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1 Introduction

When we look at the greatest cosmic distances, the Universe looks the same
everywhere with only tiny departure from homogeneity. This is the Cosmic
Microwave Background(CMB), an electromagnetic radiation that fills our sky
in every direction. The average temperature of CMB black-body radiation is
2.725 K and is therefore visible in the microwave band of the electromagnetic
spectrum. The anisotropy of the CMB consists of small fluctuations in the
black-body radiation after Big Bang. According to the standard cosmological
model, these are seeded by primordial quantum perturbation that are imprinted
onto the early universe immediately after Big Bang by a process called Infla-
tion. Inflation is defined as a period of accelerated expansion within the first
fraction of a nanosecond of the universe that explain primordial perturbations
as quantum fluctuations in the space-time metric during inflation[0]. The goal
of early-universe cosmology is to quantify the observed features of the Universe
and to develop a physical model that accounts the observed features.

0The quest for B Modes from Inflationary Graviatational Waves
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Figure 1: CMB by ESA’s Planck Satellite[1]

The angular power spectrum of the anisotropy of the CMB contains informa-
tion about the formation of the universe, it’s evolution and it’s current contents.
The angular power spectrum is defined as a plot of how much the temperature
varies from point to point on the sky with respect to the angular frequency, ell.
However, when observing the CMB which was produced approx 13.8 billions
years ago, we are presented with some issues in properly collecting the data
in the first place let alone interpret it. Unfortunately, between the true CMB
and where we observe it is a long line of obtruding foregrounds which hinder
our ability to accurately measure the temperature differences at CMB frequen-
cies. Here we will consider dust maps at four different frequencies ranging from
low to high which are: 95,150,220 and 353 GHz. We know that the low and
high frequency data are dominated by synchrotron and thermal dust emission
respectively[2]. To simulate the dust maps at the high frequency 353 Ghz we
use spatially varying spectral index which leads to decorrelation in the power
spectrum when scaling to other frequencies. This paper explores:

1. How does the decorrelation vary with the frequency ratio?

2. How does the decorrelation vary with the standard deviation of the betadust
map?

3. How does the decorrelation change if the betadust maps has different power
spectrum i.e Dl = ellγ

1https://www.space.com/33892-cosmic-microwave-background.html
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2 Theory:

2.1 Fourier Transform and Power Spectra

To calculate the angular power spectra of the CMB: We apply the two-
dimensional Fourier Transforms (2D FT) to the temperature and polariza-
tion(Stokes Q and U) maps after normalization. We estimate DXY

b as a binned

version of DXY
l = l(l+1)

2π CXYl where l is the angular frequency called the mul-
tipole moment. The reciprocal of the l corresponds to the angular scale which
we can call the angular wavelength of the fluctuation. The two indices X and
Y can be used to calculate a particular power spectrum of either the {95, 150,
220 or 353} GHz T , E, or B maps.
We make a small angle angle flat sky approximation and take the two dimen-
sional discrete Fourier transform of the product of the maps and apodization
mask. The coordinate points in the Fourier space maps are lx and ly, which
represent modes with wave vector in the direction of right ascension and dec-
lination, respectively. The Fourier transformed Q and U maps is then rotated
into E,B maps in the Fourier domain as:

E(lx, ly) = +Q(lx, ly)cos2φ+ U(lx, ly)sin2φ

B(lx, ly) = −Q(lx, ly)sin2φ+ U(lx, ly)cos2φ

Where φ = arctan(
ly
lx

) is the polar angle of each mode with respect to the Fourier

plane origin. After transforming to the E and B map the power spectra, DXY
b

is calculated as the product of Fourier map X with the complex conjugate of the

Fourier map Y . The product is normalized as l(l + 1)/2π, where l =
√
l2x + l2y

and then averaged over uniform annular bins.

2.2 Foreground

2.2.1 Dust Simulation:

According to modern precise measurements in cosmology, the foreground
dust in our galactic neighbourhood can be modelled as a spectrum that follows
power-law on ell. The dust that we observe in the BICEP/KecK maps appears
to follow a spectrum with: DlBB = A · (ell/ellpivot)

α and DlEE = 2 · A ·
(ell/ellpivot)

α[3]. Note: the dust has twice as much power in EE than in BB.
At 353 GHz: Dust Amplitude(A)=5µK2, ellpivot = 80 is the angular scale that
defines the amplitude, and α = −0.4 is the power-law slope.
We can use this known power spectrum to generate map of varying dust spectral
index. To create the Stokes Q and U maps of the dust from this power spectrum:

3Planck Collaboration, Planck Intermediate Results. XXX. The angular power spectrum
of polarized dust emission at intermediate and high Galactic latitudes, Astron. Astrophys.
586, A133, Feb 2016
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first calculate Cl using the relation Cl = 2·π·Dl
l(l+1) . Then calculate the Fourier

plane coordinates for size of that map(512× 512 in our case): l =
√
l2x + l2y and

φ = arctan(
ly
lx

). Next, we create a random one-dimensional piecewise linear

interpolation of ell(x-coordinates of the data points) and
√
Cl(y-coordinates of

the data points) at l(all points) in the Fourier plane. This gives us the E and
B maps in the Fourier plane. Now that we have the E,B maps we can find
the Q,U maps in the Fourier plane using the conversion equation from section
2.1, which can then be inverse Fourier transformed back to the real space and
normalized using discrete form of parsaval’s theorem for Fourier normalization.

2.2.2 Frequency re-scaling:

The dust foreground is caused by the thermal emission from diffuse micro-
scopic particles in our Galaxy heated by by starlight. We would expect thermal
emission to obey a blackbody spectrum based on the physical temperature of
the dust. However, emission is suppressed at millimeter wavelengths because
those wavelengths are physically larger than the typical grain size. This leads to
what is known as a ”graybody” spectrum, which is a blackbody with emissivity
that varies as a power law in frequency, with spectral index βd(beta dust) and

its intensity, Idust = ν3+βd

exp hν
kTdust

−1
. If we have a dust signal with amplitude 1µK

at 353GHz and we want the amplitude at 95GHz, we do the following:

1. Convert 1µK from thermodynamic units to antenna temperature units at
353GHz.

(dP/dT ) / (dPRJ/dT ) =

(
hν

kTCMB

)2
exp(hν/kTCMB)

(exp(hν/kTCMB)− 1)
2

2. Use power law scaling to go from 353GHz to 95GHz.

Idust ∝
ν1+βd

exp(hν/kTdust)− 1

3. Convert back from antenna temperature to thermodynamic units at 95GHz.

4. Finally: Scale factor =
eqn1(@353)· eqn2(@95)

eqn2@353

eqn1@95

2.3 Correlation:

The correlation amplitude between two different frequencies for the power
spectrum is calculated as follows:

95/353 B − correlation =
Dl95E ·Dl353E√

Dl95E ·Dl95E ×Dl353E ·Dl353E
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The decorrelation amplitude is calculated as: 1− correlation ampli-
tude(At ell = 1460)

3 Data Analysis:

3.1 βDust: Standard Normal Distribution, N(1.59, 0.12)

Let us consider the case where the spatially-varying spectral index(βdust)
has a Standard Normal Distribution with mean, µ = 1.59 and its standard
deviation, σ = 0.1

3.1.1 Correlation Amplitude as a function of ell

Figure 2: The E-correlation amplitude between 95GHz vs 150GHz seems to be
varying quadratically as a function of ell

Figure 3: The B-correlation amplitude between 95GHz vs 150GHz seems to be
varying quadratically as a function of ell

From figure 2 and figure 3 above, we can see that at the frequency ratio
of 0.6333(95GHzvs150GHz) both the E and B correlation amplitude falls off
quadratically for increasing ell. However, the B-mode has bigger decorrelation
amplitude = 1 − 0.996832424403127 compared to the E-Mode decorrelation
= 1− 0.9983489919598786.
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Figure 4 and Figure 5 shows that the shape of the correlation amplitude remains
uncharged for different frequency ratio but it suggest that the decorrelation
amplitude increases as the frequency ratio decrease.

Figure 4: The B-correlation amplitude between 95GHz vs 220GHz seems to be
varying quadratically as a function of ell

Figure 5: The B-correlation amplitude between 95GHz vs 353GHz seems to be
varying quadratically as a function of ell

So, for values of frequency ratio={0.2691, 0.4318,0.6333} we can see that the
correlation amplitude always falls off quadritically as ell increase. What about
the actual value of the decorrelation amplitude? We will check this in the next
section.

3.1.2 Decorrelation Amplitude as function of frequency ratio

To see how the actual value of the correlation amplitude depends on the fre-
quency ratio. Let’s plot what I defined above in section 2.3 as decorrelation amplitude
as a function of frequency ratio.

Figure 6 suggest that the decorrelation amplitude falls off quadratically to
zero as the frequency ratio approaches 1 which is what we would expect at the
same frequency( frequency ratio → 1), there should be no decorrelation. Note:
As mentioned above in section 3.1.1, we can see clearly in this figure that the
B-mode decorrelation is almost twice as much as that of the E-mode this is
probably because when we simulated the dust map in section 2.2.1, we used
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Figure 6: The decorrelation amplitude seems to be quadratic as a function of
frequency ratio for βdust = 0.10

DlEE = 2 ·DlBB to create the Q and U Fourier map[3]. So, when we rotate the
Q,U maps to E,B map using the equation in 2.1 this essentially bleeds twice
the spectra of EE into BB giving us a twice the decorrelaion amplitude for the
b-mode. Next question we can ask is, how does this change as the standard
deviation of the beta dust varies?

