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Abstract

“It doesn’t matter what we cover. It matters what you discover.”
[Attributed to Viktor Weisskopf, theoretical physicist, 1908 — 2002]
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0 Introductory Remarks

These lecture notes are based on hand-written notes provided by Philip Argyres; the originals
can be found on his course homepage.

1 Electrostatics

1.1 The electric field

The force on a charge () at point  due to other (static) electric charges is

F=QE(r). (1.1)

The charge () is measured in units of Coulomb (C), the electric field E in units of Newton
per Coulomb (N/C). (Recall that N = kg m/s?). The electric field due to a point charge g, at
position 7/, is

Er) =L "=" (1.2)

The permitivity of free space is ¢g = 8.85 x 10712C?/Nm? (effectively, this is the definition
of the unit “Coulomb”).
The electric field due to many charges g; is the sum of electric fields due to each individual

charge:
1 r—r
E(r)=— E . 1.3
) dmeq a Ir — i3 (1.3)

- dreg 1 — 1|3

i
For continuous charge distributions, it is frequently useful to define charge densities, which

we denote as follows:
density unit

0-dimensional point charge q C
1-dimensional line charge A C/m
2-dimensional surface charge o C/m?
3-dimensional volume charge p C/m?

The sum over point charges then becomes an integral. For line charge densities:

r—r

E(r) = — / ), (1.4)

dmeg r—r/|3’
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where d¢’ = |dl'|. For surface charge densities:

r—r

E(r) = — / i o), (1.5)

 d7eg r—r/|3’
where d¢’ = |dl'|. For volume charge densities:

1 r—r

E = a3y ) R 1.6

)= e / g (16)
1%

1.2 Gauss’ law
We calculate the divergence of a static electric field due to a volume charge density:

1 r—r

. — . 3./ AN
V.FE 47T€0V /d r ,0(7‘)|r T
v

1 3 r—7r
= 47T€0/d ' p(r)V - i — /|3 (1.7)

1

4meg

/dgr’p(r')élwé(r) = M

€0
%
This is the (differential form of) Gauss’ law. Integrating this equation, we obtain

/d?’rv E = /d?’rM _ Qenat : (1.8)
1% 0

€0

v

where Qene. is the total (net) charge enclosed within the integration volume. Using the di-
vergence theorem, this is equivalent to

jf da-E:%, (1.9)

€0
S=0V

This is the integral form of Gauss’ law.
Next, we calculate the curl of the static electric field.

/

1 r—r
E — X 3./ /
V x E(r) 47T60V /d r p('r)—|r T
v
- / P )W x LT~ "
 Arwey p lr—r/3
It follows that

j{dﬁ -E=0 (1.11)
C



for any closed contour C. A consequence is that there exists a scalar function V' (r) (the
electric potential) such that

E=-V.-V(r). (1.12)

In summary, CouLOMB’s law

1 , o=
B(r) = o /dzr it (1.13)
is equivalent'
g5t »
VxE=0. (1.15)

These are the equations for electrostatics.

If a problem has enough symmetry, we can use the integral form of Gauss’ law to quickly
derive the electric field. For instance, assume a spherically symmetric volume charge density,
p(r) = p(r), i.e. the charge density only depends on the distance from the origin. We choose
a “Gaussian surface” S,, a sphere of radius r centered on the origin. The sperical symmetry
implies that E(r) = E(r)#. Why? The answer cannot’ on how we rotate the coordinate
system around the origin, so must be independent of the angles 6, ¢ and ¢, ¢'. We have

™ 21

fda -E(r) = /sin 0do / dor®t - E(r)# = 47r*E(r) , (1.16)
S, 0 0
and
iy 2
Qenct. = /d37“'p(r’) = / (r")2dr’ / sin 0d6 / dep(r') = 4r / dr' (r'p(r").  (1.17)
Vi r'<r 0 0 r'<r
Using Gauss’ law, we find (for spherically symmetric charge distributions)
E(r) = —— [ dr' (")%p(). (1.18)
€T

0

Next, we assume a cylindrical symmetry (i.e. the charge density depends only on the
distance to the 2 axis, and is translationally invariant in the 2 direction). Then we choose the

1So far, we have only shown that the electrostatic equations follow from CouLoms’s law, and not vice versa.
2This is actually a subtle point: just because an equation has a symmetry, it does not necessarily follow that
the solution has that symmetry.



Gaussian surface S; . to be a cylinder of height z and radius s centered on the z axis. The
cylindrical symmetry implies that E(r) = E(s)§. We have

# da' B / /dgsz

s,z

—i—/dz’/dgps&E(s)é
0 0

(1.19)

27

s'ds'/dgp(—é) - E(s)§
0 0

=0+2r2zsE(s),

and
z s 2 s

Qend. = /dgr’p(r') = /dz’/s’ds’/dcp p(s') = QWz/s’ds’p(s'). (1.20)

Vs,z 0 0 0 0
Using Gauss’ law, we find (for cylindrically symmetric charge distributions)

S

A

3
E(r)=— [ ds's'p(r"). (1.21)

€oS

0
As our last example, we consider planar symmetry (i.e. the charge density is invariant
under translations only in the x- or y-directions, p(r) = p(z)). We choose the Gaussian
surface S, 4 to be a cylinder of arbitrary cross sectional shape A and height z along the z
axis. The planar symmetry implies that E(r) = E(z)Z. We have

%da’-E(r’) :/dxdy2~E(z)2
S A

z

+/dz’/d€’ﬁ'~E(z’)7t (1.22)

0

+ /da:dy E(2)%.
A

Here, #t’ is perpendicular to the side of the cylinder, so lies in the z-y plane: #' = aZ + by. It
follows that n/ x 2 = (. Also, note that

/ drdy = A. (1.23)

A



Therefore,

f da' - B(r') = AE(z) — AE(0). (1.24)
SZ,A
Moreover,
Qena. = / &' p(r') = /da:dy/dz'p(z’) = A/dz'p(z’) : (1.25)
V.,a A 0 0
Using Gauss’ law, we find (for planar symmetric charge distributions)
E(r)= i/d,z’p(z/) + E(0). (1.26)
€o

0

1.3 Discontinuity of the electric field at a surface charge

This is a useful result that follows most easily from the integrated forms of the electrostatic
laws.
Consider a surface S with a surface charge density o(r). We will show that at a point
r € S, the difference between the electric fields just above S, F(r), and just below S,
E (r),is
E . (r)y—E_(r)= n, (1.27)

€0

where 7 is the unit normal vector to S pointing to the “above” (“+”) side. Even though there
is no symmetry in this problem, we can still use Gauss’ law in integrated form by choosing
the Gaussian surface to be an arbitrary pill box with surface S’ and height ¢ centered on a
point 7 € S. Gauss’ law implies that

1
j{da’ cE(r') = —Qena. - (1.28)
€
5 ’
We have
%da’ -E(ry=An-E (r)— An-E_(r)+ O(e), (1.29)
S/
1 1
—Qenat. = —Ao(r) + O(e) . (1.30)
€0 €0
Taking the limit ¢ — 0, we find
A 1
n-(E.(r)—E_(r)) = aa(r) : (1.31)
The integrated form of the curl equation is
%dz’ -E(r')=0. (1.32)
c



Choose C' to be a small rectangular loop along 7 and a tangential direction ¢ to S. Then

]4 i - E() = If-E,(r)— If-E_(r) + O(c). (1.33)

where L is the length of the loop (along the surface), and ¢ its height. Taking the limite — 0,
we find
t-(E.(r)—E_(r)) =0, (1.34)
for any # tangent to S.
This proves Eq. (1.27) since contracting Eq. (1.27) with 72 gives Eq. (1.31), and contracting
Eq. (1.27) with £ gives Eq. (1.34) (using £ - & = 0), and since {#,,%'} form a basis at r for any
two linearly independent tangent vectors £, .

1.4 The electric potential

We have seen that the electrostatic equations imply the existence of an electrostatic potential.
Integrating Eq. (1.12) we obtain

V) — Vi) = — /E e, (1.35)

independent of the path from 7, to . We can add any constant to V: if V'(r) = V(r) + C,
then E = —VV’ = —VV. This constant is arbitrary and unobservable. E.g., we can choose
it so that V' (rg) = 0 at any point r. If the charge density does not extend to infinity, then a
common convention is to choose

V(o) =0. (1.36)

The potential has the unit V (Volts). We have N/C = [E] = [VV]| = V/m, so V= Nm/C =J/C
(Joule per Coulomb). We can rewrite Eq. (1.14) in terms of the potential:

@ =V-E=-V.(VV)= -VV, (1.37)
0
SO
V2 — _M. (1.38)
€o

This is the PorssoN equation (called the LAPLACE equation if the right side is zero). V? is
called the Laplacian. This is a key equation of physics.
We can also rewrite COULOMB’s equation in terms of the potential:

f 1" " 1 f /" / / r—r
V(r):—/dé -E(r):—4mo/d£ -(/d?’r p(r)m)

T

1 " - (r —r')
— _ d3/ / et
4meg / ol )/ lr —r'|3

o0

(1.39)




To do the integral over the d¢”, we can choose any path and any coordinate system:

r=|r—r/|

a7 »
r—1r'|3 '
So . )
o 3+ P\T
Vi(r)= Tre /d i (1.41)

Note: since we chose V' (c0) = 0 in deriving it, this formula does not apply if p(r) extends to
infinity (it diverges).

1.5 Work and energy in electrostatics

The work required to move a charge () in a fixed E field is
W= /cLe-F = /de- (—QE) =Q(V(r) — V(ry)), (1.42)

independent of the path. This is the energy change in moving ) from r( tor. If ry = oo and
we set V(c0) = 0, then we have
W=QV(r). (1.43)

This is the potential energy of the charge () in the given electric field E.
What is the energy of a point charge distribution? Say we have charges ¢; at positions r;,

¢ =1,...,n. Can can imagine assmbling them by bringing them together from infinity one
at a time. The work to bring in ¢; is W7 = 0, since E = 0. For the second charge,
Wy = guVi(ry) = SLCR . (1.44)
dmeq |ro — 71
For the third charge,
q3 q1 g2
W3 = q2(V4 Vs = ) 1.45
3 Q2( 1(T3>+ 2(T3)) 47TEQ<|7'3—7'1| + |r3_r2|) ( )

For n charges, we find

4291 4391 4342
W=)> W= — | + + -
Z 47T€0{ (’7’2—T1|> (!7"3—7”1\ |T3—T2|) }
(1.46)
% L g
S NELEEE o1 (D e |

i=1 j= i=1 j=1,j#1

The term in brackets in the last expression is the potential at r; due to all other charges j # 1,

)
1 n
=3 Z q;V (r:) - (1.47)
i=1



If we included the potential due to ¢; at r;, we would get

1 d; 1o
47T€0 |T'i — ’I"Z" N 47T€0 0

= 00. (1.48)

This is the infinite energy required to assemble a single point charge. We assume that point
charges are given to us “pre-assembled” by nature, so we do not need to do this work.

The energy of a continuous charge distribution can be obtained by taking the continuous
limit of Eq. (1.47):

1
W= /d?’r p(r)V(r). (1.49)
Here, V (r) is the potential due to all charges p(r’) for r’ # r, but
1 p(r') 1 / p(r')
Vir) = — d? = d?
(r) 47reg / " lr—r'|  4meg ' lr—7r/|’ (1.50)
r'#r

the last integration including the point r. They are the same since

€ T 2
1 ! 1
lim — / d>r plr’) = p(r) lim rzdr/sin 9d9/dqb—
e—0 4meg [r —r'|  4mwep e—0 r

Be(r) ’ 0 0 (1.51)

2

- plr) lim/rdr = pr) lim = = 0,
€g -0 €g €0 2

0

where B.(r) is the ball centered on r with radius ¢. So for continuous charge distributions
we make no mistake by including the point 7 in the integration.
We can rewrite Eq. (1.49) using Eq. (1.14),

W:%O/d?’r(V-E)V:%O/d?’r V- (EV)-E-VV]

(1.52)
" da-(EV)—l—E—O/dS?"EQ.
2 2
S
Here, S is an arbitrarily large sphere. Assuming V' (co) = 0 (p has compact support), the first

integral in the last line vanishes and we have simply

€ ‘
W = g/dsr E?. (1.53)
The electric field carries energy density < £°. This interpretation becomes more convincing
in electrodynamics when radiation is considered.

