

speed of light. The momentum density is

ppp =
1

c2
SSS =

u

c
k̂̂k̂k . (7.52)

The momentum of electromagnetic waves has magnitude energy divided by the speed of

light c.
If calculate the average over time, defined by

⟨X⟩ ≡ lim
T→∞

1

T

T∫
0

dtX(t) , (7.53)

then, since

⟨cos2(ωt+ δ)⟩ = lim
T→∞

1

T

T∫
0

dt cos2(ωt+ δ) =
1

2
, (7.54)

we have

⟨u⟩ = 1

2
ϵ0E

2
0 , (7.55)

⟨SSS⟩ = c

2
ϵ0E

2
0 k̂̂k̂k , (7.56)

I ≡ ⟨S⟩ = c

2
ϵ0E

2
0 , (7.57)

⟨ppp⟩ = 1

2c
ϵ0E

2
0 k̂̂k̂k , (7.58)

P ≡ ⟨ppp⟩c = 1

2
ϵ0E

2
0 =

I

c
. (7.59)

Here, I is the intensity (power per area), and P is the radiation pressure.

One can do the same for angular momentum. It turns out that a collimated monochromatic

wave carries angular momentum density

JJJ = ± ϵ0
2ω

|Ẽ±|2k̂̂k̂k , (7.60)

where Ẽ± are the complex amplitudes of waves with circular polarization

Ẽ̃ẼE±(rrr, t) = Ẽ±n̂̂n̂n±e
i(kkk·rrr−ωt) , (7.61)

where

n̂̂n̂n± ≡ 1√
2

(
n̂̂n̂n1 ± in̂̂n̂n2

)
, (7.62)
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and n̂̂n̂n1, n̂̂n̂n2, k̂̂k̂k form a real orthonormal basis of unit vectors. In terms of real polarizations,

circular polarization is a superposition of a plane wave polarized in the n̂̂n̂n1 direction and

another of equal amplitude polarized in the n̂̂n̂n2 direction, but with a π/2 phase shift; for

instance,

EEE+(rrr, t) = E+

[
x̂̂x̂x cos(kz − ωt) + ŷ̂ŷy sin(kz − ωt)

]
. (7.63)

Energy and momeetum in a superposition of plane waves: since u, ppp, . . . are quadratic in

the fields, one cannot simply add the u of each plane wave. If EEE = EEE1 +EEE2, then

u = ϵ0E
2 = ϵ0

(
E2

1 + E2
2 + 2EEE1 ·EEE2

)
̸= u1 + u2 . (7.64)

The cross terms between plane-wave components are called interference terms. If one time

averages, different frequencies do not interfere:

lim
T→∞

1

2T

T∫
−T

dt e−iω1te+iω2t =∝ δ(ω1 − ω2) . (7.65)

But different k̂̂k̂k, n̂̂n̂n(k̂̂k̂k), E0(k̂̂k̂k) will, in general, interfere.

7.4 Electromagnetic waves in matter

7.4.1 Electromagnetic waves in linear media

In a linear, homogeneous, isotropic, dielectric, dia-/paramagnetic material with no free charges

or currents, Maxwell’s equations are the same as in vacuum but with ϵ0 → ϵ and µ0 → µ.

So electromagnetic waves travel just as in vacuum, but with speed v = 1/
√
ϵµ. Thus, such

materials are transparent. We define the index of refraction of the material to be

n ≡ v

c
=

√
ϵ0µ0

ϵµ
. (7.66)

For most materials n < 1 or v < c. What happens at the boundary between two such

materials? Expect: reflection and transmission. This is governed by the boundary conditions

ϵ1E
⊥
1 = ϵ2E

⊥
2 , E

∥
1E

∥
2 , (7.67)

B⊥
1 = B⊥

2 ,
1

µ1

B
∥
1

1

µ2

B
∥
2 . (7.68)

Consider an incident plane wave in +z direction normal (perpendicular) to interface at

z = 0 and polarized in x direction (see Fig. 11):

Ẽ̃ẼEI(z, t) = Ẽ0,Ie
i(kz−ωt)x̂̂x̂x , (7.69)

B̃̃B̃BI(z, t) =
1

v1
Ẽ0,Ie

i(kz−ωt)ŷ̂ŷy . (7.70)

EI⊥ = BI⊥ = 0, so boundary conditions imply that all ⊥ components vanish, so waves can

only be in ±z direction. By assumption there is no incoming wave from the right moving in

the −z direction. So there will only be a reflected and a transmitted wave:
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Figure 11: Transmission and reflection of a plane wave (normal incidence).