Figure 7: The decorrelation amplitude seems to be quadratic as a function of
frequency ratio for βdust = 0.20

Figure 8: The decorrelation amplitude seems to be quadratic as a function of
frequency ratio for βdust = 0.30
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Figure 9: The decorrelation amplitude seems to be quadratic as a function of
frequency ratio for βdust = 0.40

From the plots above with different beta dust σ. We can deduce that the
shape of decorrelation amplitude as a function of frequency ratio remains the
same. It is still quadratic however the decorrelation amplitude increases
as σ of the spatially varying spectral index increases.

3.2 Other Power Spectrum(s) for βdust:

3.2.1 How does the actual dust map change with the change in the
power spectrum of the spatially-varying spectral index?

Figure 10: betadust : Dl ∼ ell2

Note: All five of dust maps have been normalized so that they have the
same standard deviation, σ = 0.1.
From the above betadust maps, we can clearly see that there are some changes
to the map. The standard normal dust map(Figure 11) and the betadust : Dl ∼
ell2(Figure 10) are quite similar with smaller feature. The flat dust map(Figure
12) has both small and big features in the map wheres the betadust : Dl ∼
ell−1(Figure 13) and betadust : Dl ∼ ell−2(Figure 140 have much larger features
compared to the standard normal distribution betadust map.
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Figure 11: betadust : N(1.59, 0.12)

Figure 12: betadust : Dl ∼ ell0

Figure 13: betadust : Dl ∼ ell−1

3.2.2 How does shape of the correlation amplitude as a function
of ell change with the change in the power spectrum of the
spatially-varying spectral index?

let’s take a look at the graph of the correlation amplitude as a function of
ell at frequency ratio(95vs150) = 0.06333 for all five dust maps in the above
section. Figure 15 and figure 16 corresponding to the betadust : Dl ∼ ell2

and betadust : N(1.59, 0.1) respectively that had similar dust map with smaller
features in the section also have similar shape of the correlation function. Their
actual values are also quite close and are a pretty good quadratic best-fit. Figure
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Figure 14: betadust : Dl ∼ ell−2

Figure 15: The B-correlation amplitude between 95GHz vs 150GHz with
betadust : Dl ∼ ell2

Figure 16: The B-correlation amplitude between 95GHz vs 150GHz with
betadust : N(1.59, 0.12)

18 and figure 19 corresponding to betadust : Dl ∼ ell−1 and betadust : Dl ∼ ell−2

respectively that had similar dust maps with larger features also have similar
shape of the correlation function. Their actual values are also quite close to
each other however is much different from the figure 15 and 16 and its quadratic
best-fit is not as good either. Figure 17 that had a mix of both small and big
features in the dust map has a correlation function is different from the other
four plots and kinds look like a mix of the other two types. It’s quadratic best-fit
is also not as good as the first two.
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Figure 17: The B-correlation amplitude between 95GHz vs 150GHz with
betadust : Dl ∼ ell0

Figure 18: The B-correlation amplitude between 95GHz vs 150GHz with
betadust : Dl ∼ ell−1

Figure 19: The B-correlation amplitude between 95GHz vs 150GHz with
betadust : Dl ∼ ell−2

4 Conclusion:

To answer the three questions we proposed at the beginning of the paper.
We simulated a dust map at 353GHz following the procedure explained in sec-
tion 2.2.1 then scaled that map to other three frequencies(95, 150, 220GHZ) as
described in 2.2.2. Now that we have the dust map at four different frequencies
we then calculate their power spectrum as a function of ell, this procedure is
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outlined in section 2.1. Next, using the power spectra, we calculate the corre-
lation and decorrelation amplitude as a function of ell as outline in section
2.1 and we are finally ready for data analysis.
From section 3.1.1 we can see that the correlation amplitude of the power
spectra as a function of ell varies quadratically for all frequency ratios. In sec-
tion 3.1.2 we took a look the decorrelation amplitude as function of frequency
ratio. Here also we see that the function is also quadratic and the decorrelation
amplitude and approaches 0 and the frequency ration goes to 1 which is what
we expect. Although, you can see that the B-mode is more decorrelated than
the E-mode in section 3.1.1, this is even more apparent in section 3.1.2. It is
because the simulated dust map has twice as much power in EE than in BB.
And finally, in section 3.2 we look at and compared different power spectrum for
the betadust maps. Here we find that the correlation does change for different
power spectras and that power spectrums that produce similar dust map also
create similar decorrelation when frequency scaling.
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