Note that £ = E; + E, does not imply W = W; + Ws:

W = %O/dgrEz = %O/dST(El + E,)?
(1.54)

:EEO dgr(E%+2E1'E2+E22):W1+W2+€0/d3?”E1'E2.
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1.6 Conductors

Al normal matter* in nature is made up of positively and negatively charged particles.

Insulators are materials (collections of normal matter held together somehow) inside of
which charges do not move in repsonse to an arbitrarily small applied electric field.

Conductors are materials inside of which charges are free to move. The mobile charges are
called the conduction charges. The main example are solid metals, in which the conductions
charges are electrons, though there are other examples as well. “Free to move” means that
if you apply an arbitrarily small electric field, charges will move in response in the interior
of the material. The charges are confined to the material. This assumes nothing about how
quickly the charges respond (measured by the resistivity of the material). In practice, if the
applied electric field is large enough, a couple of things can happen: (i) the conductor can
run out of mobile charges, in which case it becomes an insulator, and/or (ii) the conduction
charges can be pulled out of the material entirely. (Likewise, if the applied electric field
in an insulator is large enough, some charges in its interior can be pulled free to become
conduction charges.)

In static (time-independent) situations, the charges must move inside the conductor in such
a way as to make the total electric field zero in the interior of the conductor. If this wasn’t the
case, then there would be a non-zero electric field inside the conductor, and charges would
move, so it wouldn’t be static. It follows that p = 0 inside (static) conductors, because of
Eq. (1.14). The only net charge can be on the surface of the conductor. It follows that the
potential is constant inside the conductor, because

V(b) - Via) = — /E =0 (1.55)

as long as there is a path connecting a and b inside the conductor. If the conductor is in a
region (volume) R with surface S = OR with unit normal 72, then just outside .S the electric
field is perpendicular to S, because if the electric field has any component tangent to S, then
it will cause conduction charges to move along S inside the conductor to cancel it.

We always assume the net charge of the conductor is zero. Note that since charge move to
the surface of the conductor, there will be a separation of positive and negative charges. If the
applied electric field is non-uniform, this will mean that there is a net force on the conductor.
We assume that something (e.g. some insulators) is holding the conductor in place.

Cavities are empty volumes in the interior of the conductor - i.e., completely surrounded
by conductor. If there are no charges inside the cavity, then V - E = 0 there, so the electric
field lines (flux along tiny cylinders) must reach across the cavity. But then ¢, E - df > 0,
which is a contradiction. We conclude that the electric field must vanish inside an empty
cavity and there are no surface charges on the cavity surface, and the potential is constant
inside the cavity.

SExcept: neutronium, found in neutron stars, and relativistic matter made up of photons (light, or electromag-
netic radiation) and neutrinos
*The universe consists of about 5% normal matter, 27% dark matter, and 68% dark energy.

11



If there are charges inside the cavity, then V - E' # 0 inside and the above argument fails:
we can get fCE - dl = 0. We can choose any closed surface ¥ inside the conductor and
surrounding the cavity. Then

1

]{E cda=0=—Qend. . (1.56)
€o

)

But the enclosed charge is the sum of the surface charge and the charge inside the cavity,
so the total charge induced on the surface of the cavity equals minus the total charge inside the

cavity.
We can use the boundary condition (1.27) to relate the surface charge and the potential.
At the surface of the conductor, take 7 to point out of the conductor. Then E_ = 0, since

the electric field vanishes inside the conductor. Thus, at the surface of a conductor the field
outside is o
E="h. (1.57)
€o

Using E = —VV this implies 0V /0On = - VV = —g /¢, or

= ad 1.58
0=—f5 . (1.58)
These will be useful formulas for determining the surface charge o induced on conductors.
Recalling that F' = qFE, we get that the pressure (the force per area) on a surface charge is
f = oE. But since there is a discontinuity in the electric field at a surface charge one has to
be a bit careful. The right answer is

o
f= 5(E+ +E_), (1.59)
i.e., the average of the fields above and below the surface. (See Griffiths for the argument.)
For conductor, since E_ = 0, we get that the pressure on a conductor is
f=2E= PR (1.60)
27 2 2 ‘ '

This is an outward-pointing electrostatic pressure on the surface of the conductor. The net
force on a conductor in an electric field (assuming this pressure does not rip the conductor

apart) is
1
F:fdaf:—%daazze—oja{daEQ. (1.61)
260 2
S S S

To find this, we need to solve for o or E everywhere at the surface S of the conductor.

Finally, we discuss capacitors. Consider two conductors, given equal and opposite excess
charges +(). Then each capacitor will be at some constant potential, call them V.. The
capacitance is defined as o

C -
% )

(1.62)



where V' =V — V_ (only potential differences have any meaning, anyway), and with units
F = C/V (“Farad” = “Coulomb per Volt”). Capacitance is an interesting quantity because it is
independent of () — if you double (), you double V' - so it depends only on the geometry of
the two conductors.

The electrostatic energy stored in a capacitor holding charge () can be computed by build-
ing up () gradually by moving a small charge dq from one conductor to the other. The work
done in this step is dW = V dq = (¢/C') dg. So the total work (energy) is

1 2

_ 2___Q

W _/qu 5 (1.63)
0

using that C' is constant (independent of g).

1.7 LAPLACE’s equation

The potential satisfies Po1ssoN’s equation (1.38). If we know p(r), a solution is

Vi) = — / i 2T (1.64)

"~ 47 lr — /|

with V(00) = 0. We want to show that this is the only solution (with V' (c0) = 0). The key
is to first consider the equation without charges (LAPLACE’s equation):

V2V(r)=0. (1.65)

Then the above solution is simply V' = 0. We want to show that this is the only solution
with V(oc0) = 0. We will prove first that V' (r) is the average of its values over any sphere
Sg(r) of radius R centered on r:

T IR
Sgr(r)

Vi) = — 7§ Vda. (1.66)

To show this, we choose r to be the origin of a spherical coordinate system (', 0', ¢'). Then,
by Eq. (1.65),

0= / d&*r'VAV(r') = / da' -V'V(r') = / da't’ - V'V (r')

Bgr Br Br
= / / R2sin9’d0’d¢’a—VV(r’) _pl / / sin 0'd6'd¢'V (R#) (1.67)
B or w_p  OR '
& | R? [ [sin@'d'de'V (R#) o | $s,da’V
— 4T R?— — AT R | 2R
"SR ATR? "R ari

13



where Bp is a ball with radius R at the origin, Sy = JBpg, and we used the divergence
theorem in the second step. It follows that the expression in square brackets is independent
of R. In the limit R — 0, by Taylor expansion, V (r') = V(0) + O(R), so

%;WV_rtMWW@+Omﬂ

II%ILI%) ArR2 RS0 4 R? = V(O) ) (1.68)
and so 55 .
Fsr MV _
AR V(0). (1.69)

This means that V' (r) can have no local maxima or minima. Therefore, the extreme values
of V (r) must occur on the boundaries.

Next, we prove the first uniqueness theorem: The solution to LAPLACE’s equation in some
volume R is uniquely determind if V' is specified on the boundary surface S = OR. Here
is the proof: assume that there are two solutions V) and V5 with the same boundary values.
Then V2V, = V2V, = 0, so V3(V; — V5) = 0, and V; — V, satisfies LAPLACE’s equation.
So V; — V; cannot have local maxima or minima except on S. But V; — V5 vanishes on the
surface, so we must have V; = V5.

In particular, if R is all space, then S the “sphere at infinity”, and if V' (c0) = 0, then V
must vanish everywhere.

Now consider putting in charges p(r), so the potential satisfies Eq. (1.38). We fix p(r) and
the boundary values V'|s. Then V is unique. Here is the proof: assume V; # V; are two
solutions. Then V; — V; satisfies LAPLACE’s equation, so we can use the first uniqueness
theorem to find V| = V5.

Now we prove the second uniqueness theorem: in a region R surrounded by conductors
with specified total charges, ();, on each conductor, and with a specified additional fixed
charge density p(r), the electric field is uniquely determined. Here is the proof: suppose
there are two solution ', F5 in R:

V-Elzﬁ, V-Egzﬁ. (1.70)

€0 €0

If S; are surfaces enclosing only the charges ();, and Sy a surface enclosing all charges, the
Gauss’ theorem tells us that

fhymz@, fﬁ,ng, (1.71)
€0 €o
fEl Qtotal fEQ Qtotal (172)

Consider E = E; — E,;. ThenV - E = 0 and 5£5- E -da =0foralli. OnS;, V; and V5 are
constants, so

Vis, = (Va = Vi)|s, = V1 (1.73)

14



is constant. It follows that

ozZv@j[E-da:]{VE-da:/d%v-(VE)
% S;

S0 ® (1.74)

:/d3T(VV'E+VV'E):—/d3TE2,
R R

But £? > 0 everywhere, so the last integral being zero implies that E = 0 in R.

1.8 Method of images

The above uniqueness theorems tell us that if we can just find one solution, then we are done.
They do not tell us how to find a solution. If we are given a fixed charge distribution, p(r),
then the solution (with V' (c0) = 0) is given by Eq. (1.64). But in a problem with conductors,
we only know the total charges (); on the conductors, and not the static surface charge dis-
tributions o(r) on each conductor. The second uniqueness theorem then tells us there is a
unique answer. How to find it?

In a very few special cases there is a trick, the “method of images”, that allows us to get the
solution. Two cases where it works are for an infinite conducting plane and for a conducting
sphere. We will only discuss the plane here, and will leave the sphere for the problem set.

So consider a conductor filling z < 0, with a charge ¢ a distance d above. What is the
induced charge o(r) on the surface (z = 0) and V (r) above the surface? We know that
the potential is constant on the conductor and, since the overall additive constant in V' is
undetermined, we can choose V,_y = 0. Then, also, V' — 0 at infinity. So we want to solve
for V in the region R = {z > 0} with V' = 0 on OR, and with a point charge atr = d2. The
uniqueness theorem implies the solution is unique, so if we can find any V satisfying these
boundary conditions, then we are done.

Trick: put an “imaginary charge” —q atr = —d2. The image charge is not real: we have re-
moved the conductor and put this fictitious charge in its place. Since these fictitious changes
are not in R, we have not messed up the problem there.

From the reflection symmetry z — —z it should be clear that the potential of the image
charge, —¢, will be equal and opposite to that of g on z = 0:

1 q —q
V pr—
(r) 4Weo(|r—d:2] N ]r+d2\)

1.75
Y 1 1 (1.75)
Cdmeg \|rE+yg + (2 —d)2| |22 +yg+ (2 +d)2] )
and so | .
q
Vir,y,2z=0) = — =0. 1.76
( Y ) 47T€0(\/I2+y2+d2 \/x2+y2+d2) ( )
So we have found our solution! The induced surface charge is
ov ov —qd (L.77)
0=—€— = —€—— =...= — . :
o 92 o 21 (22 4 y% + d?)3/2
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The total induced charge is

B B —qd dx dy B B
Q_/d(w_ o /zw(x2+y2+d2)3/2_'”__q' (1.78)

The electric field is

q [ r—dt _ r+d2
E = 4meq (‘rdﬁ'?’ r+d23> z = 0’ (179)
0 z2<0.