8 Potentials and fields

9 Radiation

10 Special Relativity

A Survey of Mathematical Topics

A.1 Differential Calculus

Given a function f : Rd → R, f(x1, . . . , xd) ∈ R, we define the exterior derivative

df ≡ ∂f

∂x1

dx1 + . . .+
∂f

∂xd

dxd . (A.1)

Here, ∂f/∂xi is the derivative w.r.t. xi, keeping all other xj fixed. The exterior derivative is

linear,

d(af + bg) = a df + b dg , (A.2)

where a, b ∈ R are constants and f, g are functions, and satisfies the Leibniz rule

d(fg) = f dg + g df . (A.3)

We can write the exterior derivative in term of the gradient∇∇∇f as df = (∇∇∇f) · dℓℓℓ, where (in

Cartesian coordinates)

∇∇∇f ≡ ∂f

∂x1

x̂̂x̂x1 + . . .+
∂f

∂xd

x̂̂x̂xd , (A.4)
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and

dℓℓℓ ≡ dx1 x̂̂x̂x1 + . . .+ dxd x̂̂x̂xd . (A.5)

Note that these are vector-valued functions. The geometrical interpretation is that∇∇∇f points

into the direction of maximum increase of f , and |∇∇∇f | is the slope of f in that direction. We

define the gradient differential operator (referred to as “nabla”)

∇∇∇ ≡
d∑

i=1

x̂̂x̂xi
∂

∂x1

. (A.6)

It takes scalar functions to vector-valued functions.

If f is a scalat function and vvv a vector-valued function (a vector field), we can form, in

addition to the gradient, the divergence of a vector field ∇∇∇ ·vvv (a scalar function), and the curl

of a vector field ∇∇∇ × vvv (another vector field). In Cartesian components, the divergence is

given by

∇∇∇ · vvv =
d∑

i=1

∂vi
∂x1

. (A.7)

The divergence is proportional to the rate vvv “spreads out” in space. The curl is given, in

Cartesian components, by

∇∇∇× vvv = det

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

vx vy vz

 (A.8)

|∇∇∇×vvv| is proportional to the “vorticity” of the vector field. It is defined only in three dimen-

sions.

∇∇∇ is a linear differential operator, so

∇∇∇(af + bg) = a∇∇∇f + b∇∇∇g , (A.9)

∇∇∇ · (avvv + bwww) = a∇∇∇ · vvv + b∇∇∇ ·www , (A.10)

∇∇∇× (avvv + bwww) = a∇∇∇× vvv + b∇∇∇×www , (A.11)

for a, b ∈ R constants. It satisfies the following useful product rules,

∇∇∇(fg) = f∇∇∇g + g∇∇∇f , (A.12)

∇∇∇ · (fvvv) = f∇∇∇ · vvv + vvv · ∇∇∇f , (A.13)

∇∇∇(vvv ·www) = vvv × (∇∇∇×www) +www × (∇∇∇× vvv) + (∇∇∇ · vvv)www + (∇∇∇ ·www)vvv , (A.14)

∇∇∇ · (vvv ×www) = www · (∇∇∇× vvv)− vvv · (∇∇∇×www) , (A.15)

∇∇∇× (fvvv) = f∇∇∇× vvv − vvv ×∇∇∇f , (A.16)

∇∇∇× (vvv ×www) = (www · ∇∇∇)vvv − (vvv · ∇∇∇)www −www(∇∇∇ · vvv) + vvv(∇∇∇ ·www) . (A.17)

Applying the nabla operator twice results in

∇∇∇ ·∇∇∇f ≡ ∇2f =
d∑

i=1

∂2f

∂x2
i

, (A.18)
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∇2vvv =
d∑

i=1

∇2vix̂̂x̂xi , (A.19)

∇∇∇×∇∇∇f = 0 , (A.20)

∇∇∇ · (∇∇∇× f) = 0 , (A.21)

∇∇∇× (∇∇∇× vvv) =∇∇∇(∇∇∇ · vvv)−∇2vvv . (A.22)