Note that the electric field for z < 0 is not the same as for the “image problem”! The force
on q is

. 92
f=ab(d2) = %ZO (22)2 - 167rqe;l2 ' (1.80)
The energy stored is
W= %O/d%E? - %0 / &Br B2 (1.81)
2>0

But, by symmetry, ¢ and —q gives |E(z,y, —2)| = |E(x,y, z)|, so

W:E—O(l/d?’TE-2 )Zlvvim rblmzl(_l q_Q): s - (1.82)
2\ 2 imag. Q' mase probe 2\ 4mey 2d 16meod

1.9 Multipole expansion

2 Electric fields in matter

3 Magnetostatics

The magnetic field B(r) is defined by noticing that a charge () at r moving with velocity v
experiences a force

F=Q(E+vxB). (3.1)

This is the LorReNTZ force law; it defines both E and B.
It implies that magentic forces do no work on charged particles because the force is per-
pendicular to the velocity of the particle:

AWinag. = Finag. - dl = Qv x B) - (vdt) = 0. (3.2)

F'.,; still accelerates particles, but only by changing direction, not speeding up or slowing
down. So motion in magnetic fields tends to be in circles.
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Figure 1: Flow of charge through a surface.

3.1 Currents and current densities

If some charges with density p(r, t) are moving with velocities v(r, t), then the charge current
density is
J(r,t) = p(r,t)v(r,t). (3.3)

It has dimension (charge per volume) times (length per time), so charge per area per time,
with units (C/s/m?). The units of the current (charge per time) C/s = A is called “Ampére”.

In materials, we can have different types of charges moving at different velocities simulta-
neously. E.g. electrons with p.(r,t), v.(r, t) and ions (nuclei) with p;(r, t), v;(r,t). Then the
total charge and current densities are p = p. + p; and J = p.v. + pv;, respectively. So, in
general J # pv! E.g. in a metal p. = —p;, so p = 0, but v, # 0 (electrons move) and v; = 0
(nuclei don’t move), so J = p.v..

Figure 2: A volume and its boundary.

Charge is conserved: any net charge that flows in to / out of a volume V will increase /
decrease the charge inside. The net charge flowing out of V per unit time is (S = 9V) is

fJﬁda:j{J-da. (3.4)
S S

The decrease in net charge inside V per unit time is

d 3, _ p s
7 pd’r = /atdr. (3.5)
1% 12
Charge conservation then means
— %dgr:j{J-da:/d?’r(V~J). (3.6)
12 S 12
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Since this is valid for all volumes V, we can also write the conservation equation in differen-
tial form:

dp

% Vv.J. (3.7)

For a continous, steady stream of moving charged particles we have v(r,t) = v(r) and

p(r,t) = p(r). This leads to “steady” or “stationary” currents J(r,t) = J(r) and static

charge densities. So for steady currents and static charge densities we have 0;J = 9;p = 0,
and charge conservation becomes

V.J=0. (3.8)

So we cannot choose steady current densities arbitrarily.

Figure 3: Surface current density.

If moving charges are confined to a surface S, then J(r,t) = K(r,t)d(n), where the delta
function restricts the current to the surface S, ie, S = {n(r) = 0}. K(r,t) is a surface
current density, with dimensions (charge per length per time) and units A/m.

A

Figure 4: Line current density.

If moving charges are confined to a curve C, then J(r,t) = I(r,t)d(n,)d(nsy), where the
delta functions restrict the current to the curve C, i.e., C = {n;(r) = na(r) = 0}. I(r,t) is
a line current density or simply current, with dimensions (charge per time) and units A.

For these to make sense (charge conservation) the charges must flow along (tangential to)

the surface S (K -1 =0 = K = kil + koly) orthecurve C (I -0y =1 -1y = 0= 1 = I0).
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Steady-current conservation, V - J = 0, implies

O:VH -K:8EIK1+842K2, (3.9)
0= VH I =0,I. (3.10)

In particular, it follows that [ is constant. Steady line currents, namely constant currents
down wires, are the main experimental realization.

For a moving point charge ¢ at r = r(¢), the current density is J(r,t) = quv(r,t)o(r —
ro(t)). Even if the velocity of the particle is constant, v(r,t) = v(r), we cannot have
0y J (r,t) = 0! So there is no such thing as a steady current of a single particle.

We can summarize this as follows. For charges:

SO~ [nae~ [Godan [Opar. (3.11)

v C S 1%

and for currents:

Z(-)qiviw/(~)Id€~/(')Kda~/(-)Jd3r. (3.12)

S \%

Note that

Jorac= [ora, (313
C C

/(-)K da # /(-)K da . (3.14)
S S

but

3.2 Magnetic force on a current-carrying wire

Assume a wire is carrying a steady current I = \v = [ ¢. The magnetic force on a small
section of the wire with charge dq = \d/ is

Fonag = C/(v x B)dg = C/(/\v x B)d( = C/(I x B)d( = Ic/(df x B). (3.15)

It is found experimentally that a steadily moving ¢ at position r’ with velocity v creates a
magnetic field at the point r. This is the BioT-SAVART law:

B(rj)_@qvx(r—r)

CAm |r—r'P3 (3.16)

This law is only approximately true: ' = 7, 4 vt, with constant velocity v that is small
compared to the speed of light. It becomes exact if 7'(t) — r/(t,) where ¢, is the “retarded
time” given implictly by ¢, = ¢ — |r — r/(¢,)|/c. In the limit ¢ — oo, ¢, = t. One can
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compare this to CouLoms’s law (1.13) which also only applies if the particle’s velocity is
small compared to the speed of light.

Here, the permeability of free space is defined as 119 = 47 x 1077 NA~2 exactly. (It defines
the relation between A and C). The unit of the magnetic field is Tesla T = N/(Am) or Gauss (1
Gauss = 1074 T). Also: jipeg = ¢ 2 (exactly) and ¢ = 299, 792, 458 m/s (exactly; this defines

the meter).
Note that
q’U X (r —"'/) — /d?)r/qv(r,)(s(r/ —ro(t)) X (r _’r,) — /dST/J(r,) X (’r _r,) ’ (317)
r—r'? r—r'? r—r'?
so the B1oT-SAvaRrT law for a general current density is
po [ 5, d0) x(r—1")
B(r.t)=— | d . 3.18
(’I", ) 47T/ r |7. _7./|3 ( )
This is exact for steady currents (no time dependence). For a steady line current, I = Id¥,
we have a0 x ( )
140 x(r—r
Br.t)=—I1 | ————~. 3.19
e (.19)

There is something funny going on here: moving charges create a B field, but motion is
relative: one can go to an inertial frame where the charge is stationary. Does the B field
go away? Yes! Electric and magnetic fields are frame dependent: different inertial observers
will see different values of E and B! (It turns out (special relativity) that E - B and E? — ¢? B>
are frame-independent.)

3.3 Differential equations satisfied by the magnetic field

Starting from the BioT-SAvART law for currents, Eq. (3.18), we find

J(r') x (r—r')

o 3
B=1 [ prv,. —0. 3.20
v A rv lr —r']3 (3.20)
Now we use this to calculate
/ o
VxB:@ d*rV, x Jr) x (r 1)
A7 lr —r'|3
po [ s : r—r r—r :
="—/[d pr—— | — ———(V, - )
47T/ r {J(r)(V " _T,|3> " _T,|3(V J(r')) (3.21)
r—r , , r—r
+ <|7_ i VT)J(T‘) (J(r')-V,) " —7"|3}.
In the first term of the last expression, we have
r—r
VT . m = 477(5(7' — 'r/> . (322)
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The second and third terms vanish, and also the last term is zero, since

, r—r , r—r
—(J(T)-Vr)szr(J(r)-Vw)m
, x—a
= +(J() v“hffﬁﬁx+'” (3.23)
A N A ,
:—i-vr/[mJ(T)]x—mmV,/J(r)—i—

The second term vanishes due to current conservation, and integrating over all space we
have

/d3r’(—J(T/)'Vr)LT/:/ {da e N

lr — /|3 '|r—r’|3
where we used the divergence theorem and integrated over a sphere with very large radius
where the integrand vanishes (similar for the terms proportional to § and 2). In total, we find
AMPERE’s law:

V x B = uoJ. (3.25)

Integrating over an arbitrary open surface S and using STOKES’ theorem, we find
fB -db = Ko / J - da = MOIencL ) (326)
c S

for any C'and any S such that C' = 05, and I, is the total current passing through S. Just as
with the integral form of Gauss’ law (1.9), the integral form of AMPERE’s law is useful when
the problem has a lot of symmetry, such as infinite straight lines, infinite planes, infinite
solenoids, circular solenoids (“toroids”).

3.4 The vector potential

Reminder: We have seen that since the electric field satisfies V x E = 0, we could find an
electric potential V' such that
E=-VV. (3.27)

The potential is not unique: any V' = V + ¢, where ¢ is a constant scalar field, gives the
same electric field E. If we use Eq. (3.27) in Gauss’ law, V - E = p/e¢,, we obtain the Porsson
equation, V?p = —p/¢.

A similar procedure works for magnetic fields as follows. Since the divergence of the
magnetic field vanishes, V - B = 0, we can find a magnetic vector potential A such that

B=V xA. (3.28)
The vector potential is also not unique. Adding to A the gradient of any scalar field,

A =A+VAr) (3.29)
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gives the same magnetic field: Vx A’ =V x A+ V x VA(r) = B.

AMPERE’s law, expressed in terms of the vector potential, becomes poJ = V x B =
V x (V x A) = V(V - A) — V2A. This can be simplified using the “gauge freedom” (3.29)
to choose the vector potential such that V - A = 0 (this is called Coulomb gauge).

(That this is always possible can be seen as follows. If V-A £ 0, we define A’ = A+V A(r),
with A chosen such that V2\ = —V - A. This is just PoissoN’s equation, with source term
V-A Thenwehave V-A' =V -A+V:A=V-A-V-A=0)

In CoUuLOMB gauge, AMPERE’s law becomes simply
VZA = —pod . (3.30)

This is, component by component, just a version of Poisson’s equation. Taking over the
general form of the solution, we find the vector potential in terms of the current densities,’

Ar)="2 / o ) (3.31)

C 4n r—r'|

This is not as useful as the electric potential (one reason being that it is still a vector), but
the vector potential is useful when formulating electrodynamics in a Lorentz-invariant way,
and it is essential in the quantization of electrodynamics.

One of the main applications is the multipole expansion.

3.4.1 Multipole expansion of the vector potential

We can derive the multipole expansion by using the identity

1 1 1/
— == — | Py(cos® 3.32
r =7l \/r24+ ()2 —2rr cos® T ; (7“) g ) (352

in Eq. (3.31). Here, P, are the Legendre polynomials, and cos ' = 7 - #'. We obtain

o0

1 .
Alr) = 237 ML), (3.33)
=0
where
M,(+) = Z—; /d3T’(T’)£J(7")Pg(COS ') (3.34)

is the /th magnetic multipole.
There are no magnetic charges (as far as we know), so the magnetic monopole always
vanishes:

4

(This can be shown as follows. For steady currents we have V - J = (. Let’s consider
the volume integral over the divergence of the current density times an arbitrary function

My#) =1 / d&*r'J(r') =0. (3.35)

*When using this expression, we will always tacitly assume that the currently densities vanish sufficiently
rapidly at infinity, such that the integral exists.

22



f. Since the current is localized, using the divergence theorem and choosing the boundary
sufficiently far from the current density, we see that the integral must be zero:

Oz/d?’r’V’-(fJ):/d?’r’ (fV-J+J-V'[). (3.36)
It follows, since V' - J = 0, that
0= / &r' J-V'f, (3.37)

for any function f(r’). Now we choose f = z},i = 1,2, 3, so that V' f = #,, the unit vector
in ¢-direction. We find that

0= / &r' J; (3.38)

and so My(7) = 0.)
For the special case of a current loop, we can write the volume integral as a line integral
over the current loop, and the absence of a magnetic monopole implies

_ / & Iy = ]4 I-de (3.39)

c

and so, since this is valied for any current,

7{ al’ = 0. (3.40)
We will now consider the next term in the expansion, the magnetic dipole:
Mi(r) = / B 1 Py (cos )T (1) = / B 1 cos 0/ (r') / B (7))
= /d3r’ (F-r)J(r').

(3.41)

Let’s consider the ith Cartesian component of this equation:

3
(My); = /d3r’r'J %Z /d3r’x'J( ). (3.42)

Now we use Eq. (3.37) with f = z}z’; to find

:/d3r’J( /d3’J (i 4 27)
(3.43)

/d3’[xj +er’)]
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We can use this to write
1
/dgfr’ o Ji(r') = §/d3r’ [x;Ji(r’) — x;Jj(r’)} : (3.44)

Inserting this into the expression for (M);, Eq. (3.42), gives

3 3
(My); = —%ij /d3T’ [:L’;Jj('r’) _ x;Ji(r’)} — —%Zl’jfz‘jk/d?’?”’ <7-/ X J('r/))k
j=1

(3.45)
and, hence,
1
M, = 3 x / & <r’ X J(r’)> . (3.46)
It is conventional to define the magnetic moment density
N — ]‘ / /
M) = 5T % J(r'), (3.47)
and the magnetic moment
1
m= g /d?’r’ (r’ X J(r’)) , (3.48)

such that M} = —# x m. (This is the analog of the electric dipole moment p.)
For a current loop C' we have

Mlz—%fx(lj{r’xdﬁ'):éfx(%dﬁ’xr') (3.49)
C C

ngj{r’xdé’zl/da, (3.50)

C S

and

where S is any surface with 95 = C.
A “pure” dipole can be obtained in the limits [, da — 0 and I — oco.

If the magnetic dipole is aligned with the z direction, m = m2 = m(cos 6 — sin 66), then

fo msinf
A 72 ¥

Adipole ('l") = (351)

and using Eq. (B.6),

Hom (2cos 07 +sinhf) = Ho [3(m -#)F —m]. (3.52)

Biipole(1) =V X Adipole (1) = 473

s
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Figure 5: The field of a magnetic dipole. [Image credit: Geek3 - Own work, CC BY-SA 3.0 ]

Figure 6: Boundary conditions on the magnetic field and vector potential.

3.5 Boundary conditions on B and A

We consider a surface current density k. We must have V - B = 0, and hence

/B-da:(). (3.53)

S

Taking the limit of a very small surface, we see that the orthogonal components of the mag-
netic field above and below the surface must cancel each other:

1L
B above

=B, . (3.54)

Similarly, we must have V x B = p,J, and hence

%B dl = Lenal ) (355)

C

where [, denotes the current flowing through the loop. Taking the limit of a very small
loop, we see that the difference of the parallel components of the magnetic field above and
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below the surface must add up to pK:

_gl

below

Bl

above

= 1K . (3.56)
These two conditions can be combined into the single equality
B pove — Bhelow = Ko (K X ’ﬁ') ) (357)

where 7 is a normal vector orthogonal to the surface. For the vector potential, this implies

0 0

_Aa ove —A elow — K. 3.58
e Oy el Ho (3.58)
(We can compare this to the case of the electric field. For a discontinuity at a surface

charge, we had

Eabove - Ebelow = zﬁ7 (359)
€0
ov ov o
Ea ove__Eeow:__- 3.60
on on " €0 ) (3.60)

4 Magnetic fields in matter

Magnetism of matter is ultimately a quantum-mechanical phenomenon. We can gain some
understanding from a classical description. In this picture, atoms or molecules of matter can
be approximated as “point dipoles” m. Without applied magnetic field, some material’s atoms
have no dipole moment (this happens mostly in atoms with even numbers of electrons), but
most have “permanent magentic dipole moments”. We can think of these dipole moments
as due to electrons orbiting the nuclei, forming somthing like small current loops, or due
to the electron spins (intrinsic angular momentum of electrons). Both really need quantum
mechanics and relativity to understand.

Diamagnetism Diamagnetic material has m = 0 when B = 0. An applied magnetic field
induces m o< —B (pointing opposite to B).

Paramagnetism Paramagnetic material has atoms with permanent dipoles m # 0 when
B = 0. They are aligned (or randomly distributed) such that the net (average) dipole moment
vanishes for external field B = 0. The force and torque on a dipole iin an applied magnetic
field B are given by FF = (m - V)B and N = m X B, respectively. N tends to rotate m
to be parallel to B, and the average magnetic dipole moment is now nonzero, (m) # 0. So
paramagnetic material tends to develop a net dipole moment m o +B (aligning with applied
B). Paramagnetism tends to be much stronger than diamagnetism.
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Ferromagnetism Ferromagnetic material has permanent dipoles that do not cancel or av-
erage; (m) # 0 even if B = 0. Many ferromagnetic solids look paramagnetic at large scales
because ferromagnetic domains are randomly misaligned, so average (m) = 0. Applying
B leads to paramagnetic response as ms tend to align. Sufficiently strong external mag-
netic fields can move or merge domains so they are mostly aligned. Then, when the external
field turns off, the material remains feromagnetic (“hysteresis” = history dependence). The
reason that permanent magnets (ferromagnetism) occurs is that it is energetically favorable
for neighbouring dipoles to align: E(11) < E(1]). The reason is essentially quantum me-
chanical. There are situations in which the reverse is true and dipoles tend to “anti-align”:
T, Then (m) = 0 if B = 0 and the material looks paramagnetic. This is called
anti-ferromagnetism.

At high temperatures, thermal motion tends to randomize dipoles overcoming the ferro-
magnetic alignment.

4.1 Linear media

Here, we consider diamagnetic and paramagnetic materials with small applied external mag-
netic fields. Then we expect a linear response: (m) o B, just as with dielectrics.
We define the magnetization

M = (m) /unit volume . (4.1)
For a dipole,
Mo M X T
Alr) = —— 4.2
(T) A7 |’l"|3 ( )

Averaging over many dipoles, we find

Lo s M) x (r—r')
) 47r/ " lr—7r'|3 3
Using the identity
1 r—r

! = 4.4
V\r—r’\ r—7r'|3 (4.4)

we can write Eq. (4.3) as

Ho 3,/ / / 1

Alr)=— [ &7 |M . 4.5

Integrating by parts then gives

Alr) = Z—;{ / &’ - _1r/| (V' x M(r')) — / &' V' x M} (4.6)

7
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The second term can be written as a surface integral,® and we find

_@ 3,./ 1 / /
A(r)—47r/dr ]r—r’][v xM(r)]~|—47T lr — 7|

This expression motivates the definition of the bound current density
Jy, =V xM,

(note that V - J;, = 0), and the bound surface current
Ky,=M xn.

With these definitions, the vector potential becomes

A(T)—@/dgr’MjL@/daM

47 lr—r/|  4r lr—r|"

@/M(r’) X da’

(4.9)

(4.10)

(4.11)

(4.12)

The potential of the material is the same as that produced by the current density inside the
volume, and the surface current density at the surface of the material, where the magnetiza-

tion goes to zero discontinuously.

If we subject some magnetic material to an external magnetic field produced by some
“free current” J; (which may flow inside the material), the total current is the sum of the

free current and the induced current Jy,
J=J;+Jy.

AMPERE’s law tells us that

i(VXB)ZJ:Jf—l—Jb:Jf—FVXM.
0
We can then define a field
H = iB - M,
Ho
such that AMPERE’s law becomes
V XH:Jf.

The divergence theorem, applied to A x ¢ with ¢ an arbitrary constant, gives

V/V~(A><c)/c~(V><A).%(Axc)wia%Co(Axda),

|4 S S

/VXA:—j{Axda.
14 S

and so
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Note that, while V - B = 0, the divergence of H does not, in general, vanish: instead, we
have V - H = —V - M. This implies the boundary conditions
H'J_

above

- Hli_alow = _(Majlgove - Mli_elow) : (417)

Eq. (4.16) implies
_ g

below

*d

above

For linear (isotropic, homogeneous) media, we have

M=, H, (4.19)

where the constant x,, is called the magnetic susceptibility of the material. The material is
diamagnetic for x,, < 0, and paramagnetic for x,, > 0. We can also write

B =uH, (4.20)

with the permeability 1 = po(1 4 Xm)-
Let’s compare electrostatics in an insulator and magnetostatics in a magnetic material:

insulators magnetic materials

V.-D=py V-B = p;

VxE=0 VxH=J;

D=¢E+P HE;U«LOB_M

AD* = o; (@ boundary) AB* = 0 (@ boundary) The last three lines apply for
AE! = 0 (@ boundary) AHI = K; x A (@ boundary)

P = ¢\ .E M =y, H

D =¢E B =uH

e =eo(l+ Xxe) = po(1+ Xm)

linear materials.

4.2 Conductors

Recall that for electrostatics, in a conductor: (a) E = p = 0 in interior (V' =constant); (b)
E(Uut = 0 at the boundary, and (c) E, = o at the boundary; and therefore, E, = %’fl at the
boundary. The potential V' is continuous across the boundary, but 9V /0n = o/ey. Here, o
is the induced surface charge on the boundary.

T T

Vo > Vi

Figure 7: Electric field inside a conductor in the presence of a potential difference.
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But we can also have steady currents in conductors, giving sources for magnetostatic fields.
Currents are a response of conductions charges (electrons) to applied F field inside the con-
ductor. If one can add / subtract charges at the ends of the wire, so as to keep the potential
difference V{) — Vj constant (e.g., use a battery), then we keep a steady E # 0 inside the
metal! This F accelerates conduction electrons, forming currents.

In conductors there are frictional forces on the conduction electrons (e.g. scattering off
impurities...) which slow them down (dissipating their energy as heat). A given E then
accelerates electrons to a steady velocity v at which the frictional force counterbalances eE.
Then we get a steady current J = p.v.

What is the relation J = J(E)? In linear (sufficiently small applied F), homogeneous,
isotropic conductor we have OuMm’s law, J = oE. Here, the constant o is the conductivity
(not the surface charge!). Its inverse, 1/0, is the resistivity. (If the conductor moves with a
steady velocity in a magnetic field B, then J = o(E +v x B).)

‘/EJ L TVl

Figure 8: OuM’s law applied to a wire.

Applying this to a wire, we obtain the more familiar version of OuM’s law. Aligning the
wire (with cross sectional area A) in the 2 direction, we have

AJt = AJ = AcE = Aa@z (4.21)
SO 4
AL =22 (B-W) (4.22)
vt L =
/R V voltage difference
orV = RI.

Conductivities can vary between 0 (insulator) and oo (superconductor). Conductors can
be diamagnetic (e.g. Ag), paramagnetic (e.g. Al), or ferromagnetic (e.g. Fe).

4.3 Superconductors

Can think of superconductors as the ¢ — oo limit of conductors. There is no friction: an
applied E # 0 in conductor accelerates charges without limit, E oc 0J/0t, so there is
no OuM’s law. What about the magnetic response of superconductors? They still satisfy
V-B =0,V x B = pgydJ for steady currents (they can have a steady current if E' = 0 inside
the superconductor).
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4.3.1 LONDON equations
Inside the superconductor, we have the LoNDON equations:

o 1

Fogr = EE’ (4.23)
1
oV x J = ~15B. (4.24)

The LoNDON penetration depth \ has dimensions of length. For typical superconductors,
50nm < A < 500 nm. (Recall that the typical size of an atom is of the order of 0.1 nm.)