Another useful equation that follows simply from Eq. (A.14) is

vvv ×
(
∇∇∇× vvv

)
= 1

2
∇∇∇(vvv2)− (vvv · ∇∇∇)vvv . (A.23)

A.2 Integral Calculus

The fundamental theorem of calculus is∫
region

derivative of f =

∫
boundary of region

f . (A.24)

In three dimensions, we get many different versions. Scalar integrals:∫
C

dℓℓℓ · ∇∇∇f =

∫
∂C

f , (A.25)

∫
S

daaa · (∇∇∇× vvv) =

∫
∂S

dℓℓℓ · vvv , (A.26)

∫
V

dV (∇∇∇ · vvv) =
∫
∂V

daaa · vvv . (A.27)

Vector-valued integrals: ∫
S

daaa×∇∇∇f =

∫
∂S

dℓℓℓ f , (A.28)

∫
V

dV ∇∇∇f =

∫
∂V

daaa f , (A.29)

∫
V

dV (∇∇∇× vvv) =

∫
∂V

daaa× vvv . (A.30)

To compute these, we need to know the following definitions: C , S, V are oriented curves,

surfaces, volumes, and ∂C , ∂S, ∂V their boundaries;

∫
∂C

is a “zero-dimensional” integral

(the usual familiar integral),

∫
C
dℓℓℓ a one-dimensional line integral,

∫
S
daaa a two-dimensional

surface integral,

∫
V
dV a three-dimensional volume integral.
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Integrating the Leibniz rule and using the fundamental theorem yields integration-by-

parts identities: ∫
R

g df +

∫
R

f dg =

∫
R

d(fg) =

∫
∂R

fg . (A.31)

For a single variable, this gives the familiar result

b∫
a

dx

(
g
df

dx
+ f

dg

dx

)
= fg

∣∣∣∣b
a

, (A.32)

or,

b∫
a

dx f
dg

dx
= −

b∫
a

dx g
df

dx
+ fg

∣∣∣∣b
a

. (A.33)

In three dimensions, we just apply the same logic to any three-dimensional Leibniz rule.

For instance, Eq. (A.16) implies∫
S

daaa · ∇∇∇× (fvvv) =

∫
∂S

dℓℓℓ · vvv f =

∫
S

daaa · (∇∇∇f × vvv) +

∫
S

daaa · (∇∇∇× vvv)f . (A.34)

A.2.1 Line integrals

We describe an oriented curve from point aaa to point bbb as the set of points C = {rrr(s), 0 ≤ s ≤
1}, with rrr(0) = aaa and rrr(1) = bbb. Then

dℓℓℓ(s) ≡ drrr(s)

ds
ds (A.35)

is the infinitesimal tangent vector at s, and we define the line integral as the sum of infinites-

imal tangent vectors, ∫
C

dℓℓℓ =

1∫
0

ds
drrr(s)

ds
. (A.36)

The boundary of a curve are just the two endpoints, ∂C = {aaa, bbb}. The integral over the

boundary is just the “usual” integral,∫
∂C

f = f(bbb)− f(aaa) = f

∣∣∣∣bbb
aaa

. (A.37)

Note that is C is a closed curve, then bbb = aaa, so ∂C = ∅ (the empty set).

In Cartesian coordinates, we can represent the curve as

C = {rrr(s) = x(s)x̂̂x̂x+ y(s)ŷ̂ŷy + z(s)ẑ̂ẑz , 0 ≤ s ≤ 1} . (A.38)

Then the line integral becomes∫
C

dℓℓℓ =

1∫
0

ds
drrr(s)

ds
=

1∫
0

ds

(
∂x

∂s
x̂̂x̂x+

∂y

∂s
ŷ̂ŷy +

∂z

∂s
ẑ̂ẑz

)
≡
∫
C

(
dx x̂̂x̂x+ dy ŷ̂ŷy + dz ẑ̂ẑz

)
. (A.39)
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A.2.2 Surface integrals

We can describe an oriented surface as the set of points S = {rrr(s, t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1},

with

rrr(s, t) = x(s, t)x̂̂x̂x+ y(s, t)ŷ̂ŷy + z(s, t)ẑ̂ẑz . (A.40)

The infinitesimal normal surface area is given by

daaa ≡ ds dt
drrr

ds
× drrr

dt
, (A.41)

and the surface integral is ∫
S

daaa =

1∫
0

ds

1∫
0

dt
drrr

ds
× drrr

dt
. (A.42)

The boundary of a surface is a closed curve. We often write the integral as∫
∂S

dℓℓℓ ≡
∮
∂S

dℓℓℓ . (A.43)

If the surface is closed, then its boundary is the empty set.

In Cartesian coordinates, the surface integral becomes

∫
S

daaa =

1∫
0

ds

1∫
0

dt
drrr

ds
× drrr

dt
=

1∫
0

ds

1∫
0

dt det

 x̂ ŷ ẑ
∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

 . (A.44)

Surfaces can be decsribed implicitly, as the solution of an equation: S = {rrr|u(rrr) = 0},

where u is a scalar function. If we can find any two functions s(rrr), t(rrr), such that

0 <∇∇∇s ·
(
∇∇∇t×∇∇∇u

)
= det


∂s
∂x

∂s
∂y

∂s
∂z

∂t
∂x

∂t
∂y

∂t
∂z

∂u
∂x

∂u
∂y

∂u
∂z

 ≡ J , (A.45)

then (s, t) parameterizes S, daaa ∝∇∇∇u, and∫
S

daaa =

∫
ds dt J−1∇∇∇u

∣∣
u=0

. (A.46)

A.2.3 Volume integrals

We can describe an oriented volume as the set of points V = {rrr(s, t, u), 0 ≤ s, t, u ≤ 1}. E.g.,

we can just take (s, t, u) = (x, y, z) as the Cartesian coordinates. The infinitesimal volume

element is given by

dV ≡ ds dt du
drrr

ds
·
(
drrr

dt
× drrr

du

)
, (A.47)
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and the volume integral is∫
V

dV =

1∫
0

ds

1∫
0

dt

1∫
0

du
drrr

ds
·
(
drrr

dt
× drrr

du

)
. (A.48)

The boundary of a volume is a closed surface. We often write the integral as∫
∂V

daaa ≡
∮
∂V

daaa . (A.49)

If the surface is closed, then its boundary is the empty set. The orientation of the surface is

inherited from the orientation of the volume: daaa points out of V if dV > 0, and daaa points

into V if dV < 0.

In Cartesian coordinates, the volume integral becomes

∫
V

dV =

1∫
0

ds

1∫
0

dt

1∫
0

du
drrr

ds
·
(
drrr

dt
× drrr

du

)
=

∫ ∫ ∫
ds dt du det


∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∂x
∂u

∂y
∂u

∂z
∂u

 . (A.50)

A.3 Separation of variables

A systematic method for finding series solutions of Laplace’s equation when the boundary

conditions are on surfaces described by constant values of coordinates in some coordinate

system.

Cartesian: boundaries at x = constant or y = constant or z = constant. So, good in

“rectangular” domains. Note that xi, yi, zi could be at infinity.

Spherical: boundaries at r = constant or ϕ = constant or θ = constant.

Cylindrical: boundaries at r = constant or ϕ = constant or z = constant.

The idea is to look for solutions of ∇2V = 0 such that: V (x, y, z) = X(x) · Y (y) · Z(z)
(Cartesian), V (r, ϕ, θ) = R(r) · Φ(ϕ) · Θ(θ) (spherical), or V (r, ϕ, z) = R(r) · Φ(ϕ) · Z(z)
(cylindrical). Then we will find that ∇2V = 0 separates into three ordinary differential equa-

tions for the factor functions (X, Y, Z) etc., each depending on a real constant (k2
x, k

2
y, k

2
z).

These ordinary differential equations can be solved once and for all and we get a family of

special functions, e.g.:

Cartesian: Xk ∼ e±ikx ∼ sin(kx), cos(kx) or Xk ∼ e±kx ∼ sinh(kx), cosh(kx), and the

same for Yk, Zk.

Spherical: Rk ∼ rℓ± , with ℓ± = −(1 ∓
√
1 + 4k2)/2, Θ(θ) ∼ Pm

ℓ (cos θ) (associated

Legendre polynomials), Φ(ϕ) ∼ e±ikϕ
or Φ(ϕ) ∼ e±kϕ

.

Cylindrical: Rk ∼ Jk, Yk (Bessel functions), Φ(ϕ) ∼ e±ikϕ
or Φ(ϕ) ∼ e±kϕ

, Z(z) ∼ e±ikz

or Z(z) ∼ e±kz
.