These two equations can only be derived using quantum mechanics. However, Eq. (4.23)
is intuitive using the Lorentz force law:

F =mmw=—¢eF, (4.25)
)
~ . nee?
J=—n.ev= FE, (4.26)
Me

where n, is the electron number density. Now we can calculate V x Eq. (4.23) and use FARA-
DAY’s law, V X E = —0B/0t, to find

oJ 1 oJ 10B
= — — _VxE-= = 4= 4.2
0=mV x5 =@V X E=mV X5+ 55 (4.27)
or
0= 2 (v xJt+iB (4.28)
A 2o ) '
Eq. (4.24) is consistent with this result.
4.3.2 LoNDON penetration and MEISSNER effect
Now let’s apply AMPERE’s law, 1pJ = V X B, to the second LONDON equation (4.24):
1 1
0:V><(V><B)+EB:V(V-B)—VQB+§B. (4.29)
Using V - B = 0, we obtain
1
V’B = FB' (4.30)

This equation leads to the MEISSNER-OCHSENFELD effect, the expulsion of magnetic fields
from the superconductor. To illustrate this in a simple setting, we consider a large, planar
superconductor, and apply an external magnetic field. Because of the setup, we expect the
magnetic field to depend only on the direction orthognal to the surface of the superconductor,
which we take to be the 2 direction. For definiteness, we choose the direction of the applied,
constant external magnetic field in the x direction, B = ByZ (for z = 0). Then Eq. (4.30)
becomes

v2B(:) = L B()s = L B(o)s (4.31)

022 A2 ’ ‘
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or

1
B'(z) = FB(,z) : (4.32)
The general solution to this equation is
B(z) = ae®/* 4 Be /. (4.33)

We determine the coefficients o and 3 by the boundary conditions. For z — o0, the second
term would blow up, so 5 = 0. For z = 0, we must have B(z) = By, so a = By. This gives
the solution

B(z) = Bye*. (4.34)

The solution implies that B — 0 exponentially fast inside the superconductor: this is the
ME1sSNER-OCHSENFELD effect. The current is restricted to within the LoNDON penetration
depth of the surface of the superconductor.

Superconductors expel magnetic fields, this leads to “magnetic levitation”. Another (prob-
ably more relevant) techonological application are superconducting electromagnets. Inside
the superconductor, we can have steady currents without applied electric fields, without en-
ergy loss due to heating.

5 MAXWELL’s equations

5.1 Overview

We start with a review of the laws of electro- and magnetostatics.
NEWTON’s law:

d*r
LoreNTZ force:
F=¢E+vxB). (5.2)

Equivalently, the force density f on the charge density p and the current density J, due to
E and B, is given by f = p(E + J x B).

Charge conservation:

__dp
Vo= (5.3)

In electro-/magnetostatics, dp/dt = dJ /dt = 0,s0 V - J = 0.
The field equations determine E and B due to p and J. For the electric field, we have

V.E= lp GAuss, (5.4)
€0
VXxE=0. (5.5)

These two laws together imply CouLomB’s law:

E(r) ! /d3r’ pr’) (r—r'). (5.6)

" dre lr — /|
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For the magnetic field, we have

V-B=0, (5.7)
V x B = pioJ AMPERE. (5.8)

These two laws together imply the BioT-SAvART law:

Br)y=" / 2T > r 1) (5.9)

47 lr — 7|

These laws apply only in static situations! In non-static situations (“electrodynamics”), the
following laws will need to be corrected:

VXE=0 = VXE—G—%:O FARADAY , (5.10)
E
VxB=pud =— VxB- ,uoeoaa—t = pod MAXWELL . (5.11)

Also the right side of Eq. (5.1) needs to be corrected (EINSTEIN).

5.2 FARADAY’s law on electromagnetic induction

In a conducting wire, we have OuM’s law:
E=IR, (5.12)

where [ is the current, R is the resistance, and £ is the electromotive force (“"EMF” — work per

charge):

b
E—/d£~E. (5.13)
On the other hand, if you move a wire through a magnetic field, the conduction electrons
will feel a force by the LORENTZ force law, F' = —e(v x B), performing the work per charge
5mag5j§d£-(vx3):—f3-(vxd£). (5.14)
c c
The change in surface spanning C' in time dt is
/da =S(t+dt)—S(t), (5.15)
ds
SO
Emagdt = — /B ~da = —dd (5.16)
ds
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da = |vdt x dl|

or

dd
et = —— 5.17
where
P = /B - da (5.18)
S

is the magnetic flux through surface S. But the EMF developed in this way, £p,g, must equal
the electric EMF, &, so

dd d
C S

By the equivalence of inertial frames, we expect it should not depend on whether wire is
moving or B is changing:

C C
Figure 10: Moving loop in magnetic field.

So if we choose C' and S fixed, then we expect

0B
E=— | —-d .20
}{df / 5 e (5.20)
C S
or, by STOKES’ theorem,
0B

This is FARADAY’s law: a changing B field induces an FE field, and so induces a current I to
flow in a wire by £ = I R. By AMPERE’s law, this induced I will source a magnetic field B’
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and thus a contribution to the magnetic flux ®’. The induced current / will flow in a direction
such that the induced flux & opposes the change in flux, 09 /0t, that induced it (LENZ’s rule).
Note the formal similarity:

0P 0B
fdf -E = = | B da FARADAY, (5.22)
c S
j{dﬁ B = polena. = /qu -da AMPERE . (5.23)
o S

So we can use the same kind of symmetry arguments to determine the induced E for a
given —0B/0t. But the induced E causes a current, and the current sources a B field, and
the changing B induces E, which causes a current... So in general we have to solve self-
consistently or in a “quasi-static” approximation which ignores the change in current due to
the induced E.

A closed current /(t) sources B o< I(t) and hence ®(t) o I(t), where ® is the flux through
the circuit. We write ®(¢) = L I(t), where L is a constant, the inductance, which is a property
of the geometry of the circuit. Then

o dI

(5.24)
So, for circuits, we have resistors, € = I R; inductors, £ = — L d1 /dt; and capacitors, EC = q,
so d€/dtC = I. Charge conservation implies I = I; + 5. These give a set of coupled differ-
ential equations which determine £(¢), I(¢) in circuits. See Griffiths for a detailed discussion
with many examples.

5.3 Energy in electric and magnetic fields

We calculate the work, IV, required to assemble a charge configuration p, and current J. We
build it up by moving charges ¢ = pdV from infinity:

dW d d dg AV d(q dI
ar T @ T T —“:%(5) G
Caf¢ L (5.25)
Tl (% * 7) ’
and so
q* LI? 1 1
W="1 4" =_¢V+-I. (5.26)

2C 2 2 2

We can rewrite this for continuous charge and current distributions, ¢ — pdV and Idf —

JdV, so
1 1 [ .
§qV — 3 d’r pV', (5.27)
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L 1 _IT 4 L e
§®—§/B-da—§/(V><A)-da—2/A d€—>2/erA,
5 c

and so the work is

W:%/d3r(pv+J-A).

We can rewrite this in terms of the electric and magnetic fields:

/d3TpV:eo/d3r(V-E)V:—eo/d3rE-VV:eo/d3TE-E,

1

/dBrJ-A:i/d%(VXB)-A:—/d%B.(vXA):_

1 ,
/dSrB-B.

Mo Mo

(Here, we used Eq. (A.15) in the second equality.) It follows that

1 1
W = —/dgr (GOEZ + —32) .
2 Ho

5.4 MAXWELL’s equations

Together with FARADAY’s law, the field equations become

L_v.E, 0=V-B,
€o

B
0:V><E+88—t, wod =V X B.

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

Are these compatible with charge conservation, V - J = —0p/0t? Taking the divergence of

AMPERE’s law gives
1
V.J=—V.-(VxB)=0.
Ho
We want on the right side
dp 0 OF

We replace the right side of AMPERE’s law: V x B — V X B — 14600F /Ot, so that

oE oE

1
V'J:_V'(VXB_/JIQGO_>:O_EOV'_:

ot ot

Ho

In this way, we get a consistent set of field equations:

__9p
VJ=—

F=g[E+vxB),
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ot

(5.35)

(5.36)

(5.37)

(5.38)
(5.39)



f_v.E, 0=V-B, (5.40)

€0
B E
OZVXE+6—, ,U()J V xB-— ,u()anat

= (5.41)

MAXWELL’s new term implies that a changing electric field induces a magnetic field.

We can make the physical content more obvious by defining units intelligently. So far, we
have introduced separate and arbitrary units for charge, electric, and magnetic fields. Say
we redefine them as

g—aqg=p—ap,J —aJ
E — BE (5.42)
B — B

for some constant «, 3, . Then our equations become

V-J:—%, F = g(apE + ayv x B) (5.43)
¥ _v.E, 0=V-B, (5.44)
560

B ot ot

We choose a5 = 1 to keep F' = ¢E. Then we choose a/(f¢y) = 47 to make Gauss’ law
simple. It follows that & = \/4meg and § = 1/+/4meq. Finally, we choose v = \/ o/ (4m).

Then the equations become

V-J:—@, F:q<E+1va>, (5.46)
ot c
Adrp =V - E | 0=V B, (5.47)
1 8B 1 E)E
where .
c= (5.49)

v/ Ho€o

with units of velocity. This makes it clear that the only fundamental constant in EM is the
speed of light,
c~3x 10°m/s. (5.50)

In “cgs” units, [F] = [B] = force/charge. The quasi-static limit corresponds to v < c.
Finally, we discuss one more “versions” of MAXWELL’s equations. In linear, homogeneous,
isotropic and dispersionless matter (dielectrics, and para- or diamagnetics), we have

p;=V-D, 0=V-B, (5.51)

B D
O:VXE+8—, Jf:VxH—aa—t,

> (5.52)



where D = ¢E, H = B/, and € = ¢y(1 + x¢), it = po(1 + X, ) are constants. More general
matter has D = ¢eE + P,H = B/yu— M, and

co[xe(w, )L E; + O(E?), (5.53)

M)

P =
1

<.
I

[Xom (w, )] H, + O(H?). (5.54)

Mw

M; =

=1

Here, the w dependence parameterizes time-dependent effects (dispersion), the r dependence
represents inhomogeneities, the tensor indices indicate anisotropies, and the the higher-
order terms parameterize non-linearities.

MAXWELL’s equations, as differential equations, must be supplemented by boundary con-
ditions at the edges of the system in question in order to have a unique solution. In the limit
where continuous charge and current distributions become discontinuous (e.g. at sharp sur-
faces, etc.), boundary (or “matching”) conditions can be deduced from MAXWELL’s equations.
Easiest from the integral form of the equations:

%E-da: iQemL, j{B-dazo, (5.55)
€

S 0 S

]{E-M——Q%Bda ]{B-dﬁ— Lena + 2j{E‘da (5.56)
- (915 ; = MoLencl /JJO‘EOat . .

C S c S

It follows that

coE: — B, = Bf — B =0

out g, in out ’

El —El =o, Lpl_ —BH =K xh, (5.58)
Ho Ho

(5.57)

just as in electro- and magnetostatics.

6 Conservation laws

Charge conservation means that no (net) charge is destroyed or created - it just moves
around: 5
p
—=-V.J. 6.1
5 (6.1)

The first term represents the change in charge density per time, the second term the rate of
flow (current) out of the volume. Integrating over all space, we find the total charge

/d3rp =Q, (6.2)
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and

—/d%V-J:fJ-da:o. (6.3)
It follows that 0

the total charge is conserved.
We will find analogous descriptions of energy, momentum, and angular momentum carried

by the elecromagnetic fields: they are not created or destroyed, they just move around.

6.1 Energy

We have seen (Eq. (5.32)) that the total energy carried by the electromagnetic field is

1 1
U=-— / dr <60E2 + —BZ) . (6.5)
2 Ho

We can write this in terms of the energy density

1
pv =B+ —B?, (6.6)
2 2410
so that
U= /d3r PU - (6.7)
MAXWELL’s equations in vacuum impliy the local conservation of energy:
dpu
—-——=V-S5 6.8
at Y ( )
where |
S=—ExB (6.9)
Ho

is the POYNTING vector (the energy current density).
Here is the proof:

V-S':iV-(ExB):iB-(VXE)—iE-(VxB)
Ho Ho Ho

“” <3t) ol (3t>_ ot

If we include sources (charges) in MAXWELL’s equations, the same argument gives instead

(6.10)

9w
ot
where the last term represents the work per volume per time done on the charges. In other
words, the energy of the electromagnetic field is conserved: it only changes by moving
around (V - S) or adding kinetic energy to charges (E - J).