“Special functions” have the very nice properties of orthogonality and completeness. If

Nk(x) is a set of special functions, then, heuristically,∫
dxNk(x)Nk′(x) = δkk′ (ON)
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(orthogonality) and ∑
k

Nk(x)Nk(x
′) = δ(x− x′) (CO)

(completeness). Eq. (CO) implies that any function f(x) can be written as a linear combina-

tion of the Nk(x):

f(x) =

∫
dx′ f(x′)δ(x− x′) =

∫
dx′ f(x′)

∑
k

Nk(x)Nk(x
′)

=
∑
k

Nk(x)

(∫
dx′ f(x′)Nk(x

′)

)
≡
∑
k

ckNk(x) .

(A.51)

Eq. (ON) implies that the coefficients ck can be determined uniquely:∫
dx f(x)Nk(x) =

∫
dx

(∑
k′

ck′Nk′(x)

)
Nk(x)

=
∑
k′

ck′

∫
dxNk′(x)Nk(x) =

∑
k′

ck′δkk′ = ck .

(A.52)

(This is just like expanding any vector in a basis, vvv =
∑

k vkeeek, with basis vectors eeek and

coefficients ck. In fact, the sets of special functions form an infinite-dimensional vector space.)

A familiar example is Nk(x) → Nm(ϕ) = einϕ, with n ∈ Z. In this case, the orthogonality

relation is

1

2π

2π∫
0

dϕ einϕe−imϕ = δnm , (A.53)

and the completeness relation is∑
n

einϕe−inϕ′
= 2πδ(ϕ− ϕ′) . (A.54)

It follows that

f(ϕ) =
∑
n

cne
inϕ , (A.55)

with

cn =
1

2π

2π∫
0

dϕ f(ϕ)e−inϕ . (A.56)

This is the Fourier series for periodic functions.

Similarly, if Nk(x) = eikx, with k ∈ R, then the orthogonality relation is

1

2π

∞∫
−∞

dx eikxe−ik′x = δ(k − k′) , (A.57)
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and the completeness relation is

1

2π

∞∫
−∞

dk eikxe−ikx′
= δ(x− x′) . (A.58)

It follows that

f(x) =
1

2π

∞∫
−∞

dk f̃(ϕ)eikx , (A.59)

with

f̃(x) =

∞∫
−∞

dx f(x)e−ikx . (A.60)

This is the familiar Fourier transform.

These examples make it clear that the precise set of special functions used depends on the

boundary conditions. For instance, if if the boundaries are at x = x0 and x = x1, and both

x0 and x1 are finite, then we get a Fourier series, but if x0 = ±∞ and/or x1 = ±∞, then

we get a Fourier transform.

A.3.1 An example: Cartesian coordinates

Here, we have ∇2V = 0 such that: V (x, y, z) = X(x) · Y (y) · Z(z). Explicitly,

0 =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
X(x)Y (y)Z(z)

=
(
∂2
xX
)
Y Z +

(
∂2
xY
)
XZ +

(
∂2
xZ
)
XY ,

(A.61)

so

0 =
∂2
xX

X
+

∂2
yY

Y
+

∂2
zZ

Z
. (A.62)

As the first term is only a function of x, the second only of y, and the third only of z, we

must have

∂2
xX

X
= −k2

x ,
∂2
yY

Y
= −k2

y ,
∂2
zZ

Z
= −k2

z , (A.63)

with k2
x + k2

y + k2
z = 0. (This implies that not all of the k2

i can be positive!)

The solutions to Eq. (A.63) are

X(x) = Ã cos(kxx) + B̃ sin(kxx) = Aeikx +Be−ikx , (A.64)

if k2
x > 0, and

X(x) = Ã cosh(κxx) + B̃ sinh(κxx) = Aeκx +Be−κx , (A.65)

if κ2
x = −k2

x < 0 (so κ2
x > 0). Similarly for Y , Z . The values that the k2

x, k
2
y, k

2
z can take are

determined by the boundary conditions.
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A.3.2 An example: spherical coordinates

As an example, we solve Laplace’s equation in the region r1 < r < r2, with boundary

conditions

V (r = r1, θ, ϕ) = 0 , (A.66)

V (r = r2, θ, ϕ) = g2(θ, ϕ) . (A.67)