=V-S+FE-J, (6.11)
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6.2 Momentum

The same applies to the mmentum carried by the electromagnetic field. Let p(r,t) be the
momentum density of the electromagnetic field. Each component p;, 7 = 1,2, 3, should be
conserved, so we expect conservation equation of the form

. Opi
ot

for some momentum current density vectors T';. If we write these vectors in components (with
unit basis vectors é;),

=V.T;, (6.12)

3
T;=> Tyé, (6.13)
j=1
then ,
Op; oTy;
— = . 6.14
7j=1

T;;(r,t) is called the electromagnetic stress tensor. T;; represents the jth component of the
momentum per unit time per unit area moving in ith direction. If i = j then dp;/dt per area
is parallel to é;. But dp;/dt = Fj is the force, so T}; is the force per area or the pressure in ith
direction.

If there is charged matter present, the momentum carried by the electromagnetic field can
change by accelerating the particles:

o : o (particles) 3 8TZ
—p:p’—JrZ—]. (6.15)

(915 (915 = an
But (particles)
apipar 1cles
o i (6.16)

the electromagnetic force density on the particles,
f=pE+JxB. (6.17)

So, if we can find p; and 7; as functions of the electric and magnetic fields, such that

3

Op; oTy;
- (6.18)

Jj=1

by virtue of MAXWELL’s equations, then p; is the momentum density of the electromagnetic
field, and 7}; is the electromagnetic stress tensor. We find that

P = M()E[)S = EQE X B, (619)
1
Ho
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Here is the proof:
1 )
f:pE—f—JXB:(EOVE)E—f- (-VXB—EOE) x B
Ho

@V E)E+ - (V-BB-LBx(VxB) -« l(ExB)+qEx B (s21)

MO ,Uo ot ot
= (eV-E)E + — (V B)B——Bx (V x B)—@—FEOEX (VXE).
o o ot
Now we use the identity (A.23) to find
Ip 1 2
f=- at+eo{v E)E+ (E-V)E - iV(E?)}
+ M—{(V ‘B)B+ (B-V)B —iV(B*)} (6.22)
0
_Op
5t +V.T.
6.3 Angular momentum
We define the angular momentum density of the electromagnetic field as
L=rxp(r)=e¢rx (ExB). (6.23)

So even static electric and magnetic fields can carry angular momentum!
Angular momentum is also locally conserved: there is an angular momentum current den-

sity tensor £; =r x T';, and
ol;

— =VxL,. 6.24
o ; (6.2
Or, in component notation,
3 3
l; = Z €ijk TPk » Lij = Z €k Tillj - (6.25)
Ji.k=1 k=1

In conclusion, electromagnetic fields carry energy, momentum, and angular momentum,
just as does matter.

7 Electromagnetic waves

7.1 General comments

Waves are, vaguely, any disturbance of a continuous system which can carry energy from one
place to another. An example of a continuous system are electric and magnetic fields, E(r, t)
and B(r,t). More generally, continuous systems are described by fields f(r,t), satisfying
some equations of motion.
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We generally expect equations of motion to be local: the values of the field are determined
by the values of the field infinitesimally close by. It follows that the equations of motion can
be written as differential equations (like MAXWELL’s equations).

If we assume that the size of the disturbance is small enough, then we can approximate
the equations of motion as linear differential equations (like MAXWELL’s equations),

D(r,t,V,9/0t) f(r,t) =0, (7.1)

where D is some differential operator.
If we assume that the system is homogeneous (translation invariant in space and time),
then the equations of motion cannot depend explicitly on r, ¢, and we have

D(V,0/0t) f(r.1) =0, (72)

like MAXWELL’s equations in vacuum.

We assume the equations of motion are at most second order in derivatives: in t because
of Newtonian mechanics (accelerations are functions of positions and velocities), and in r to
have invariance under change of inertial frame r — r + vt, i.e. “relativity”:

0? 0? 0?

o o
AijerBaxlatJrC@vtDa +Eg A F|f(rt)=0. (7.3)

(This is unlike MAXWELL’s equations which are first order. But we will see that by solving for
some fields, we can recast a system of first-order linear differential equations as second-order
differential equations.)

If we assume isotropy (rotational invariance) and time reversal invariance, then A;; = Ad;j,
and B; =D, = F =0, so

2

AV2+C%+F f(r,t)=0. (7.4)

Energy conservation follows from the above assumptions: the equations of motion imply
there exists an energy density py and an energy density current S such that

aPU
o =V-S. (7.5)
They are (check this!)
0 F
oo = — <8—{) FUVA (V- f (7.6
5= os Uy, (7.7)

ot

(Momentum conservation also follows, so there is a conserved momentum density p and

stress tensor 75, just as with MAXWELL’s equations.)
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We assume stability of the system: small disturbances of the system do not grow with time.
This means that all the terms in the energy density, py, are positive. Then energy conserva-
tion means that they cannot grow without bound. Thus rename A/C = —v?, A/F = —(*:

, 18 1

Sap |/ =0. (7.8)

This is the dispersive wave equation, with v the wave velocity and ¢ the dispersion length.
Thus, small disturbances of practically any stable continuous system will have waves
which will satisfy (to some approximation) the above wave equation (7.8).
The combination
2 L0 _ O (7.9)
v2 ot .
is called the d’Alembertian.
Electromagnetic waves in vacuum are dispersionless, { = 0o, and travel with speed of light,

v = c. But electromagnetic waves in matter have ¢ < oo, v # c.

7.2 Dispersionless waves in one dimension

We have 1/¢ = 0 and V — d/dz, so the wave equation becomes

f  1d*f d 1d d 1d
= —— = —=—-—— || —+—-——|Ff. 7.10
0 dz2  v? dt? (dz vdt) (dz * Udt)f (7.10)

We change variables to u = z — vt, w = z 4 vt, so

z=Hw+u), t=o(w—u), (7.11)

and

g—%g+ﬁ2—l 2_12 (712)
ou Oudz Oudt 2\9z wvot)’ '

000 o0 (0 10y -
ow OJwdz  Ow ot 2\ 0z wot
s0 the wave equation becomes simply
aizafw —0 (7.14)
The general solution is f(u, w) = g(u) + h(w), so
f(z,t) = g(z — vt) + h(z +vt), (7.15)

for arbitrary g, h. This is a superposition of a right-moving and a left-moving wave.
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We can Fourier transform an arbitrary function:

o(z) = / dk AR o A(k) = / dz p(2)e* (7.16)

—0o0 —00

In other words, we can decompose it into a sum of sinusoidal functions e*** = cos(kz) +
isin(kz). Here, k is the wave number,

2

k P
\ )

(7.17)

where A > 0 is the wave length. 3
Fourier transforms relate complex functions. If ¢ is real, then A is complex, but satisfies

p(z) eR o A(k)* = A(—k). (7.18)

Let’s apply this to g(z — vt) and h(z + vt):

gz —vt) = / dk B(k)e™*E=v0) | (7.19)
h(z 4 vt) = / dk C (k)e*EHn | (7.20)
with ) ) ) .
B(k)* = B(—k), Ck)" =C(—k). (7.21)
Then the general solution is
f(z,t) = / dk [B(k)e™ =0 4 C (k)e* =] | (7.22)
Defining the (angular) frequency
w=wvlk| >0, (7.23)
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we obtain
f(z,t) = /dk [B(k)ei(kz—wt) + C’(k)ei(kz+wt)}

0
0

4 / dk [B(k)ei(kz—i-wt) + C«(k)ei(kz—wt)}

—00
o0

— /dk [B(k)ei(szwt) +é(-k‘)*€i(kz+wt)]

' 0 (7.24)

+/dk5 [B(—]{j)*ei(kz+Wt)_{_é’(k)dﬁ(kz—wt)]

— 00

0o 0
= / dk B(k)e' ") + / dk C(k)e'*=]

0 —00

0 0
+ / dk B(k)*e "= 4 / dk C(k)*e " k==eh] |

0 —00

Now define

- |B(k) fork>o0,
Alk) = {é(k) for k < 0. (7.25)

Then we have

f(z,t) = % / dk A(k)e'®*=Y 4 cc.. (7.26)

—0o0

Here, “c.c” means the complex conjugate of the preceding expression. This packages left-
moving (k < 0) and right-moving (£ > 0) waves together.
Griffiths defines the complex waveform

o0

flzt) = / dk A(k)elk==+t) (7.27)

where A(k) is a complex amplitude, so that the real waveform is
f(z,1) = Re[f(z,1)]. (7.28)

This language and notation is universally used in physics and we will use it to describe elec-
tromagnetic waves below. The point is that since our wave equations are linear, we are free
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to work with complex solutions and just take the real part at the end. Explicitly, we have

o

f(z,t) = Re[f(z,1)] = / dk Re[A(k) e =D

—0o0
o0

_ / " {RC[A(kHRe[ei(kz—wt)] _ Im[[l(k)}lm[ei(kz—wt)]}

— / dk { R(k) cos(kz — wt) — I(k) sin(kz — wi)}.
If we define
A(k) =/ R(k)?+ I(k)?, (k) =— arctan(g(];;))) ,
then

This is equivalent to

and

f(z,t) = / dk A(k) cos(kz — wt — §(k)) ,

—00

with amplitude A(k) and phase shift §(k).

7.3 Electromagnetic waves in vacuum

MAXWELL’s equations in vacuum are (we use the notation ¢y = 1/c?)

V.- E=0, V.-B=0,
OB 1 OF

VXxE=——, VxB=—-———.

ot c2 ot

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

Taking the curl of the equation (7.35), and then using Eq. (A.22) and Eqs. (7.34), we find

1 0°E 1°B
Vz _ V2 —
E-aom =VE- G =0

All components of E and B satisfy the wave equation with velocity c.
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7.3.1 Plane-wave decomposition

We can decompose the solution into plane waves by Fourier transforming as in the one-
dimensional case above. The only changes are the wave vector k — k, the definition of the
wave number via k = |k| = 27/, and the direction of wave propagation, k = k/k. The
angular frequency is again defined as w = ck. The exponential factor becomes ¢'#*=<*)
¢'®7=w!) the integration measure dk — d°k, and the amplitude function becomes fl(k:) —
Eo(k)a(k), where Fj is a complex amplitude and # is the polarization vector (the direction
of the F field). It follows that the complex waveforms for the electric and magnetic fields are

E(r,t) = / Bk Eo(k)n(k)e'®r—1 (7.37)
B(r.t) - / &l Bo(k ) (k) ek (7.38)

These satisfy the wave equation, but we still need to check MAXWELL’s equation. For instance,

V-Er.t) = [ @ (b)) V)t

N (7.39)
.y / Bl Bo(k) (R (k) - k)ei®™0 — o
so (k) - k = 0 — the wave must be transverse. Similarly,
V x B(rt) = — / Pl Fo(k) (o x W)eitkr—t
] (7.40)
= —i / d*k Eo(k) (R x k)e'®T=wD — |
and
83(;1",1?) _ —/d3lc Bo(k)mgei(k-rwt)
t t (7.41)
= —z/d3k By (k)we k=20 = 0
so we must have .
win(k)By(k) = k x a(k)Ey(k) . (7.42)

That means we must have m(k) = k x fi(k) (the magnetic field is orthogonal to the electric
field) and By(k) = Ey(k)/c. One can check in a similar fashion that the other two MAXWELL
equations are also satisfied. The net result is

E(r.t) = / APk Ey(k)i(k)e'®r—t) (7.43)
Birt)—1 / &l Bolk)k x A(k)ei®T—0) (7.44)
C
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with w = ck and k x » = 0. Electromagnetic waves can be written as a superposition of
plane waves.

To get real fields, we just take the real parts. Note that £y and 72 can be complex, while k,
r, w, t are real. So

. 1 .
E(rt)= /d3k3 Ex(r,t), B(r,t) = - /d3kk X Eg(r,t), (7.45)
where the electric field plane wave is
E(r,t) = Eq(k)n(k) cos(k -r —wt — §(k)), (7.46)

with Eycosd — iEysind = Ej. (Here we have chosen n(k) to be real.)

7.3.2 Non-plane wave decomposition

Plane waves form a basis of solutions to the wave equation, but they are not the only such
basis. Just as in separation of variables in electrostatics we found that sinusoidal solu-
tions e’* " were convenient for rectilinear boundary conditions, but that spherical harmonics
¢ Py(cos 8), "1 Py(cos ) were convenient for spherical boundary conditions, the same is
true for waves. For example, (ignoring polarization) outgoing spherical waves:

o0

¢
E(r,0,6,t) ~ > > Eymhe(kr)Yem(9.6), (7.47)

=0 m=—¢

where the 1, are HANKEL functions and the Y, ,,, are spherical harmonics.

7.3.3 Beams of light

Light is an electromagnetic wave. Typically, light is a superposition of plane waves of many
different k and 7(k) and amplitudes and phases. A collimated beam is one in which all k
point in the same direction. A polarized beam is one where all #2 point in the same direction.
A monochromatic beam is one in which all & = |k| = w/c are the same. A coherent beam
is one in which all phases J(k) are the same. A collimated, polarized, monochromatic, and
coherent beam is given by a single FOURIER mode:

E(r,t) = Egpel®r=b (7.48)

7.3.4 Energy and momentum of electromagnetic waves

The energy density is

€0 2 | 2 2
=_—F —B*=—(F B?) . 7.49
u=SE+ o 5 (E* + *B?) (7.49)

We have to be careful using complex waveforms because (Re£)? # Re(E?). For a single
plane-wave mode

1
u= %O(Eg COSQ(k-r—wt—5)+CQC—2E§ cos*(k-r—wt—0)) = e Ej cos®(k-r—wt—4) . (7.50)
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Similarly, we find the energy density current (POYNTING vector)
S = cuk. (7.51)

This is an energy density times a velocity, so electromagnetic waves can carry energy at the
speed of light. The momentum density is

p= %S _— (7.52)
C C

The momentum of electromagnetic waves has magnitude energy divided by the speed of
light c.
If calculate the average over time, defined by

T

1
(X) = Jim . / atX(1), (7.53)
0
then, since
1 r 1
2 e & 2 _ 1t
(cos*(wt +9)) = 711_{1;10 T /dt cos”(wt + 0) 5 (7.54)
0
we have
1
(u) = Sk (7.55)
(S) = geongc, (7.56)
I=(S)= geoEg, (7.57)
1 .
(p) = 5 c0Egk, (7.58)
1 5 1
P = <p>C = §€0E0 = E . (759)

Here, I is the intensity (power per area), and P is the radiation pressure.
One can do the same for angular momentum. It turns out that a collimated monochromatic
wave carries angular momentum density

€ ~ A
J = iilEHz’% (7.60)

where E are the complex amplitudes of waves with circular polarization

E.(r,t) = Eife®r= (7.61)

where
'ﬁ':l: = —(’fll + Zﬁg) s (762)
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and 7, Mo, k form a real orthonormal basis of unit vectors. In terms of real polarizations,
circular polarization is a superposition of a plane wave polarized in the 7, direction and
another of equal amplitude polarized in the 7, direction, but with a 7/2 phase shift; for
instance,

E.(r,t) = E.[%cos(kz — wt) + gsin(kz — wt)] . (7.63)

Energy and momeetum in a superposition of plane waves: since u, p, ...are quadratic in
the fields, one cannot simply add the u of each plane wave. If E' = E; 4+ E,, then

u=eFE®=¢e(E; + Ej+2E;-Es) #uy +us. (7.64)

The cross terms between plane-wave components are called interference terms. If one time
averages, different frequencies do not interfere:

T
1 ) )
Tlgrgo oT / dt e tet™2t =oc §(w; — wy). (7.65)
-

But different &, fu(k), Eo(k) will, in general, interfere.

7.4 Electromagnetic waves in matter
7.4.1 Electromagnetic waves in linear media

In alinear, homogeneous, isotropic, dielectric, dia-/paramagnetic material with no free charges
or currents, MAXWELL’s equations are the same as in vacuum but with ¢y — € and pg — .
So electromagnetic waves travel just as in vacuum, but with speed v = 1/ Vep. Thus, such
materials are transparent. We define the index of refraction of the material to be

v €olto
— =,/ —. 7.66
- (7.66)

€p

n

For most materials n < 1 or v < ¢. What happens at the boundary between two such
materials? Expect: reflection and transmission. This is governed by the boundary conditions

¢ B = e By, E\E}, (7.67)
11

B = B, —Bl =Bl (7.68)
M1 M2

Consider an incident plane wave in +2 direction normal (perpendicular) to interface at
z = (0 and polarized in z direction (see Fig. 11):

E(z,t) = Eg el (7.69)
~ 1 -~ .
B[(Z, t) = —E07[€z(kz_Wt)g . (770)
U1
E;, = By, =0, so boundary conditions imply that all 1 components vanish, so waves can

only be in £z direction. By assumption there is no incoming wave from the right moving in
the —z direction. So there will only be a reflected and a transmitted wave:
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Figure 11: Transmission and reflection of a plane wave (normal incidence).

8 Potentials and fields
9 Radiation
10 Special Relativity

A Survey of Mathematical Topics

A.1 Differential Calculus

Given a function f : R? — R, f(xy,...,xq) € R, we define the exterior derivative
0 0
df = —fdxl +...+ —fdxd. (A.1)
8$1 8$d

Here, 0f/0x; is the derivative w.r.t. z;, keeping all other x; fixed. The exterior derivative is
linear,

d(af +bg) = adf +bdyg, (A.2)
where a,b € R are constants and f, g are functions, and satisfies the LEiBNIZ rule
d(fg) = fdg+gdf. (A3)

We can write the exterior derivative in term of the gradient V f as df = (V f) - d¢, where (in
Cartesian coordinates)
of . of .
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and
Al =dr1 %+ ... +degzy,. (A.5)

Note that these are vector-valued functions. The geometrical interpretation is that V f points
into the direction of maximum increase of f, and |V f| is the slope of f in that direction. We
define the gradient differential operator (referred to as “nabla”)

It takes scalar functions to vector-valued functions.

If f is a scalat function and v a vector-valued function (a vector field), we can form, in
addition to the gradient, the divergence of a vector field V - v (a scalar function), and the curl
of a vector field V x v (another vector field). In Cartesian components, the divergence is
given by

ov;
U= Z oy (A.7)

The divergence is proportional to the rate v “spreads out” in space. The curl is given, in
Cartesian components, by

z

— 9

V xv=det | 5
Ug

(A.8)

@@ QS"|Q31Q>
N@ %’lQD N>

|V x v| is proportional to the “vorticity” of the vector field. It is defined only in three dimen-
sions.
V is a linear differential operator, so

V(af +bg) =aV f+bVyg, (A.9)
V. (w+bw)=aV -v+bV - w, (A.10)
V x (av 4+ bw) = aV x v+ bV xw, (A.11)

for a,b € R constants. It satisfies the following useful product rules,

V(fg) = fVg+gVf, (A.12)

V.- (fv)=fV.-v+v-Vf, (A.13)

Vv-w)=vx(Vxw)+wx (Vxv)+ (V- v)w+ (V- -wp, (A.14)

( xw)=w-(Vxv)—v-(Vxw), (A.15)

X (fv)=fVxv—vxVf, (A.16)

Vx(vxw) (w-Vv—(v-Vw—-—w(V-v)+v(V- -w). (A.17)
Applying the nabla operator twice results in

V. -Vf=Vf= Za ;- (A.18)
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d
V2'U = E V2Uifi‘i,
=1

Vfo:Oj
V- (Vx[f)=0,

V x(Vxv)=V(V v)- V.
Another useful equation that follows simply from Eq. (A.14) is

vx (Vxv)=iV@®’)—(v- V).

A.2 Integral Calculus

The fundamental theorem of calculus is

/ derivative of f = / f

region boundary of region

In three dimensions, we get many different versions. Scalar integrals:

jov-fs
S/da-(va):aldE-'v,
/dV(V'v):/da'v.

\%4 ov

S/dafozéldef,
/dVVf:(?Zdaf,

v

/dV(va)—/daxv.

\% ov

Vector-valued integrals:

(A.19)

(A.20)
(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

To compute these, we need to know the following definitions: C, S, V' are oriented curves,
surfaces, volumes, and 9C, 05, OV their boundaries; f PYRCE:! “zero-dimensional” integral
(the usual familiar integral), f c df a one-dimensional line integral, f gdaa two-dimensional

surface integral, fv dV a three-dimensional volume integral.
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Integrating the LEiBNIZ rule and using the fundamental theorem yields integration-by-

parts identities:
gdf + | fdg= [ d(fg)= [ fg. (A.31)
A

R
For a single variable, this gives the familiar result

Jolrt) s

a

b
; (A.32)

a

or,
b

b b
d d
e == g+ g4
dx dx u

a a

(A.33)

In three dimensions, we just apply the same logic to any three-dimensional LEIBNIZ rule.
For instance, Eq. (A.16) implies

da-V x (fv)= [dl-vf= [da-(Vfxv)+ [ da-(V xv)f. (A.34)
oozt Jues= Jue o |

A.2.1 Line integrals

We describe an oriented curve from point a to point b as the set of points C' = {r(s),0 < s <
1}, withr(0) = a and r(1) = b. Then

dl(s) = 7 ds (A.35)

is the infinitesimal tangent vector at s, and we define the line integral as the sum of infinites-

imal tangent vectors,
1
d
/d£= /dsﬂ. (A.36)
ds
C 0

The boundary of a curve are just the two endpoints, 0C' = {a,b}. The integral over the
boundary is just the “usual” integral,

b
[ =10~ 1@ =1 (437)
ac N
Note that is C'is a closed curve, then b = a, so C' = () (the empty set).
In Cartesian coordinates, we can represent the curve as
C={r(s) =z(s)Z +y(s)§ + 2(s)2,0 < s < 1}. (A.38)

Then the line integral becomes

1 1
/ / /ds (%x—l—@ﬁ—i—%z) z/(d:m‘c+dyg}+dzé). (A.39)
0 0 C
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A.2.2 Surface integrals

We can describe an oriented surface as the set of points S = {r(s,1),0 < s < 1,0 <t <1},
with
r(s,t) =z(s, ) + y(s,t)g + 2(s,t)2. (A.40)

The infinitesimal normal surface area is given by

dr dr
da = dsdt — A.41
=y A (A41)

/m_/m/ﬁ@ < (A42)

The boundary of a surface is a closed curve. We often write the integral as

/ it = jqf . (A43)
oS oS

If the surface is closed, then its boundary is the empty set.
In Cartesian coordinates, the surface integral becomes

and the surface integral is

1 1 p p 1 1 & g 2
/da:/ds/dt—r x & /ds/dtdet & oy 8| (A.44)
ds dt or Oy s

s 0 0 0 0 ot ot ot

Surfaces can be decsribed implicitly, as the solution of an equation: S = {r|u(r) = 0},
where u is a scalar function. If we can find any two functions s(r), ¢(r), such that

ox Oy Oz
0<Vs-(VtxVu)=det | &£ & & |=1J, (A.45)
ou ou  ou
dr Oy Oz
then (s, t) parameterizes S, da < Vu, and
/ da = / dsdt J-'Vu|, _, . (A.46)
S

A.2.3 Volume integrals

We can describe an oriented volume as the set of points V' = {r(s,t,u),0 < s,t,u < 1}. E.g.,
we can just take (s,¢,u) = (x,y, z) as the Cartesian coordinates. The infinitesimal volume
element is given by

dr dr dr
dV = dsdtdu e (% X @) , (A.47)
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and the volume integral is
1 11 p . .
ro(dr r
v 0 0 0

The boundary of a volume is a closed surface. We often write the integral as

/da = %da. (A.49)

ov )%

If the surface is closed, then its boundary is the empty set. The orientation of the surface is
inherited from the orientation of the volume: da points out of V' if dV' > 0, and da points
intoV it dV < 0.