We have (see Eq. (B.7))

0 = ∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂ϕ2
. (A.68)

Inserting V (r, ϕ, θ) = R(r) · Φ(ϕ) ·Θ(θ) and multiplying by r2/V (r, ϕ, θ), we have

0 =
1

R

∂

∂r

(
r2
∂R

∂r

)
+

1

Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ sin2 θ

∂2Φ

∂ϕ2
. (A.69)

The first term is a function of r only, while the second and third terms depend only on θ and

ϕ, so we must have

∂

∂r

(
r2
∂R

∂r

)
= λR , (R)

and

1

Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ sin2 θ

∂2Φ

∂ϕ2
= −λ , (A.70)

with λ ∈ R. Multiplying the last equation by sin2 θ, we find

sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ λ sin2 θ +

1

Φ

∂2Φ

∂ϕ2
= 0 . (A.71)

Since now the last term depends on θ only, it must be constant,

1

Φ

∂2Φ

∂ϕ2
≡ −m2 . (A.72)

It follows then that

∂2Φ

∂ϕ2
= −m2Φ . (Φ)

and

sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ λΘsin2 θ = m2Θ . (Θ)

Let’s solve Eq. (Φ) first. The solutions are

Φm = eimϕ , m ∈ R , (A.73)

for m2 > 0, or

Φµ = eiµϕ , µ ∈ R , (A.74)
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for m2 = −mu2 < 0. What are the boundary conditions on Φm,µ? Periodicity in ϕ requires

that

Φm,µ(ϕ+ 2π) = Φm,µ(ϕ) . (A.75)

There is no solution (apart from µ = 0) for Φµ. For Φm we get e2πim = 1, so m ∈ Z.

Now let’s look at Eq. (Θ). What are the boundary conditions? We want Θ(θ) to be regular

at θ = 0, π. It follows that λ = ℓ(ℓ+ 1) with ℓ ∈ Z and ℓ > |m|. The solutions of Eq. (Θ) are

then the associated Legendre polynomials Pm
ℓ (cos θ, sin θ).

For this course, we will stick to situations where only m = 0 contributes. This means

only Θ0(ϕ) = 1 is allowed, which means we are restricting to problems where there is no ϕ
dependence, i.e., there is rotational symmetry about the z axis.

So, we have to modify our problem to have boundary condition V (r = r2, θ, ϕ) = g2(θ)
(i.e., no ϕ dependence). When m = 0, the solutions of Eq. (Θ) that are regular at θ = 0, π are

the Legendre polynomials

Θℓ(θ) = Pℓ(cos θ) , (A.76)

with 0 ≤ ℓ ∈ Z, and

Pℓ(x) =
1

2ℓℓ!

(
d

dx

)ℓ

(x2 − 1)ℓ . (A.77)

For instance,

P0(x) = 1 , (A.78)

P1(x) = x , (A.79)

P2(x) =
1
2
(3x2 − 1) , (A.80)

P3(x) =
1
2
(5x3 − 3x) , (A.81)

P4(x) =
1
8
(35x4 − 30x2 + 3) , (A.82)

P5(x) =
1
8
(63x5 − 70x3 + 15x) . (A.83)

There are normalized to Pℓ(1) = 1 and satisfy

Pℓ(−x) = (−1)ℓPℓ(x) , (A.84)

as well as

1∫
−1

dxPm(x)Pn(x) =

π∫
0

sin θ dθ Pm(cos θ)Pn(cos θ) =
2

2n+ 1
δmn (A.85)

and
∞∑
ℓ=0

2ℓ+ 1

2
Pℓ(x)Pℓ(x

′) = δ(x− x′) . (A.86)

Now look at Eq. (R):

∂

∂r

(
r2
∂R

∂r

)
= ℓ(ℓ+ 1)R . (A.87)
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Notice that this equation is invariant under the rescaling r → αr, so we guess the solutions

R ∝ ra. Plugging this in we find a(a+1) = ℓ(ℓ+1), so a = ℓ or a = −ℓ− 1. So the general

solution is

Rℓ(r) = Aℓr
ℓ +Bℓr

−ℓ−1 . (A.88)

Putting this all together, we have

V (r, θ) =
∞∑
ℓ=0

(
Aℓr

ℓ +Bℓr
−ℓ−1

)
Pℓ(cos θ) . (A.89)