In Cartesian coordinates, the volume integral becomes

oz Oy 0z
i B
dV = [ ds [ dt du— — dsdtdudet | 55 2% 57 | . (A50)
Oz Oy 0z
ou Ou Ou

A.3 Separation of variables

A systematic method for finding series solutions of LAPLACE’s equation when the boundary
conditions are on surfaces described by constant values of coordinates in some coordinate
system.

Cartesian: boundaries at x = constant or y = constant or z = constant. So, good in
“rectangular” domains. Note that x;, y;, 2; could be at infinity.

Spherical: boundaries at 7 = constant or ¢ = constant or § = constant.

Cylindrical: boundaries at r = constant or ¢ = constant or z = constant.

The idea is to look for solutions of V2V = 0 such that: V(z,y,2) = X(z) - Y(y) - Z(2)
(Cartesian), V' (r,¢,0) = R(r) - ®(¢) - ©(0) (spherical), or V(r,¢,2) = R(r) - (¢) - Z(z)
(cylindrical). Then we will find that V2V = ( separates into three ordinary differential equa-
tions for the factor functions (X,Y, Z) etc., each depending on a real constant (k2, k7, kZ).
These ordinary differential equations can be solved once and for all and we get a family of
special functions, e.g.:

Cartesian: X ~ e** ~ sin(kx), cos(kz) or X, ~ e*** ~ sinh(kx), cosh(kx), and the
same for Y, Z;.

Spherical: R), ~ r%, with £y = —(1 F /1 +4k2)/2, O(0) ~ P/(cos®) (associated
LEGENDRE polynomials), ®(¢) ~ e or ®(¢)) ~ e*k,

Cylindrical: Ry, ~ J, Y} (BEssEL functions), ®(¢)) ~ e*? or ®(¢) ~ e**¢, Z(2) ~ et
or Z(z) ~ e*kz,

“Special functions” have the very nice properties of orthogonality and completeness. If
Ni(x) is a set of special functions, then, heuristically,

/dLC Nk<£L'>Nk/(£L') = (Skk’ (ON)
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(orthogonality) and
D Ni(z)Ni(2') = 6(x — o) (CO)

k

(completeness). Eq. (CO) implies that any function f(z) can be written as a linear combina-
tion of the Ny (x):

o) = [ d fa)sle o) = [ d' f(a) 3 Nala) Nl

(A.51)
- ZNk(x) (/dx'f(x')Nk(x’)> = chNk(x).
k k
Eq. (ON) implies that the coefficients ¢ can be determined uniquely:
/ dz f(2)Ny(z) = / dx (Z ck/Nk/(a:)) Ni(z)
o (A.52)

= ch/ /dI Nk/($)Nk($) = ch/(skk/ =cCk.
kl k/

(This is just like expanding any vector in a basis, v = ), vie;, with basis vectors e;, and
coefficients cy. In fact, the sets of special functions form an infinite-dimensional vector space.)

A familiar example is Ny () — N,,(¢) = €™, with n € Z. In this case, the orthogonality
relation is

2
1 . .
1 / dg e im — 5, (A53)
2

0

and the completeness relation is

> e = 2mi(¢ — ¢) . (A.54)
It follows that ‘
F(@) = cne™, (A.55)
with
1 2T
_ —ing
=5 [ d0 @) (A.56)
0

This is the FOURIER series for periodic functions.
Similarly, if Ny(z) = e?**, with k € R, then the orthogonality relation is

o0

1 L
dx e e T = §(k — k'), (A.57)

o

—0o0

57



and the completeness relation is

1 T - I
Py dk e e = §(x — 2). (A.58)
It follows that .
1 ~ ,
fla) =5 [k Fo)e, (A.59)
with -
f(z) = / dx f(x)e ™ (A.60)

This is the familiar FOURIER transform.

These examples make it clear that the precise set of special functions used depends on the
boundary conditions. For instance, if if the boundaries are at x = xy and © = x;, and both
Zp and x; are finite, then we get a FOURIER series, but if o = +00 and/or 1 = 400, then
we get a FOURIER transform.

A.3.1 An example: Cartesian coordinates

Here, we have V2V = 0 such that: V(z,y,2) = X(z) - Y(y) - Z(z). Explicitly,

O Oy2 022 (A.61)
= (2X)YZ + (02Y)XZ + (022) XY,
SO ) 52}/ )
0= 0:X + L+ 9.2 (A.62)

X Y Z

As the first term is only a function of z, the second only of y, and the third only of z, we
must have

02X , O , 07 2
% = —k2, _3;/ =k, 7:_1{;27 (A.63)

with k2 + k2 + k2 = 0. (This implies that not all of the k7 can be positive!)
The solutions to Eq. (A.63) are

X(z) = flcos(kxx) + B sin(kyz) = Ae™* 4 Be (A.64)
if k2 > 0, and
X(x) = Acosh(ﬁxx) + B sinh(k,x) = Ae™ + Be ™™ (A.65)

if k2 = —k2 < 0 (so 2 > 0). Similarly for Y, Z. The values that the k7, k2, k2 can take are
determined by the boundary conditions.
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A.3.2 An example: spherical coordinates

As an example, we solve LAPLACE’s equation in the region r; < r < 79, with boundary
conditions

V(T =ry,0, ¢) =0, (A.66)
V(r=ry,0,0) = g0, 0). (A.67)
We have (see Eq. (B.7))
o2y, L O [ ,0V 1 oa(. oV 1 (32_1/
0=VV= r2 or " or + r2sin 6 00 sin 0 00 + r2sin® 6 0¢? (A.68)
Inserting V (1, ¢,0) = R(r) - ®(¢) - ©(#) and multiplying by r*/V (r, ¢, 0), we have
10 /([ ,0R 1 o( . 00 1 0%
= 5. . YY) - — . A.
0 R@r(r (97”)+@Sin680(8m989)+<I>sin298¢2 (A.69)

The first term is a function of r only, while the second and third terms depend only on 6 and
¢, so we must have

0 ( ,0R
and 19 90 1 >0
— | sinf— — ==\ A.70
@smeae<sm 86)+<I>sin208¢2 ’ (A.70)
with A € R. Multiplying the last equation by sin? , we find
sinf 0 00 9 10%®
| sing=—= i ——— =0. A.71
5 89<Sln989)+)\81n 9+<I>8¢2 0 (A.71)
Since now the last term depends on € only, it must be constant,
100 9
It follows then that 26
— = —m?® )
50 (@
and 6 0 00
sin 0 (. 0O Lo 9
5 89(51n089>+)\981n 0 =m0. (©)
Let’s solve Eq. (P) first. The solutions are
P, =™, meR, (A.73)
for m? > 0, or 4
d,=e" pueR, (A.74)
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for m* = —mu? < 0. What are the boundary conditions on ®,, ,? Periodicity in ¢ requires
that

P, (P4 2m) = Oy, (@) - (A.75)

There is no solution (apart from ;1 = 0) for ®,,. For ®,, we get e*™™ = 1, s0 m € Z.

Now let’s look at Eq. (©). What are the boundary conditions? We want ©(f) to be regular
at 0 = 0, 7. It follows that A = ¢(¢ + 1) with ¢ € Z and ¢ > |m|. The solutions of Eq. (©) are
then the associated LEGENDRE polynomials P} (cos 6, sin ).

For this course, we will stick to situations where only m = 0 contributes. This means
only ©¢(¢) = 1 is allowed, which means we are restricting to problems where there is no ¢
dependence, i.e., there is rotational symmetry about the z axis.

So, we have to modify our problem to have boundary condition V (r = r5,0,¢) = g2(0)
(i.e., no ¢ dependence). When m = 0, the solutions of Eq. (©) that are regular at § = 0, 7 are
the LEGENDRE polynomials

O4(0) = Py(cos ), (A.76)
with0 < ¢ € Z, and
P = () 2 1y @77
A=\ ) ' '
For instance,
Py(z) =1, (A.78)
Py(r) ==z, (A.79)
Py(z) = 1(32%* — 1), (A.80)
Pi(z) = 1(52° — 32), (A.81)
Py(z) = £(35z" — 302% + 3), (A.82)
Ps(z) = £(632° — 70z° + 15z) . (A.83)
There are normalized to P;(1) = 1 and satisfy
Py(—2) = (-1)Py(x), (A.84)
as well as
1 s 5
/dx P, (z)P,(x) = /sm 0 df P,,(cos )P, (cos ) = 2n—+16mn (A.85)
| 0
and
- 1
e 2* Pu)Pia) = 6(z — ). (A.86)
=0
Now look at Eq. (R):
0 ( ,0R
— — | = DR. A8
8r<r 07’) H+ 1R (A-87)

60



Notice that this equation is invariant under the rescaling r — ar, so we guess the solutions
R o r®. Plugging this in we find a(a+ 1) = ¢({+1),so a = £ or a = —¢ — 1. So the general
solution is

Ry(r) = Apr® + Bpr =71 (A.88)

Putting this all together, we have

o0

Vr,0) = Z (Ag?“g + Bg?"_e_l)Pg(COS 0). (A.89)

£=0

(This solution is only good if (i) there is no ¢ dependence, and (ii) it covers the full range
0 < 6 < 7.) Now we apply the boundary conditions:

0=V(r,0) = Z (Aer{ + Bery 1) Po(cos0). (A.90)

=0

Since the P;(cos #) form a complete set of functions, we have

Ag?“f + Bﬂ‘l_g_l =0 (A.91)
for all ¢ > 0. Next,
g2(0) =V (re,0) = Z (Aers + Bery 1) Py(cos ) . (A.92)
=0

Now we use the orthogonality of the Py(cos 6):

™

/ sin 0 df go(0) P, (cos 0)

™

(Aw“g + Bgr;“l) / sin 0 df Py(cos 0) P, (cos 0) (A.93)
0 0

(e -

4

260 2
n+1 2n+1

WE

(Agrg + Bﬂ‘;(_l) (Anrg + Bnr;”_l)

~
Il

0
Eqgs. (A.91) and (A.93) determine Ay, By for all ¢.
B Curvilinear coordinate systems

B.1 Spherical coordinates

Relation to Cartesian coordinates:

x=rsinfcos¢, y=rsinfsing, 2z =rcosh. (B.1)
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Infinitesimal line element:
db=dr#+rdfif+rsinfdod.
Infinitesimal volume element:
dV =r?sinfdrdf do.

Gradient: For a scalar field f, we have

0 10f A 1 Of »
Vf= f‘+——f0+ /

r 00 rsinf 8¢
Divergence: For a vector field A, we have
10, 1 0 1 04,
VA= _8_( Ar) + rsm@c%’(Aesmg) rsind d¢

Curl: For a vector field A, we have

1[0 04,1, 1[ 1 04, 0 A

VXA_rsine[ae(A¢Sln9) 8¢]r+;{sin6 9o~ or\e) |0
179 04,7 5
+;[E(TA9)— ae:|¢

Laplacian:

LOf 10 of 1 o2
2 _ —_J
Vf_ﬂar( ar>+r2sineae<smeae>+r2sm2ea¢2'

B.2 Cylindrical coordinates
Infinitesimal line element: A
d=drf+rdodp+dz2.
Infinitesimal volume element:
dV =rdrd¢dz.
Gradient: For a scalar field f, we have

vf_af Ry +8f

r 0
Divergence: For a vector field A, we have
10 18A¢ 0A,
V‘A—Ta (’I‘A) 8gb+
Curl: For a vector field A, we have
10A 0A 0A 0A, 170 0A
A= |Z22 00 ! Ay) — —1|3.
v x [r 99 8z]r+[8z 8r10+ [8r(r ‘) a¢}z

Laplacian:

vep=19

ror (af>+ s g

Yor) oy
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