(This solution is only good if (i) there is no ϕ dependence, and (ii) it covers the full range

0 ≤ θ ≤ π.) Now we apply the boundary conditions:

0 = V (r1, θ) =
∞∑
ℓ=0

(
Aℓr

ℓ
1 +Bℓr

−ℓ−1
1

)
Pℓ(cos θ) . (A.90)

Since the Pℓ(cos θ) form a complete set of functions, we have

Aℓr
ℓ
1 +Bℓr

−ℓ−1
1 = 0 (A.91)

for all ℓ ≥ 0. Next,

g2(θ) = V (r2, θ) =
∞∑
ℓ=0

(
Aℓr

ℓ
2 +Bℓr

−ℓ−1
2

)
Pℓ(cos θ) . (A.92)

Now we use the orthogonality of the Pℓ(cos θ):

π∫
0

sin θ dθ g2(θ)Pn(cos θ)

=
∞∑
ℓ=0

(
Aℓr

ℓ
2 +Bℓr

−ℓ−1
2

) π∫
0

sin θ dθ Pℓ(cos θ)Pn(cos θ)

=
∞∑
ℓ=0

(
Aℓr

ℓ
2 +Bℓr

−ℓ−1
2

) 2δℓn
2n+ 1

=
2

2n+ 1

(
Anr

n
2 +Bnr

−n−1
2

)
(A.93)

Eqs. (A.91) and (A.93) determine Aℓ, Bℓ for all ℓ.

B Curvilinear coordinate systems

B.1 Spherical coordinates

Relation to Cartesian coordinates:

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ . (B.1)
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Infinitesimal line element:

dℓℓℓ = dr r̂̂r̂r + r dθ θ̂̂θ̂θ + r sin θ dϕ ϕ̂̂ϕ̂ϕ . (B.2)

Infinitesimal volume element:

dV = r2 sin θ dr dθ dϕ . (B.3)

Gradient: For a scalar field f , we have

∇∇∇f =
∂f

∂r
r̂̂r̂r +

1

r

∂f

∂θ
θ̂̂θ̂θ +

1

r sin θ

∂f

∂ϕ
ϕ̂̂ϕ̂ϕ . (B.4)

Divergence: For a vector field AAA, we have

∇∇∇ ·AAA =
1

r2
∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ

(
Aθ sin θ

)
+

1

r sin θ

∂Aϕ

∂ϕ
. (B.5)

Curl: For a vector field AAA, we have

∇∇∇×AAA =
1

r sin θ

[
∂

∂θ

(
Aϕ sin θ

)
− ∂Aθ

∂ϕ

]
r̂̂r̂r +

1

r

[
1

sin θ

∂Ar

∂ϕ
− ∂

∂r

(
rAϕ

)]
θ̂̂θ̂θ

+
1

r

[
∂

∂r

(
rAθ

)
− ∂Ar

∂θ

]
ϕ̂̂ϕ̂ϕ .

(B.6)

Laplacian:

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
. (B.7)

B.2 Cylindrical coordinates

Infinitesimal line element:

dℓℓℓ = dr r̂̂r̂r + r dϕ ϕ̂̂ϕ̂ϕ+ dz ẑ̂ẑz . (B.8)

Infinitesimal volume element:

dV = r dr dϕ dz . (B.9)

Gradient: For a scalar field f , we have

∇∇∇f =
∂f

∂r
r̂̂r̂r +

1

r

∂f

∂ϕ
ϕ̂̂ϕ̂ϕ+

∂f

∂z
ẑ̂ẑz . (B.10)

Divergence: For a vector field AAA, we have

∇∇∇ ·AAA =
1

r

∂

∂r

(
rAr

)
+

1

r

∂Aϕ

∂ϕ
+

∂Az

∂z
. (B.11)

Curl: For a vector field AAA, we have

∇∇∇×AAA =

[
1

r

∂Az

∂ϕ
− ∂Aϕ

∂z

]
r̂̂r̂r +

[
∂Ar

∂z
− ∂Az

∂r

]
θ̂̂θ̂θ +

1

r

[
∂

∂r

(
rAϕ

)
− ∂Ar

∂ϕ

]
ẑ̂ẑz . (B.12)

Laplacian:

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂ϕ2
+

∂2f

∂z2
. (B.13)
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